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Abstract

Planning enables autonomous agents to solve complex decision-making prob-
lems by evaluating predictions of the future. However, classical planning al-
gorithms often become infeasible in real-world settings where state spaces are
high-dimensional and transition dynamics unknown. The idea behind latent plan-
ning is to simplify the decision-making task by mapping it to a lower-dimensional
embedding space. Common latent planning strategies are based on trajectory opti-
mization techniques such as shooting or collocation, which are prone to failure in
long-horizon and highly non-convex settings. In this work, we study long-horizon
goal-reaching scenarios from visual inputs and formulate latent planning as an
explorative tree search. Inspired by classical sampling-based motion planning
algorithms, we design a method which iteratively grows and optimizes a tree rep-
resentation of visited areas of the latent space. To encourage fast exploration, the
sampling of new states is biased towards sparsely represented regions within the es-
timated data support. Our method, called Expansive Latent Space Trees (ELAST),
relies on self-supervised training via contrastive learning to obtain (a) a latent
state representation and (b) a latent transition density model. We embed ELAST
into a model-predictive control scheme and demonstrate significant performance
improvements compared to existing baselines given challenging visual control
tasks in simulation, including the navigation for a deformable object.

1 Introduction

zstart

zgoal

Figure 1: Sampling-based latent ex-
ploration with ELAST. A tree (blue) is
iteratively grown and optimized while
being bound to the estimated latent sup-
port region (gray).

To perform challenging control tasks in real-world environ-
ments, intelligent agents must reason across many temporal
steps, often relying on high-dimensional sensor data such as im-
ages. Over the past decade, machine learning has significantly
improved the state-of-the-art in image-based robotics and per-
ception [34, 9, 2, 36, 17, 15]. However, existing methods are
often limited to problems with relatively short time horizons
and fail when the target is too far in the future. Reinforcement
learning (RL), for example, is prone to failure in such scenarios
due to sparse reward feedback and the resulting complexity
of credit assignment [37, 16]. Classical planning algorithms
[30], on the other hand, excel at solving temporally-extended
decision problems, but typically require compact representa-
tions, state distance metrics and perfect knowledge of transition
dynamics.

Recent work proposes a mixture of planning and deep learning
methods to enable planning from complex visual observations. Current approaches can be broadly
divided into planning (a) directly in the observation space [44, 8, 35] and (b) in learned latent
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spaces [14] [43]. The first variant usually relies on generative modeling of video sequences to
synthesize feasible image paths. The inherently high computational cost of training and deploying
such generative models, as well as the burden to make visually accurate predictions, present key
limitations of this type of method. Latent planning, on the other hand, maps the control problem
to a lower-dimensional embedding space in order to reduce the complexity of the search space and
facilitate the approximation of the dynamics. Moreover, this bypasses the computational bottleneck of
synthesizing high-dimensional observations allowing fast computation of paths even in long-horizon
settings.

A large number of existing latent planning strategies are based on trajectory optimization tools that
originated in the optimal control literature [25]. In particular, gradient-free shooting-based strategies
such as the Cross-Entropy Method (CEM) [3] or Model-Predictive Path Integral control (MPPI)
[57] attracted much attention due to various applications in model-based RL [14] [39]. Numerical
trajectory optimization through direct collocation [25] was recently used in [43] for planning over
latent spaces. Despite their recent popularity, the aforementioned techniques are known to suffer
from local minima when the optimization landscape is highly non-convex [51] which makes them
less suitable for planning in geometrically complex spaces.

In this work, we pursue the intriguing idea of planning in latent spaces and focus on improving existing
techniques by formulating planning as a search within the continuous latent state space. We present
Expansive LAtent Space Trees (ELAST) which solves high-dimensional goal-reaching tasks through
an explorative search within the latent data support. Our method differs from existing approaches in
that it grows and optimizes a tree representation of previously visited areas, which can be leveraged to
improve the efficiency of the exploration. This concept is largely inspired by single-query sampling-
based planners [30] in the field of robot motion planning, in particular the asymptotically optimal
version of Rapidly-exploring Random Trees (RRT) [31, 24] and Expansive Space Trees (EST) [18].
Motion planners are typically used for navigating robots through geometrically complex environments,
analogously our motivation is to introduce similar concepts in latent spaces. It should be noted that
direct application of these methods to our setting is not possible because state metrics, sampling
distribution, collision checks and other important quantities are difficult to define for learned
embeddings. To overcome these challenges, we use self-supervised contrastive learning to obtain a
state representation which locally preserves certain geometric properties that favor planning, and in a
second step approximate latent dynamics and state connectivity models from random interaction data.
We demonstrate that our learned embedding allows us to effectively use noise-contrastive estimation
(NCE) [12, 13] for the approximation of conditional transition densities.

Our main contribution is the presentation of ELAST, a new latent planning algorithm for long-horizon
goal-reaching. In the scope of this work, we focus on visual input data represented by sequences of
image observations. To the best of our knowledge, we are the first to present explorative tree search in
latent spaces without the need of expert data or privileged information about the environment. Unlike
static map-based approaches [44] [8] [10], our planner is compatible with parameterized settings,
e.g. environments which are conditioned on the position of obstacles. Our evaluation on challenging
visual control tasks in simulation shows significant performance improvements in downstream task
success rate and path quality compared to existing baseline solutions.

2 Related Work

Planning in Images Spaces A large body of prior works learn video dynamics to solve visual
planning tasks [9, 7, 59, 40, 53]. Visual Foresight [7], for example, generates predictions of future
frames to optimize next-step actions through shooting-based optimization. [53] extends this idea
with offline Q-learning to obtain improved cost-to-go metrics in long-horizon settings. [40] uses a
hierarchical architecture to produce subgoal images for temporally-extended navigation tasks. The
approaches in [8, 19, 29] learn a distance metric using value-based reinforcement learning to construct
a graphical representation of the observation space. Paths are then generated by solving the shortest
path problem on the graph. In a similar fashion, [44] uses self-supervised training of a connectivity
classifier to construct a map of neighboring image states. [35] builds upon this idea but uses an
energy-based model to approximate the traversability between states. The methods presented in
[27, 55] use a map-free approach which plans visual paths by predicting intermediate frames using
a generative adversarial network [11]. In this work, we take a fundamentally different approach to
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visual planning by instead solving the decision-making task in a learned embedding space, thereby
bypassing the need for computationally demanding generative video models.

Latent Planning and Control The idea of latent planning and control is to use compact repre-
sentations which simplify decision-making and dynamics learning. [56] train a linear dynamics
model to achieve locally-linear control from images in a learned embedding. [33, 48, 42] investigate
contrastive-predictive coding to learn useful representations for control. [14] uses a reconstruction-
based visual embedding and plans actions using shooting-based trajectory optimization via the
Cross-Entropy Method (CEM) [3]. Similary, [39] uses Model-Predictive Path Integral Control
(MPPI) [57] with learned dynamics models for dexterous robot manipulation tasks. [43] recently
introduced collocation-based trajectory optimization [25] to model-based reinforcement learning in
latent spaces. The methods in [50, 61] approach visual control tasks via gradient-based planning
in a learned embedding space. [41] plans sequences of coarse subgoals by solving the shortest-
path problem through direct optimization on the latent manifold. [22] implement an RRT-like [30]
sampling-based planner within a learned embedding. The presented method is suitable for robot mo-
tion planning from image inputs and relies on the existence of state samplers and collision checking
mechanisms. Similarly, [23] presents a task-conditioned sampling-based motion planner for efficient
exploration in latent spaces but requires access to a predefined task space. The line of work in [45, 46]
combines model-based RL with Monte Carlo Tree Search (MCTS) [5] to improve the capabilities in
long-horizon decision-making tasks such as playing Atari games from video input. While limited
to discrete action spaces, [20] recently extended this idea to continuous action spaces introducing a
sampling-based policy iteration framework.

Similar to the works in [22] and [23], our method is highly inspired by classical sampling-based
robot motion planners. However, in contrast, we do not require expert data, collision oracles, or
other privileged information about the environment. ELAST is a single-query approach, meaning
that it generates a new search tree for each planning query. Unlike map- or graph-based approaches
[8, 19, 29, 44], this provides more flexibility by allowing planning beyond static environments, e.g.,
parameterizing on obstacle configurations. Compared to sampling-based approaches such as CEM,
MPPI or continuous MCTS, we exploit the properties of our state embedding for keeping track of
already visited areas, thereby encouraging fast exploration.

3 Preliminaries

Sampling-based Motion Planning In the motion planning literature, the configuration space
is defined as the space of all possible robot configurations, i.e., the specifications that accurately
describe the state of a robot system [30]. Sampling-based motion planners solve continuous robot
motion planning tasks by performing a search that probes the configuration space through sampling
[30]. A prominent representative of sampling-based algorithms are Rapidly-exploring Random Trees
(RRT) [31]. It grows a search tree by iteratively adding new samples drawn from the configuration
space. At each step, a new state is connected to its nearest neighbor in the tree if the corresponding
transition is valid. Instead of sampling directly from the state space, Expansive Space Trees (EST)
[18] build a search tree by systematically expanding nodes in sparsely represented regions of the
configuration space. The work in [24] presents an adaptation of sampling-based methods such as
RRT which produce asymptotically optimal paths with respect to the number of planner iterations.
Classical motion planners operate on well-described configuration spaces, e.g. robot joint space, and
assume access to collision detection and state samplers. In this work, we bridge the gap between
sampling-based motion planning and learning control from visual input.

Noise-Contrastive Estimation Density estimation is a ubiquitous task in machine learning and
statistics. Unnormalized density models, often known as energy-based models, offer flexible pa-
rameterizations for instance using expressive neural network architectures. A recent introduction to
energy-based model optimization is given in [49]. Noise-contrastive estimation (NCE) [12, 13] is a
widely-used training method for energy-based models due to its balance between statistical efficiency
and computation. NCE trains a density model by distinguishing between points x from the original
data distribution pd and samples drawn from an auxiliary noise distribution pn. The corresponding
maximum likelihood objective, shown in Eq. 2, resembles nonlinear logistic regression. NCE
simultaneously estimates an unnormalized model p0m and normalization constant b, which allows to
retrieve normalized density estimates pm , where ln pm(u) = p0m(u) + b. Note that E is in practice
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computed as an empirical mean from the training data.

m(u) =
1

1 + ν exp(−G(u))
with G(u) = ln pm(u)− ln pn(u) (1)

JNCE = E
x∼pd

[
ln[m(x)]

]
+ ν E

y∼py

[
ln[1−m(y)]

]
(2)

To ensure good approximation results, it is crucial that the support of pn contains pd without deviating
too much from it. Moreover, pn should be computationally efficient to evaluate for any input. A
central problem in NCE is therefore to find a proper choice for pn with respect to the unknown data
distributions pd. For detailed derivations, we refer to [12, 13].

Contrastive Predictive Representations Contrastive representation learning compares among
data samples to learn embeddings which map similar data samples close together and dissimilar
ones far apart [32]. Contrastive Predictive Coding (CPC) [54] uses this principle to learn latent
representations Z for sequential data X . The InfoNCE objective (Eq. 3) was derived which attempts
to maximally preserve the mutual information between the k-step future observations xt+k and
context representations yt which pool prior information z≤t in the latent space Z . Inspired by NCE,
it identifies correlated pairs drawn from p(xt+k|yt) among uncorrelated ones, given a user-defined
similarity f(xt+k, yt). [54] use f(xt+k, yt) = exp(zTt+kWkyt) which computes similarity by taking
the dot product between the latent encodings zt+k and their corresponding future linear predictions
WT
k yt.

LInfoNCE = −E
X

[
log

f(xt+k, yt)∑
j f(xj , yt)

]
(3)

CPC was shown to learn smooth representations useful for control in various different settings
[48, 33, 58, 35]. We utilize an adaptation of it (Sec. 4.1) to recover embeddings that are compatible
with our planning algorithm.

4 Expansive Latent Space Trees

We study goal-conditioned reaching tasks from visual inputs modeled using Markov Decision
Processes (MDPs). The state space S is composed of image sequences S = RN×C×W×H , where N
denotes the number of frames, C the number of channels, W the width and H the height of single
frames. Moreover, we define the continuous action space A = RdA and the set of goal states G = S .
In addition to single environments, we also consider families of environments conditioned on raw
context observations c ∈ C (e.g. images) capturing task-relevant information, e.g. the position of
obstacles. Instead of learning a controller directly from images, we instead seek a method which
solves goal-reaching tasks in a lower-dimensional latent state space Z = RdZ . In this regard,
we assume no access to the underlying MDP dynamics, state distance metrics and only provide a
fixed-size training dataset composed of random environment interactions.

This section presents ELAST, a new method for solving the described type of control problems
through explorative tree search and local control within Z . A schematic overview of our approach is
presented Fig. 2. It consists of a state encoder ϕ (Sec. 4.1), transition density model ψ (Sec. 4.2),
forward dynamics model hf (Sec. 4.3) and a local policy π (Sec. 4.4), each modelled using feed-
forward neural networks. During execution time, ϕ encodes the current and goal states sstart, sgoal ∈ S
into the latent vectors zstart, zgoal ∈ Z (Fig. 2a). For context-conditioned tasks, we additionally feed a
context-vector c into the network. The planning module (Fig. 2d) then builds a search tree within Z
that finds a sequence of latent states connecting zstart to zgoal. To improve the quality of solutions in
terms of temporal path length, the search tree is optimized during planning. This is done by rewiring
the tree after every expansion using the transition density estimator ψ (Fig. 2b). The planner then
passes the computed discrete n-step solution path to the MPC controller module (Fig. 2c) which
queues the corresponding intermediate states to be achieved by π.

4.1 Geometric Properties of the Encoder

We define an encoder ϕ : S × C→Z which maps states st conditioned on contexts c into a latent
space Z = RdZ with dZ ≪ N×C×W×H . For brevity, we for now focus on environments
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Figure 2: Overview of the different modules of ELAST. (a) training of latent encoder, dynamics and policy, (b)
noise-contrastive estimation of transition densities p(zt+1|zt, c), (c) model-predictive control framework, (d)
planning via explorative tree search in Z .

without a task-specific context, hence ϕ : S→Z . As further described in Sec. 4.3, our planner
performs nearest-neighbor lookups to sample new nodes and rewire the tree. To enable simple and
efficient neighborhood computations, a desirable property of ϕ is the preservation of the proximity
of temporally subsequent states within Z . This can be achieved by using a global state distance
metric to enforce strict correspondence of distances during training. However, it typically requires
privileged knowledge of the underlying MDP dynamics to define such a metric and is therefore not
possible in our setting. Moreover, distances cannot be inferred directly from our training data which
was collected by a sub-optimal policy. Instead, we rely on the knowledge of continuity between
observations to enforce proximity of temporally adjacent states. More specifically, we employ
contrastive learning via CPC (Sec. 3) and consider positive pairs (zt+k, z̃t+k) where z̃t+k denotes
the predicted future latent state given the current state zt and sequence of actions at:t+k−1. To obtain
z̃t+k, we simultaneously train an auto-regressive dynamics model hf : Z×A→Z . A similarity based
on the squared Euclidean distance is used, hence f(st+k, st) = e−∥z̃t+k−zt+k∥2

2 . The encoder loss
Lϕ is depicted in Eq. 4. In accordance with the observations in [48, 33, 58] we add a MSE loss on the
predictions of hf (weighted by Kh) to encourage hf to be consistent with the true latent dynamics.

Lϕ = −E
S

[
log

f(st+k, st)∑
sj∈S f(sj , st)

]
+Kh · E

Z

[ k−1∑
i=0

(zt+1+i − hf (z̃t+i, at+i))
2
]

(4)

Optimizing ϕ with Eq. 4, we intend to achieve locality of correlated states while shaping dynamics
that are predictable by a model hf . For context-conditioned tasks, we additionally feed c into the
dynamics model, i.e. hf : Z×A×C→Z and optimize ϕ considering the empirical expectation of the
loss in Eq. 4 w.r.t. C (full objective in App. A.1).

4.2 Conditional Transition Density

Due to the symmetry of the critic f in CPC (Sec. 4.1), the learned embedding does not encode the
full causal relationship between states. Subsequent states are organized close together but we lose the
information in which direction transitions were experienced, i.e the arrow of time. A model of the
state connectivity is yet required for rewiring tree nodes and becomes indispensable for environments
with asymmetric dynamics. To recover this knowledge, we approximate the conditional density
p(zt+1|zt, c) of latent transitions zt:t+1|c using noise-contrastive estimation (NCE) (Sec. 3). More
specifically, we employ a parametric model ψ : Z×Z×C → R to represent the set of log density
estimators given by the conditioning on the transition source node zt and environment context c. We
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Figure 3: Illustration of positive
pairs and noise for training the tran-
sition density model ψ via NCE.
Gaussian noise distribution pn in
red, start states of transitions zt in
gray and end points of transitions
zt+1 in green.

(b) Generate node znew using Hf (a) Sample node zexpand 

(d) Rewiring I (parent node) (e) Rewiring II (child nodes) (f) Rewiring done

(c) Determine neighbors:

Eucl. dist. < rneigh ∧ 
pψ(znew|zexpand,c) > τt ∧
Var{Hf} < τe

Figure 4: Tree growth and rewiring mechanism. Repeat: (a) select random
node zexpand (blue) in the existing tree (b) create new node znew (yellow)
from zexpand using random action and dynamicsHf (c) find set of reachable
nodes Zneigh (orange) in the neighborhood around znew (d) change parent
of znew if there exist a node in Zneigh for which znew is reachable and
which reduces the cost of reaching znew (e), (f) alter parent for every nodes
in Zneigh if transitioning from znew is possible and reduces traveling cost.

train ψ by maximizing the expectation of the NCE objectives JNCE over the empirical distribution
of all conditionings for the observed data, hence Jψ = Ec∼C,zt∼Z

[
JNCE(c, zt)

]
. A discrete version

of this strategy has previously been used in [38] for estimating the context-dependent probability of
words in probabilistic language models.

The crux of NCE is to find a noise distribution pn which tightly encloses the support of the unknown
target distribution (Sec. 3), in our case p(zt+1|zt, c). Our key insight is however that due to the
contrastive training of ϕ, subsequent states are encouraged to be mapped close together in Z . Hence,
a simple choice for pn is found by centering a multivariate Gaussian N (zt,Σ) at each starting state
zt of a transition and setting the value of Σ empirically given the absolute lengths of all observed
latent transitions in the data (Fig. 3).

One motivation of using NCE instead of other density estimation techniques is that it allows the
use of powerful neural network function approximators. Furthermore, the discriminative training
procedure using pn provides examples of outlier points for which the model assigns low density.
Extrapolating densities is an important feature which helps us to identify unlikely transitions outside
the data support.

4.3 Tree Expansion and Optimization

Due to the unboundedness of the Euclidean embedding space, erroneous transitions during the tree
expansion might result in the exploration of areas outside the support of the latent distribution. To
reduce the number of detrimental transitions, we train a powerful dynamics ensemble estimator
Hf = {h1f , .., hmf } after the encoder training. Moreover, this allows us to evaluate the ensemble’s
predictive uncertainty [28] and reject highly uncertain predictions during planning.

Given the encoder ϕ, forward dynamics Hf and transition density model ψ, all the building blocks
that compose our planner are introduced. For every new planning query, we start by adding zstart to
the tree and then alternate between expanding and optimizing the search tree. Fig. 4 illustrates the
mechanisms behind this procedure.

Tree Expansion During the expansion step, we sample a node zexpand from the current tree and
generate a new state znew from it using Hf and a random action a∼A. The newly generated transition
is discarded if the density estimated by ψ is below a threshold τt or the predictive uncertainty
Var({hif , i = 1..m}) exceeds a threshold τe. If both tests are passed, we connect znew to the tree and
continue with the rewiring step.

Rewiring We optimize the search tree by rewiring edges locally around each newly added node if
this reduces the traveling distance from the root. Firstly, we find the set of neighboring tree nodes
Zneigh within a ball of radius rneigh around znew. Next, we select the elements in Zneigh that are
reachable from znew, i.e. the associated transition density ≥τt. For all the remaining nodes, including
zexpand, we determine the number of steps to travel from zstart to znew. The node associated with the
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minimum cost becomes the new parent node of znew. For each node in Zneigh, we then make znew
the parent node if such a transition is likely and it reduces the traveling cost from zstart. Essentially,
rewiring reduces travel costs from the root by looking for lower cost paths through existing nodes in
the tree. Note that similar techniques are used within asymptotically-optimal sampling-based motion
planners, e.g. RRT* [24]. The key difference, however, is that our planner operates in a learned state
embedding with approximated latent dynamics and connectivity. Further, note that we consider the
path cost as the number of steps in time, not the geometric length of the piecewise linear latent path.

The planning stops after niter expansion steps. Solution paths are then determined by backtracking up
the tree. We return the path with the lowest travel cost among the paths that end near zgoal (inside a
sphere of radius rgoal). If there are no such paths, we simply take the one with the smallest remaining
Euclidean distance to zgoal.

Node Sampling Biases Uniform sampling of zexpand leads to slow growth of the search tree with
respect to the covered space. To encourage the planner to quickly grow into unexplored regions, we
need to bias the sampling towards regions of Z that are less represented in the current tree. With
probability psparse, we therefore sample zexpand using a distribution weighted by the inverse number of
reachable neighbors for each node. The random uniform node selection is continued with probability
puniform. We also use pgoal to select the node closest to zgoal in terms of Euclidean latent distance. We
found that this simple heuristic promotes sufficient exploration towards the goal. For more details on
sampling biases, see App. A.1.2.

4.4 Integration with Model-Predictive Control

In order to use ELAST for goal-reaching control, we integrate it into a simple Model Predictive
Control (MPC) scheme (Fig. 2c). The controller queues the planned sequence of latent states
as waypoints and replans after nreplan interactions. Between planning, the local control policy
π : Z×Z×C → A navigates to the next waypoint. For simplicity, we employ a simple one-step
policy which is trained using the supervised loss Lπ = EZ

[
(at − π(zt, zt+1, c))

2
]
.

5 Experiments

In this section, we evaluate the effectiveness of ELAST for solving challenging downstream reaching
tasks from visual observations. For that purpose, we use the closed loop control setting described in
Sec. 4.4 and measure the performance in terms of average success rate. Moreover, we investigate the
impact of different components and hyperparameters of our method on the quality of the computed
solutions.

5.1 Experimental Setup

Baselines To put ELAST in relation to existing work, we use the following baselines. PlaNet [14],
a latent planning algorithm based on shooting-based trajectory optimization via the Cross-Entropy
Method (CEM) [3]. Hallucinative Topological Memory (HTM), an image-based planning method for
context-conditioned reaching tasks. HTM plans paths on a map of raw images generated by sampling
observations from a Variational Autoencoder [26]. To decouple the effect of representation learning
and planning, we evaluate several methods that build on our learned CPC embedding. CPC-CEM uses
planning via CEM using the Euclidean latent distance towards the goal as cost. Similarly, CPC-Coll.
uses trajectory optimization through direct collocation. CPC-GCBC presents a behavioral cloning
method trained on CPC latent states. Finally, we implemented a goal-conditioned behavior cloning
policy V-GCBC which is trained directly from images. In addition, we tested an offline version of the
method presented in [43], but it did not produce sensible results under our experimental conditions
and is therefore not included in the following evaluation (see App. C.5). Detailed information on the
hyperparameters and the implementation of the baselines can be found in App. C.

Control Tasks To test our method for specific environmental characteristics, we designed the
toy environments shown in Fig. 5. In BlockS, a block agent must navigate through an S-shaped
corridor representing a long-horizon and a geometrically non-convex setting. BlockAsym introduces
asymmetric transition dynamics through a unidirectional stream on one side of the workspace.
Parameterized environments that depend on the position of obstacles are explored in both BlockParam
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Table 1: Success rates (%) for test scenarios averaged over three independent training runs

METHOD BLOCKS BLOCK
ASYM

BLOCK
PARAM

PLANAR
ARM

REACH BUTTON DRAWER HAMMER CABLE
CABLE
PARAM

MEDIUM HARD

ELAST 99± 1 96± 3 100± 0 84± 2 88± 1 96± 2 88± 5 84± 12 22± 2 95± 2 79± 11
CPC-CEM 53± 2 9± 4 21± 7 68± 3 64± 1 68± 6 1± 0 32± 2 0± 0 29± 4 17± 3
CPC-COLL. 15± 1 0± 0 7± 5 3± 2 21± 7 3± 2 1± 1 44± 2 0± 0 5± 1 26± 1
CPC-GCBC 20± 2 0± 0 0± 0 29± 4 57± 2 31± 2 20± 14 2± 1 0± 0 26± 5 20± 1
PLANET 17± 1 0± 0 0± 0 11± 0 42± 12 6± 1 18± 3 34± 9 0± 0 5± 1 38± 5
HTM 7± 3 0± 0 15± 8 28± 11 43± 7 5± 6 45± 4 3± 2 0± 0 19± 3 30± 2
V-GCBC 25± 8 0± 0 0± 0 35± 2 56± 1 37± 1 81± 9 48± 3 13± 2 1± 1 1± 1
RANDOM 8± 2 0± 0 0± 0 1± 1 2± 1 0± 0 1± 0 4± 2 0± 0 8± 3 1± 1

(a) BlockS (b) BlockAsym

(c) BlockParam (d) PlanarArm

Figure 5: Planar control environments

(a) Reach (b) Cable (c) CableParam

(d) Button (e) Drawer (f) Hammer

Figure 6: Visually-complex robotics tasks

and PlanarArm. Additionally, we evaluated the visually demanding robot control tasks presented in
Fig. 6. These include a robot reaching task (Fig. 6a) and a static and parameterized version of a cable
navigation problem (Fig. 6b and c). In addition, we implemented three robot manipulation tasks (Fig.
6 d-f) adapted from the metaworld benchmark [60].

We form states st by stacking three consecutive RGB frames of resolution 64×64. In parameterized
environments, we obtain context observations c by taking the latent encodings given by a convolutional
autoencoder that was trained separately on raw context images. For all environments, we evaluate the
performance in reaching distant goals sgoal with respect to a task-specific maximum allowed number
of interactions. We evaluate the success rates of trajectories in 100 unseen scenarios for each task.
Detailed information about the implementation of the environments and the experimental evaluation
can be found in App. A, B.

5.2 Experimental Results

How does the performance of ELAST compare to other methods? The results of our benchmark
evaluation are shown in Table 1. Overall, we observe a significantly higher average success rate for
MPC control with ELAST compared to the selected baselines. This is true for the planar environments
as well as for the visually complex manipulation tasks. The ablation comparison with CPC-CEM,
CPC-Coll. and CPC-GCBC supports that not only the choice of representation, but also our planning
strategy contributes to the success of ELAST. Fig. 7 illustrates the exploration behavior in the
BlockS environment for ELAST and CPC-CEM. It displays the Isomap embeddings [52] of the
explored regions of the latent space with respect to different numbers of sampled states. It can be
seen that our method expands faster and connects the goal to the tree with less than 7500 generated
states. However, CPC-CEM did not explore deep enough to reach the goal, even given a much
larger number of samples (I=10, H=50,K=1000 corresponds to 105 generated states). HTM did
not provide robust solutions compared to our approach. While the generated images were mostly
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(a) niter=500 (b) niter=5000 (c) niter=7500 (d) (5, 20, 500) (e) (10, 20, 500) (f) (10, 50, 1000)

Figure 7: Exploration behavior of ELAST and CEM illustrated within 2D Isomap embeddings for the BlockS
task. The goal (red) and start (green) lie on different ends of the corridor. (a)-(c): ELAST: search tree (blue) and
best path (orange) at different iterations niter. (d)-(f): CEM: visited area (blue) and final population (orange) for
different (I,H,K) with iterations I , horizon H and K candidates.

visually sound, some remaining image artifacts resulted in shortcuts in the graph, often rendering
entire paths infeasible. This result supports our motivation to pursue planning in a lower-dimensional
space to avoid the challenge of obtaining accurate high-dimensional observations. While our method
performed best among all baselines for the Hammer environment, we achieved only 22% success for
this task. We attribute this to the difficulty of planning through the narrow passages introduced by
the grasping subtask in this environment (see App. D.10). We also found that the agent often failed
to grasp the object correctly, which might be improved in the future by using more sophisticated
RL policies instead of the short-sighted policy π. Visualizations of successful latent paths for all
environments can be found in App. D.9.

(a) (b)

Figure 8: (a): Predicted neighboring states (green) for
node (blue) within the unidirectional passage in Block-
Asym (projected with Isomap). Obtained by thresholding
estimated transition densities (b): Example of infeasible
path from an initial state (green) towards a goal (red)
that occurs when transition rejection is disabled

How does our NCE transition density model
impact the performance of the planner? To
answer this question, we tested ELAST in the
BlockS and Cable environments without reject-
ing transition during planning. We observed a
significant drop in performance for both tasks
from 96 ± 3% to 51 ± 4% in BlockS-hard, re-
spectively from 95±2% to 25±5% in the Cable
task. Fig. 8a shows the predicted neighboring
latent states with respect to a node in the unidi-
rectional passage in the BlockAsym environment.
As shown, our transition density model correctly
determines state connectivity even under highly
asymmetric transition dynamics. Without transi-
tion rejection enabled, the performance on this
task dropped to 73 ± 5% as a result of infeasi-
ble shortcut paths against the direction of the
stream. The results indicate that ψ generates
useful transition density estimates which is indeed crucial for the performance of our method.

Does the rewiring affect the quality of generated paths? The tree rewiring strategy (Sec. 4.3)
encourages smooth and near-optimal paths which is important to finish the control tasks within the
allowed contingent of environment steps. We evaluated ELAST on the BlockS-hard and the Button
tasks without optimizing the tree. The success rates decreased drastically from 96±3% to 40±4% in
BlockS-hard and from 88± 5% to 50± 2% in the Button environment. For the remaining successful
episodes, we observed an increase of average trajectory length from 36± 1 to 93± 2 and from 38± 6
to 72± 5 steps in the BlockS-hard, respectively the Button task. Our results confirm the necessity of
path rewiring to reduce trajectory lengths and thereby improve the success of our method.

Importance of sparse node sampling bias The exploration behavior of ELAST is largely deter-
mined by the weighting of the sampling biases. Fig. 9 illustrates the computed latent search trees for
planning with psparse = 0.78 and psparse = 0.0 for the BlockAsym task. As shown, the tree does not
reach the goal in the case of psparse = 0.0 which in fact led to a drop in performance to 0% on this task.
Similar trends were observed for other environments (App. D.5). Our results suggest that sampling
nodes in sparsely populated areas is very effective in speeding up the exploration of the search space.
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(a) psparse=0.0 (b) psparse=0.78

Figure 9: Impact of parameter psparse on the tree explo-
ration in the BlockAsym environment. Computed paths (or-
ange) and search tree (blue) for niter = 5000, pgoal = 0.02
and puniform = 1.0−pgoal−psparse (visualized using Isomap)

For all experiments, we used puniform=0.2,
psparse=0.78, and pgoal=0.02, which were
found to be sufficient to achieve a balance
between exploration and goal-directed node
selection.

Depending on the difficulty of the environ-
ment, the number of planning iterations was
chosen between niter=2500 and niter=10000.
A detailed overview of planning hyperparam-
eters is given in App. A.1.2. Moreover, we
provide a collection of further ablation experi-
ments in D. This include the impact of dynam-
ics ensemble (App. D.3) and a comparison of
using our planning on a β-VAE latent space
instead of the CPC embedding (App. D.1).

6 Limitations and Future Work

The type of decision problems studied in this work is based on the assumption that the full state of
the environment can be inferred from the information encoded in the image sequences. However, in
robot manipulation tasks, partially observable environments are often encountered, e.g., due to visual
occlusions or sensor uncertainties. To extend ELAST to partially observable MDPs (POMDPs), one
could replace our deterministic encoder and integrate filtering techniques to update a belief over latent
states. A similar approach was taken in [14], which uses a recurrent neural network architecture to
integrate knowledge over time. In addition, the investigation of sampling-based belief space planning
methods (e.g. [4]) in the context of latent spaces represents an interesting future direction.

In Sec. 4.3, we introduced the node sampling bias in order to quickly explore the latent space. Previous
work employed deep generative networks to learn state sampling for classical robot motion planning
[21]. Similarly, planner efficiency could be improved by incorporating learned sampling heuristics
that consider task-specific information to promote the selection of promising nodes. Currently,
ELAST performs random sampling of actions during tree expansion, which could be ineffective for
control tasks with high-dimensional action spaces. In addition to node selection, our method could be
improved by using heuristics to select actions.

In the context of this work, we focus on planning in goal-reaching scenarios with long time horizons.
Similar to [14, 47, 43], it would be interesting to adapt our method to the RL setting. This would
allow applications beyond reaching, e.g., achieving goals that are not defined by a single state. Instead
of finding the shortest path to one particular latent state, the planner would need to search for a
reward-maximizing trajectory.

7 Conclusion

We presented ELAST, a method for solving high-dimensional and long-term goal reaching through
planning in latent spaces. Our approach combines ideas from classical sampling-based motion
planning and self-supervised contrastive learning, and initiates a tree search bounded by the estimated
support region of the latent space. The effectiveness of ELAST was demonstrated in challenging and
visually complex control environments. We hope that our work will inspire new planning methods
that incorporate both motion planning and machine learning concepts.
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See section 6 and App. D.10.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our

method describes a general planning algorithms for high-dimensional data under
unknown dynamics. We do not foresee any immediate societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] See supple-
mented code repository.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See App. A.1.3.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See App. A.1.3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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