
A Omitted Proofs in Section 4

Proof of Theorem 4.1. By Lemma C.1,

P

|P (s′|s, a)− P̂ (s′|s, a)| ≤

√
2P̂ (s′|s, a)(1− P̂ (s′|s, a)) log 4/δ

n
+

4 log 4/δ

n

 ≥ 1− δ.

By Lemma C.2,

P

(
|P (s′|s, a)− P̂ (s′|s, a)| ≤

√
log 2/δ

2n

)
≥ 1− δ.

Combining the two inequalities in a union bound, we have:

P
(
|P (s′|s, a)− P̂ (s′|s, a)| ≤ dδ(s, a, s

′)
)
≥ 1− 2δ.

Again we apply the union bound argument to get:

P(M ∈ Mδ) = P
(
|P (s′|s, a)− P̂ (s′|s, a)| ≤ dδ(s, a, s

′),∀s, s′ ∈ S, a ∈ A
)
≥ 1− 2|S|2|A|δ.

Finally, Problem (5) is feasible as long as P ∈ Mδ because of Assumption 3.4.

B Omitted Proofs in Section 5

First we define some additional notations. We use Qπ(s, a) := E(
∑∞

t=0 γ
tr(st, a)) to denote the

state-action value function. The local variance is defined as VarP (V π)(s, a) = Es′∼P (·|s,a)(V
π(s′)−

P (·|s, a)V π)2. We view V π as vector of length |S| and Qπ, r,VarP (V
π) as vectors of length |S|·|A|.

We overload notation and let P also refer to a matrix of size (|S| · |A|)×|S|, where the entry P(s,a),s′

is equal to P (s′|s, a). We also define Pπ to be the transition matrix on state-action pairs induced by
a stationary policy π, namely:

Pπ
(s,a),(s′,a′) := P (s′|s, a)π (a′|s′) .

We use Q̃π(s, a),VarP̃ (Ṽ
π)(s, a), Q̃π,VarP̃ (Ṽ

π), Ṽ π, σ̃2
π, P̃ , P̃π to denote the state-action value

function, local variance, vector of state-action value function, vector of local variance, vector of value
function, transition matrix, transition matrix on state-action pairs w.r.t. SICMDP M̃ , respectively.
Lemma B.1. If Assumption 5.4 is true and M ∈ Mδ , we have∥∥∥Qπ − Q̃π

∥∥∥
∞

≤ 2γ

(1− γ)2

√
log 2/δ

2n

Proof. Given a stationary policy π, if Assumption 5.4 is true and M ∈ Mδ ,∥∥∥P̃ (·|s, a)− P (·|s, a)
∥∥∥
1
≤ 2

√
log 2/δ

2n
,∀s ∈ S, a ∈ A,

which implies ∥∥∥(P − P̃ )V π
∥∥∥
∞

≤ 2

1− γ

√
log 2/δ

2n
.

Then we have ∥∥∥Qπ − Q̃π
∥∥∥
∞

=

∥∥∥∥γ (I − γP̃π
)−1

(P − P̃ )V π

∥∥∥∥
∞

≤ γ

1− γ

∥∥∥(P − P̃ )V π
∥∥∥
∞

≤ 2γ

(1− γ)2

√
log 2/δ

2n
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Lemma B.2. Given a stationary policy π, when Assumption 5.4 is true and M ∈ Mδ , we have

VarP (V
π) ≤ 2VarP̃ (Ṽ

π) +
6

(1− γ)2

√
log 2/δ

2n
+

8γ2

(1− γ)4
log 2/δ

2n
.

Proof. For simplicity of notation, we drop the dependence on π. By definition,
VarP (V ) = VarP (V )−VarP̃ (V ) + VarP̃ (V )

= P (V )2 − (PV )2 − P̃ (V )2 + (P̃ V )2 +VarP̃ (V )

= (P − P̃ )(V )2 −
[
(PV )2 − (P̃ V )2

]
+VarP̃ (V ),

where (·)2 means element-wise squares. When Assumption 5.4 is true and M ∈ Mδ , by Lemma B.1,∥∥∥(P − P̃ )(V )2
∥∥∥
∞

≤ 2

(1− γ)2

√
log 2/δ

2n∥∥∥[(PV )2 − (P̃ V )2
]∥∥∥

∞
≤
∥∥∥PV + P̃ V

∥∥∥
∞

∥∥∥PV − P̃ V
∥∥∥
∞

≤ 2

1− γ

∥∥∥PV − P̃ V
∥∥∥
∞

≤ 4

(1− γ)2

√
log 2/δ

2n
.

We also have
VarP̃ (V ) = VarP̃ (V − Ṽ + Ṽ )

≤ 2VarP̃ (V − Ṽ ) + 2VarP̃ (Ṽ ) (AM–GM inequality)

≤ 2
∥∥∥V − Ṽ

∥∥∥2
∞

+ 2VarP̃ (Ṽ )

≤ 8γ2

(1− γ)4
log 2/δ

2n
+ 2VarP̃ (Ṽ ) (Lemma B.1).

Therefore, we can get

VarP (V
π) ≤ 2VarP̃ (Ṽ

π) +
6

(1− γ)2

√
log 2/δ

2n
+

8γ2

(1− γ)4
log 2/δ

2n
.

Lemma B.3. Let p, p̃, p̂ ∈ [0, 1] satisfy

|p− p̂| ≤ min

{√
2p̂(1− p̂) log 4/δ

n
+

4 log 4/δ

n
,

√
log 2/δ

2n

}

|p̃− p̂| ≤ min

{√
2p̂(1− p̂) log 4/δ

n
+

4 log 4/δ

n
,

√
log 2/δ

2n

}
.

Then

|p− p̃| ≤
√

8p(1− p) log 4/δ

n
+ 4

(
log 4/δ

n

)3/4

+
8 log 4/δ

n

Proof. Assume WLOG that p̂ ≥ p. Therefore,

|p− p̂| ≤
√

2p(1− p) log 4/δ

n
+

√
2(p̂− p)(1− p) log 4/δ

n
+

4 log 4/δ

n

≤
√

2p(1− p) log 4/δ

n
+

√√√√2
√

log 2/δ
2n log 4/δ

n
+

4 log 4/δ

n

≤
√

2p(1− p) log 4/δ

n
+ 21/4

(
log 4/δ

n

)3/4

+
4 log 4/δ

n
.
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Similarly, we have

|p̃− p̂| ≤
√

2p(1− p) log 4/δ

n
+ 21/4

(
log 4/δ

n

)3/4

+
4 log 4/δ

n
.

Thus we may complete the proof using triangular inequality.

Lemma B.4. Given a stationary policy π, suppose Assumption 5.4 is true and M ∈ Mδ , then

|(P − P̃ )V π| ⪯
√

8VarP (V π) log 4/δ

n
+

4

1− γ

(
log 4/δ

n

)3/4

+
8 log 4/δ

n(1− γ)
,

where ⪯ means every element of LHS is less than or equal to the its counterpart in RHS.

Proof. Let p = P (sa+|s, a), p̃ = P̃ (sa+|s, a). Applying Lemma B.3 yields

|p− p̃| ≤
√

8p(1− p) log 4/δ

n
+ 4

(
log 4/δ

n

)3/4

+
8 log 4/δ

n
.

Assume WLOG that V π(sa+) ≥ V π(sa−). Therefore we have

|(P (·|s, a)− P̃ (·|s, a))⊤V π| ≤
√

8p(1− p) log 4/δ

n
(V π(sa+)− V π(sa−)) +

4

1− γ

(
log 4/δ

n

)3/4

+
8 log 4/δ

n(1− γ)
.

Since

p(1− p)(V π(sa+)− V π(sa−))2 = [pV π(sa+)2 + (1− p)V π(sa−)2]− [pV π(sa+) + (1− p)V π(sa−)]2

= VarP (V
π)

We may get

|(P (·|s, a)− P̃ (·|s, a))⊤V π| ≤
√

8VarP (V π)(s, a) log 4/δ

n
+

4

1− γ

(
log 4/δ

n

)3/4

+
8 log 4/δ

n(1− γ)
,

which completes the proof.

Lemma B.5. Given a stationary policy π, suppose Assumption 5.4 is true and M ∈ Mδ, then we
have∥∥∥V π − Ṽ π

∥∥∥
∞

≤ 4

(1− γ)3/2

√
log 4/δ

n
+

4
√
6

(1− γ)2

(
log 4/δ

n

)3/4

+
8

(1− γ)4

(
log 4/δ

n

)3/2

Proof. From Lemma C.3, Lemma C.4, Lemma C.5, Lemma B.4 and the fact that
(
I − γP̃π

)−1

has
positive entries, we know∥∥∥Qπ − Q̃π

∥∥∥
∞

= γ

∥∥∥∥(I − γP̃π
)−1

(P − P̃ )V π

∥∥∥∥
∞

≤
√

8 log 4/δ

n

∥∥∥∥(I − γP̃π
)−1√

VarP (V π)

∥∥∥∥
∞

+
4

(1− γ)2

(
log 4/δ

n

)3/4

+
8

(1− γ)2

(
log 4/δ

n

)
≤
√

16 log 4/δ

n

∥∥∥∥(I − γP̃π
)−1

√
VarP̃ (Ṽ

π)

∥∥∥∥
∞

+
4
√
6

(1− γ)2

(
log 4/δ

n

)3/4

+
8

(1− γ)3

(
log 4/δ

n

)
≤ 4

(1− γ)3/2

√
log 4/δ

n
+

4
√
6

(1− γ)2

(
log 4/δ

n

)3/4

+
8

(1− γ)3

(
log 4/δ

n

)
.

The proof is completed since
∥∥∥V π − Ṽ π

∥∥∥
∞

≤
∥∥∥Qπ − Q̃π

∥∥∥
∞

by definitions.
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Lemma B.6. Suppose Assumption 5.4 is true and n > 6 log 4/δ
(1−γ)5/2

, then with probability at least
1− 2|S|2|A|δ, we have ∥∥∥V π − Ṽ π

∥∥∥
∞

≤ 12

√
log 4/δ

n(1− γ)3∥∥∥Cπ − C̃π
y

∥∥∥
∞

≤ 12

√
log 4/δ

n(1− γ)3
,∀y ∈ Y

Proof. When Assumption 5.4 is true and M ∈ Mδ , it follows from Lemma B.5 that∥∥∥V π − Ṽ π
∥∥∥
∞

≤ 4

(1− γ)3/2

√
log 4/δ

n
+

4
√
6

(1− γ)2

(
log 4/δ

n

)3/4

+
8

(1− γ)3

(
log 4/δ

n

)
.

And by setting n > max
{

36 log 4/δ
(1−γ)2 , 4 log 4/δ

(1−γ)3

}
we will get

∥∥∥V π − Ṽ π
∥∥∥
∞

≤ 12

√
log 4/δ

n(1− γ)3
.

Similar arguments can be applied to bound
∥∥∥Cπ

y − C̃π
y

∥∥∥
∞

. Since by Theorem 4.1 we have

P(M ∈ Mδ) ≥ 1− 2|S|2|A|δ,
the proof is completed.

Proof of Theorem 5.5. By Lemma B.5, we know that with probability 1− 2|S|2|A|δ,∥∥∥V π̃ − Ṽ π̃
∥∥∥
∞

≤ 12

√
log 4/δ

n(1− γ)3∥∥∥V π∗
− Ṽ π∗

∥∥∥
∞

≤ 12

√
log 4/δ

n(1− γ)3
.

Thus

|V π̃(µ)− Ṽ π̃(µ)| ≤ 12

√
log 4/δ

n(1− γ)3

|V π∗
(µ)− Ṽ π∗

(µ)| ≤ 12

√
log 4/δ

n(1− γ)3
.

Noting that Ṽ π̃(µ) ≥ Ṽ π∗
(µ), we may get

V π∗
(µ)− V π̃(µ) ≤ V π∗

(µ)− Ṽ π∗
(µ) + Ṽ π̃(µ)− V π̃(µ)

≤ |V π∗
(µ)− Ṽ π∗

(µ)|+ |Ṽ π̃(µ)− V π̃(µ)|

≤ 24

√
log 4/δ

n(1− γ)3
.

Similarly, when

|C π̃
y (µ)− C̃ π̃

y (µ)| ≤ 12

√
log 4/δ

n(1− γ)3
,∀y ∈ Y,

we may get

C π̃
y (µ)− uy ≤ 12

√
log 4/δ

n(1− γ)3
,∀y ∈ Y.

since C̃ π̃
y (µ) ≤ uy .
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Proof of Theorem 5.6. Theorem 5.6 is a direct corollary of Theorem 5.5.

Proof of Theorem 5.7. The proof is nearly identical to the proof of Theorem 3 in [26]. The idea is to
augment each state/action pair of the original mdp with |S| − 2 states in the form of a binary tree as
pictured in the diagram below.

The intention of the tree is to construct an SICMDP, M̄ = ⟨S̄, A, Y, P̄ , r̄, c̄, u, µ, γ̄⟩ that with
appropriate transition probabilities is functionally equivalent to M while satisfying Assumption 5.4.
The rewards and costs in the added states are set to zero. Since the tree has depth d = O(log2 |S|), it
now takes d time-steps in the augmented SICMDP to change states once in the original SICMDP.
Therefore we must also rescale the discount factor γ̄ by setting γ̄ < γd. Now we have

|S̄| = O(|S|2|A|)
1

1− γ̄
=

log |S|
1− γ

.

Then we complete the proof by applying results in Theorem 5.6.

Proof of Theorem 5.11. By Theorem C.6, we have for any fixed (s, a) ∈ S ×A

P(n(s, a) < mνmin/2) ≤ P(n(s, a) < mν(s, a)/2)

≤ e−mν(s,a)

(
emν(s, a)

emν(s, a)/2

)mν(s,a)
2

=

(√
e

2

)−ν(s,a)m

≤
(√

e

2

)−νminm

Let m = 2
1−log 2

log 2|S||A|/δ
νmin

, we have P(n(s, a) ≥ mνmin)) ≥ 1 − δ/2|S||A|. Therefore, with
probability at least 1− δ/2, we can get

n(s, a) > mνmin,∀(s, a) ∈ S ×A.

Then our problem is reduced to the case that the offline dataset is generated by generative models.
The proof is completed by using results in Theorem 5.7.

Proof of Theorem 5.13. See Theorem 4 in [23].

C Auxiliary Lemmas

Lemma C.1 (Empirical Bernstein Inequality). Suppose n ≥ 3, {X1, ..., Xn} be n i.i.d. random
variables with values in [0, 1]. Let δ > 0. Then with probability at least 1− δ we have∣∣∣∣EX1 −

∑n
i=1 Xi

n

∣∣∣∣ ≤
√

2Vn(X1:n) log 4/δ

n
+

4 log 4/δ

n
,
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where Vn(X1:n) := 1
n(n−1)

∑
i,j

(Xi−Xj)
2

2 denotes the empirical variance of the dataset
{X1, ..., Xn}.

Proof. See Theorem 11 in [28].

Lemma C.2 (Hoeffding’s Inequality). Suppose {X1, ..., Xn} be n i.i.d. random variables with
values in [0, 1]. Let δ > 0. Then with probability at least 1− δ we have∣∣∣∣EX1 −

∑n
i=1 Xi

n

∣∣∣∣ ≤
√

log 2/δ

2n

Proof. See Theorem 2.2.6 in [38].

Lemma C.3. For any policy π and transition probabilities P , P̃ , we have that

Qπ − Q̃π = γ
(
I − γP̃π

)−1

(P − P̃ )V π

Proof. See Lemma 2 in [3].

Lemma C.4. For any policy π, any transition probability P and any vector v ∈ R|S|·|A|, we have∥∥∥(I − γPπ)
−1

v
∥∥∥
∞

≤ ∥v∥∞/(1− γ).

Proof. See Lemma 3 in [3].

Lemma C.5. For any policy π and any transition probability P , we have∥∥∥(I − γPπ)−1
√

VarπP

∥∥∥
∞

≤

√
2

(1− γ)3
,

where
√
· is defined as the element-wise square root.

Proof. See Lemma 4 in [3].

Theorem C.6 (Chernoff’s Inequality). Let Xi be independent Bernoulli random variables with
parameter pi. Consider their sum SN =

∑N
i=1 Xi and denote its mean by µ = ESN . Then, for any

t < µ, we have

P(SN < t) ≤ e−µ
(eµ

t

)t
.

Proof. See [38].

D Details of Numerical Experiments

The code of our algorithms and construction of the corresponding environments has been released on
https://github.com/pengyang7881187/SICMDP.

D.1 Construction of Toy SICMDP

Without loss of generality, assume Y = [0, 3]. We split Y = [0, 3] to Y1 = [0, 1], Y2 = [1, 2] and
Y3 = [2, 3]. Intuitively, in Y1 (Y3), we restrict the agent to take action a0 in s0 (s1) with the given
probability from the target policy π̃. (Recall, taking action a0 is always better if we set aside the
constraints.) We introduce Y2 to obtain L-Lipschitz of cy and uy. Assume f : [−0.5, 0.5] → R
is a continuous-differentiable even function, with unique maximum point 0 and zero point 0.5,
we use f(x) = (1 + cos(2πx)) cos(2πx) in practice. Let cy(s0, a0) = f(y − 0.5) for y ∈ Y1,
cy(s

1, a0) = f(y − 2.5) for y ∈ Y3, and c ≡ 0 otherwise. For each γ ∈ (0, 1), we define
u1 = C π̃

0.5 > 0 and u1 = C π̃
2.5 > 0. Let uy ≡ u1 in Y1, uy ≡ u2 in Y3 and we make linear

interpolate uy in Y2.

So far, we have constructed Lipschitz cy and uy. The only active constraints are Cπ
0.5 ≤ u1 and

Cπ
2.5 ≤ u2 and the optimal policy is the known target policy π̃.
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D.2 Construction of Discharge of Sewage

In the numerical experiments, we generate this environment randomly. In each experiment, we
sample the environments 30 times and report the average result.

Positions of sewage outfalls, transition dynamics and rewards are sampled uniformly on Y , probability
simplex and [0, 1] respectively.

Assume f : [0,+∞) → [0,+∞) is a continuous-differentiable decreasing function, we use f(x) =
1

1+x2 in practice. Let cy(s, a) = cy(s) = f(∥y − s∥2), where s also represents the position of the
state (outfall).

Given a target state-occupancy measure d which can be generated randomly or specified in advance,
we define uy = (1 + ∆)

∑
s∈S d(s)cy(s), where ∆ is a small positive number. The feasibility of

the resulting SICMDP is not guaranteed even if ∆ = 0, we reject those infeasible environments and
re-sample. The SICMDP would be nontrivial if we choose a suitable ∆.

D.3 Implementation of SICMDP

The only thing we need to clarify is how to solve the maximization problem to generate new yi
in ith iteration. Since the cost function cy(s, a) can be non-convex in y, we choose to solve the
maximization problem by brute force. Specifically, we first create a grid of Y of size 105, and then
find the grid point with max objective. This method works well since in the problems we consider Y
is of low dimensions.
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