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Abstract

We propose a generalization of constrained Markov decision processes (CMDPs)
that we call the semi-infinitely constrained Markov decision process (SICMDP).
Particularly, we consider a continuum of constraints instead of a finite number of
constraints as in the case of ordinary CMDPs. We also devise a reinforcement
learning algorithm for SICMDPs that we call SI-CRL. We first transform the
reinforcement learning problem into a linear semi-infinitely programming (LSIP)
problem and then use the dual exchange method in the LSIP literature to solve it.
To the best of our knowledge, we are the first to apply tools from semi-infinitely
programming (SIP) to solve constrained reinforcement learning problems. We
present theoretical analysis for SI-CRL, identifying its sample complexity and
iteration complexity. We also conduct extensive numerical examples to illustrate
the SICMDP model and validate the SI-CRL algorithm.

1 Introduction

Reinforcement learning has achieved great success in areas such as Game-playing [34, 39], robotics
[24], recommender systems [44], etc. However, due to safety concerns or physical limitations, in
some real-world reinforcement learning problems, we must consider additional constraints that may
influence the optimal policy and the learning process [15]. A standard framework to handle such
cases is the constrained Markov Decision Process (CMDP) [5]. Within the CMDP framework, the
agent has to maximize the expected cumulative reward while obeying a finite number of constraints,
which are usually in the form of expected cumulative cost criteria.

However, we are sometimes concerned with the problem with a continuum of constraints. For
example, the constraints we meet might be time-evolving or subject to uncertain parameters, which
cannot be formulated as an ordinary CMDP (see Examples 3.1 and 3.2). In this paper we would
study a generalized CMDP to address the above problem. Because the constraints are not only
infinite-number but also lie in a continuous set, the generalization is not trivial. Fortunately, we find
that we can borrow the idea behind linear semi-infinite programming (LSIP) [33, 16] to deal with
the semi-infinite constraints. Accordingly, we propose semi-infinitely constrained Markov decision
processes (SICMDPs) as a novel complement to the ordinary CMDP framework.

We also present a so-called SI-CRL reinforcement learning algorithm to solve SICMDPs. The
main challenge is that we need to deal with a continuum of constraints, thus reinforcement learning
algorithms for ordinary CMDPs do not work anymore. We tackle this difficulty by first transforming
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the reinforcement learning problem to an equivalent LSIP problem, which can then be solved using
the dual exchange methods in the LSIP literature [23, 32]. As far as we know, we are the first to
introduce tools from semi-infinitely programming (SIP) into the reinforcement learning community
for solving constrained reinforcement learning problems.

Furthermore, we give theoretical analysis for SI-CRL. We decompose the error of SI-CRL into
two parts: the statistical error from approximating the true SICMDP with an offline dataset and
the optimization error due to the fact that the solution of the LSIP problem obtained by the dual
exchange method is inexact. On the statistical side, we show that the sample complexity of SI-CRL
is Õ

(
|S|2|A|2
ϵ2(1−γ)3

)
if the offline dataset is generated by a generative model, and Õ

(
|S||A|

νminϵ2(1−γ)3

)
if

the dataset is generated by a probability measure ν as considered in [11]. Here Õ means that all
logarithm terms are discarded. On the optimization side, we show that the iteration complexity of

SI-CRL is O
({

diam(Y )L
√
|S|2|A|d/[(1− γ)ϵ]

}d
)

.

We perform a set of numerical experiments to illustrate the SICMDP model and validate the SI-CRL
algorithm. We consider two numerical examples: toy SICMDP and discharge of sewage. In the
example of toy SICMDP, we show the efficiency of the SI-CRL algorithm and validate the established
theoretical bounds. In the example of discharge of sewage, we further show the advantage of the
SICMDP framework over the CMDP baseline obtained by naive discretization in modeling realistic
decision-making problems.

2 Related Work

The constrained Markov decision processes (CMDPs) have been extensively applied in areas like
robotics [31], communication and networks, [27, 35] and finance [1]. For a detailed treatment of
CMDPs one may refer to [5]. A number of reinforcement learning algorithms for CMDPs are
proposed, which include Lagrangian methods [4], actor-critic methods [2, 37], policy gradient
methods [42], etc. There are also works focusing on theoretical aspects of CMDPs. Wu et al.
[41], Amani et al. [6] studied the online regret bound of the bandit case. Wachi and Sui [40], Zheng
and Ratliff [45] considered the case where the reward and cost are random but the transition dynamics
are known. And Efroni et al. [14], Amani et al. [7], HasanzadeZonuzy et al. [21] considered the
case where the transition dynamics are unknown and need to be estimated. Our SI-CRL algorithm
uses a similar strategy as in [14] in the sense that they all use the optimistic method to transform the
reinforcement learning problem into a linear (semi-infinitely) programming problem, which resolves
the feasibility issue and makes the theoretical analysis easier as well. However, our work and [14]
are very different at the technical level: 1) Our theoretical guarantees are in the form of sample
complexity bounds, while the results in (Efroni et. al 2020) are in the form of online regret bounds;
the proof techniques are quite different. 2) Efroni et al. [14] considered the episodic MDPs, while we
consider the infinite-horizon case.

The origination of semi-infinitely programming (SIP) can date back to [33]. From then on, SIP has
been widely used in quantum physics [10], signal processing [29, 30], finance [13], environment
science, and engineering [22]. One important class of SIP problems is called linear semi-infinitely
programming (LSIP). Goberna and López [17] provided a thorough survey about LSIP theory. Various
numerical methods are proposed to solve LSIP problems, including discretization methods [9, 13],
exchange methods [23, 43], and local reduction methods [20, 12]. Unlike LP, most LSIP problems
cannot be solved exactly and all-purpose LSIP solvers do not exist. In SI-CRL, we choose to use the
dual exchange method in [23] to solve the LSIP problem therein for its conceptual simplicity as well
as concrete theoretical guarantees.

3 The SICMDP Model

A semi-infinitely constrained MDP (SICMDP) is defined by a tuple M = ⟨S,A, Y, P, r, c, u, µ, γ⟩.
Here S,A, P, r, µ, γ are defined in a similar manner as in common infinite-horizon discounted MDPs.
Specifically, S and A are the finite sets of states and actions, respectively. P is the transition dynamics
and P (s′|s, a) represents the probability of transitioning to state s′ when playing action a at state s.
And r : S ×A → [0, 1] is the reward function, µ is the fixed initial distribution, and γ is the discount
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factor. Y is the set of constrains, which we define as a compact set in Rd, and diam(Y ) < ∞ denotes
its diameter. In addition, c : Y × S × A → [0, 1] is used to denote a continuum of cost functions
and the value for constraints (bounds that must be satisfied) is determined by function u : Y → R.
Note that when Y is finite, we get an ordinary constrained MDP, which is indeed a special case of
SICMDP.

The general SICMDP problem is to find a stationary policy π : S → ∆(A), where ∆(A) is the set
of probability measure supported on A, to maximize the value function while complying with a
continuum of constraints. In other words, we consider the following optimization problem:

max
π

V π(µ) s.t. Cπ
y (µ) ≤ uy, ∀y ∈ Y, (M)

where V π(µ) := E(
∑∞

t=0 γ
tr(st, at)|s0 ∼ µ) and Cπ

y (µ) := E(
∑∞

t=0 γ
tcy(st, at)|s0 ∼ µ).

Let us see two concrete examples of SICMDPs.
Example 3.1 (Spatial-temporal Constraints). Consider an ordinary CMDP problem with a single
constraint:

max
π

V π(µ) s.t. Cπ(µ) ≤ u. (1)
In some cases the constraint would be spatial-temporal, i.e., the cost function c(s, a) and the value
for constraints u are no longer constant function and would change with time τ ∈ [0, T ] or location
d ∈ D ⊂ R3. Then we should use the SICMDP model with Y = [0, T ] or Y = D rather than the
ordinary CMDP framework to model such problems:

max
π

V π(µ) s.t. Cπ
τ (µ) ≤ uτ , ∀τ ∈ [0, T ]. (2)

Load Balancing: Suppose a RL agent needs to balance the load between multiple cell sites using
some policy π. The objective is to minimize the cost V π(µ) and the constraint is that at every place d
in the region D the cumulative communication capacity Cπ

d (µ) is above some threshold ud.
Example 3.2 (Constraints with Uncertainty). Again we consider a problem like Problem (1). In
many application scenarios the cost function c(s, a) is handcrafted and the construction of c(s, a)
is not guaranteed to be correct. Hence it may be helpful to include an additional parameter ϵ ∈ E
representing our uncertainty in the construction of the cost function c(s, a) as well as the value of
constraints u. Even if the constraint is not handcrafted and has clear physical meaning, it may still
subject to uncertain parameters ϵ ∈ E that cannot be observed in advance. Therefore, we should use
the SICMDP model with Y = E rather than the ordinary CMDP framework to model such problems:

max
π

V π(µ) s.t. Cπ
ϵ (µ) ≤ uϵ,∀ϵ ∈ E. (3)

Underwater Drone: Suppose an underwater drone needs to maximize V π(µ) to accomplish some
tasks. When the unknown environment feature (salinity, temperature, ocean current, etc,) is ϵ ∈ E,
for state-action pair (s, a) the energy consumption is cϵ(s, a), and the constraint is that total energy
consumption Cπ

ϵ (µ) cannot be larger than its battery capacity uϵ.
Remark 3.3. An alternative approach to solving problems such as Examples 3.1 and 3.2 is to naively
discretize the constraint set Y , and then the discretized problem can be fit into the conventional
CMDP framework. The problem of this naive method is that the prior knowledge, i.e., the constraint
function is continuous w.r.t. y, would be lost, which makes the method extremely inefficient. In
Section 6.2 we demonstrate this issue via a numerical example.

When an SICMDP M is known to us, we may do the planning by solving a linear semi-infinite
programming (LSIP) problem. Denote the occupancy measure on S ×A introduced by policy π as
qπ ∈ ∆(S ×A). Then we have

qπ(s, a) = (1− γ)

∞∑
t=0

γtPπ(st = s, at = a), π(a|s) = qπ(s, a)∑
a′∈A qπ(s, a′)

.

Problem (M) can be reformulated as the following LSIP problem:
max

q
q⊤r

s.t.
1

1− γ
q⊤cy ≤ uy, ∀y ∈ Y,∑

s′,a

q(s′, a)(1{s′=s}−γP (s|s′, a)) = (1−γ)µ(s), ∀s ∈ S,

q ⪰ 0.

(4)
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Therefore, when M is already known the optimal policy π∗ can be found by solving Problem (4).
And we always assume such a policy π∗ exists.
Assumption 3.4. Problem (M) is feasible with an optimal solution π∗, or equivalently, Problem (4)
is feasible with an optimal solution q∗.

4 The SI-CRL Algorithm

In this section we present an offline reinforcement learning algorithm called SI-CRL for SICMDPs.
In a high-level point of view, our algorithm is a semi-infinite version of the algorithms proposed in
[21, 14]. In the first stage, SI-CRL takes an offline dataset {(si, ai, s′i)|i = 1, 2, . . . ,m} as input and
generate an empirical estimate P̂ of the true transition dynamic P . Then the algorithm constructs
a confidence set (the optimistic set) according to P̂ that would cover the true SICMDP with high
probability. Then for each policy π we would only view its return as the largest possible return in
SICMDPs in the confidence set. This method is also called the optimistic approach. In the second
stage, the optimistic policy π̃ is found using a LSIP algorithm. It can be shown that the resulting
policy π̃ is guaranteed to be nearly optimal, and the theoretical analysis can be found in Section 5.

Now we give a more detailed description of SI-CRL. First, the empirical estimate P̂ is calculated as:
P̂ (s′|s, a) := n(s,a,s′)

max(1,n(s,a)) , where n(s, a, s′) :=
∑m

i=1 1{si = s, ai = a, s′i = s′} and n(s, a) =∑
s′ n(s, a, s

′). The reason why we do not directly plug P̂ into Problem (4) and solve the resulting
LSIP problem is due to the fact that there is no guarantee that the LSIP problem w.r.t. P̂ is feasible.
To address this issue, we construct an optimistic set Mδ such that with high probability the true
SICMDP M lies in Mδ. In particular, Mδ is defined via the empirical Bernstein’s bound and the
Hoeffding’s bound [26]:

Mδ :=
{
⟨S,A, Y, P ′, r, c, u, µ, γ⟩ : |P ′(s′|s, a)− P̂ (s′|s, a)| ≤ dδ(s, a, s

′),∀s, s′ ∈ S, a ∈ A
}
,

where

dδ(s, a, s
′) :=min

{√
2P̂ (s′|s, a)(1−P̂ (s′|s, a)) log(4/δ)

n(s, a, s′)
+

4 log(4/δ)

n(s, a, s′)
,

√
log(2/δ)

2n(s, a, s′)

}
.

The next step is to solve the optimistic planning problem:

max
M ′∈Mδ,π

V π,M ′
(µ), s.t. Cπ,M ′

(µ) ≤ uy, ∀y ∈ Y, (5)

where the superscript M ′ denotes that the expectation is taken w.r.t. SICMDP M ′.
Theorem 4.1. Suppose n ≥ 3. With probability at least 1− 2|S|2|A|δ, we have that M ∈ Mδ , and
Problem (5) is feasible.

The proof is given in the appendix. Note that the optimization variables include both M ′ and π,
and LSIP reformulations like Problem (4) would no longer be possible. Instead, we shall intro-
duce the state-action-state occupancy measure z(s, a, s′). In particular, assuming zP,π(s, a, s

′) :=

P (s′|s, a)qπ(s, a), we have P (s′|s, a) =
zP,π(s,a,s

′)∑
x∈S zP,π(s,a,x)

, and π(a|s) =
∑

s′∈S zP,π(s,a,s
′)∑

s′∈S,a′∈A zP,π(s,a′,s′) .
Problem (5) can be reformulated as the following extended LSIP problem:

max
z

∑
s,a,s′

z(s, a, s′)r(s, a)

s.t.
1

1− γ

∑
s,a,s′

z(s, a, s′)cy(s, a) ≤ uy, ∀y ∈ Y,

z(s, a, s′) ≤ (P̂ (s′|s, a) + dδ(s, a, s
′))

∑
x∈S

z(s, a, x), ∀s, s′, a ∈ A,

z(s, a, s′) ≥ (P̂ (s′|s, a)− dδ(s, a, s
′))

∑
x∈S

z(s, a, x), ∀s, s′ ∈ S, a ∈ A,

∑
x∈S,b∈A

z(s, b, x) = (1− γ)µ(s) + γ
∑

x∈S,b∈A

z(x, b, s), ∀s ∈ S,

z ⪰ 0.

(6)
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However, compared to LP problems, LSIP problems are typically harder to solve and there are no
all-purpose LSIP solvers. Here, we choose the simple yet effective dual exchange methods [23, 32]
to solve Problem 6. The SI-CRL algorithm can be summarized in Algorithm 1.

Algorithm 1 SI-CRL
Input: state space S, action space A, dataset {(si, ai, s′i)|i = 1, 2, ...,m}, reward function r, a
continuum of cost function c, value for constraints u, discount factor γ
for each (s, a, s′) tuple do

Set P̂ (s′|s, a) :=
∑m

i=1 1{si=s,ai=a,s′i=s′}
max(1,

∑m
i=1 1{si=s,ai=a})

end for
Initialize Y0 = {y0}
for i = 1 to T do

Use a LP solver to solve a finite version of Problem (6) by only considering constraints in Y0

and store the solution as zi
Find yi ≈ argmaxy∈Y

∑
s,a,s′ zi(s, a, s

′)cy(s, a)− uy

if
∑

s,a,s′ z(s, a, s
′)cyi

(s, a)− uyi
≤ 0 then

Set zT = zi
BREAK

end if
Add yi to Y0

end for
for each (s, a) pair do

Set π̂(a|s) =
∑

s′ zT (s,a,s′)∑
s′,a′ zT (s,a′,s′)

end for
RETURN π̂

5 Theoretical Analysis

We give PAC-type bounds for SI-CRL under two different settings. The error of SI-CRL is decom-
posed into two parts: the statistical error from approximating Problem (M) with Problem (5) and
the optimization error from the fact that the solution of (5) obtained by dual exchange method is
inexact. On the statistical side, our goal is to determine that how many samples are required to make
SI-CRL an (ϵ, δ)-optimal1 when Problem (5) can be solved exactly, i.e., we want to find the sample
complexity of SI-CRL. We show that the sample complexity of SI-CRL is Õ

(
|S|2|A|2
ϵ2(1−γ)3

)
if the dataset

we use is generated by a generative model, and Õ
(

|S||A|
νminϵ2(1−γ)3

)
if the dataset we use is generated

by a probability measure ν defined on the space S ×A and P (·|s, a) as considered in [11]. Here Õ
means that all logarithm terms are discarded, and νmin := minν(s,a)>0 ν(s, a). It can be noted that
the order of our sample complexity bound increases by a factor of |S||A| compared to that of ordinary
discounted MDP [8]. On the optimization side, we show that if the inner maximization problem
w.r.t. y can be solved exactly, the dual exchange method would produce an ϵ-optimal solutions2 when

the number of iterations T = O

([
diam(Y )L

√
|S|2|A|d/ϵ

]d)
, where L is the Lipschitz constant

defined in Assumption 5.3. We will present our theoretical analysis in more details in the following
part of this section.

5.1 Notation and Preliminaries

Given a stationary policy π, we define the value function V π(s) = E(
∑∞

t=0 γ
tr(st, at)|s0 = s),

V π = (V π(s1), . . . , V
π(s|S|))

⊤ ∈ R|S|. Thus we have V π(µ) = µ⊤V π. Similarly, we define the
expected cost Cπ

y (s) = E(
∑∞

t=1 γ
tcy(st, at)|s0 = s), Cπ

y = (Cπ
y (s1), . . . , C

π
y (s|S|))

⊤ ∈ R|S|, thus

1The (ϵ, δ)-optimality would be defined in Definition 5.1
2The ϵ-optimal solutions is defined in Definition 5.2
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Cπ
y (µ) = µ⊤Cπ

y . And π∗ denotes the optimal policy. Suppose π̃, M̃ are the solution of Problem
(5) and M̃ = ⟨S,A, Y, P̃ , r, c, u, µ, γ⟩. For a given stationary policy π, we use Ṽ π(s), Ṽ π, Ṽ π(µ),
C̃π

y (s), C̃
π
y , C̃π

y (µ), q̃π(s, a), to represent the value function, expected cost, occupancy measure of
SICMDP M̃ , respectively. We say an offline dataset {(si, ai, s′i)|i = 1, 2, . . . ,m} to be generated by
a generative model if we sample according to P (·|s, a) for each (s, a)-pair n = m/|S||A| times and
record the results in the dataset. We say an offline dataset to be generated by probability measure ν

and P (·|s, a) if (si, ai)
i.i.d.∼ ν and s′i ∼ P (·|si, ai).

An (ϵ, δ)-optimal policy is defined as follows.
Definition 5.1. An RL algorithm is called (ϵ, δ)-optimal for ϵ, δ > 0 if with probability at least 1− δ
it can return a policy π such that

V π∗
(µ)− V π(µ) ≤ ϵ; Cπ

y (µ)− uy ≤ ϵ,∀y ∈ Y.

An ϵ-optimal solution of Problem (5) is defined as
Definition 5.2. A stationary policy π̂ is called an ϵ-optimal solution of Problem (5) for ϵ > 0 if

|V π̂(µ)− V π̃(µ)| ≤ ϵ; |C π̂
y (µ)− uy| ≤ ϵ, ∀y ∈ Y

hold simultaneously.

Unless otherwise specified, we assume that ∀(s, a) ∈ S ×A, cy(s, a) is L-Lipschitz in y w.r.t. ∥·∥2.
We also assume that uy is L-Lipschitz in y w.r.t. ∥·∥2. The assumptions can be formally stated as:
Assumption 5.3. cy(s, a) and uy are Lipschitz in y w.r.t. ∥·∥2, i.e., ∃L > 0 s.t. ∀y, y′ ∈ Y, (s, a) ∈
S ×A, |cy(s, a)− cy′(s, a)| ≤ L∥y − y′∥2, |uy − uy′ | ≤ L∥y − y′∥2.

The Lipschitz assumption is usually necessary when dealing with a semi-infinitely constrained
problem [36, 23]. And this assumption is indeed quite mild because Y is a compact set.

5.2 Sample Complexity of SI-CRL

We consider the case where the offline dataset we use is generated by a generative model. First we
consider a restricted setting as in [26] where for each (s, a)-pair in the true SICMDP there are at most
two possible next-states and provide the sample complexity bound. Then we will drop Assumption
5.4 using the same strategy as in [26] and derive the sample complexity bound of the general case.
The proof can be found in the appendix.
Assumption 5.4. The true unknown SICMDP M satisfies P (s′|s, a) = 0 for all but two s′ ∈ S
denoted as sa+ and sa− ∈ S.
Theorem 5.5. Suppose Assumption 5.4 holds, and the dataset we use is generated by a generative
model with m/|S||A| = n > max

{
36 log 4/δ
(1−γ)2 , 4 log 4/δ

(1−γ)3

}
. Then with probability 1 − 2|S|2|A|δ, we

have that

V π∗
(µ)− V π̃(µ) ≤ 24

√
log 4/δ

n(1− γ)3
; C π̃

y (µ)− uy ≤ 12

√
log 4/δ

n(1− γ)3
,∀y ∈ Y.

Theorem 5.6. Suppose Assumption 5.4 holds, the dataset we use is generated by a generative

model and Problem 5 can be solved exactly. Then when m = O

(
|S||A| log(8|S|2|A|/δ)

ϵ2(1−γ)3

)
, SI-CRL is

(ϵ, δ)-optimal.

Theorem 5.7. Suppose the dataset we use is generated by a generative model and Problem 5 can be

solved exactly. Then when m = O

(
|S|2|A|2(log |S|)3 log(8|S|4|A|3/δ)

ϵ2(1−γ)3

)
, a modification of SI-CRL is

(ϵ, δ)-optimal.

Remark 5.8. Our proof strategy is similar to [26]. However, to get a Õ((1− γ)−3) bound [26] uses a
tedious recursion argument. We greatly simplify the proof and achieve improvements in log terms
(by a factor of (log( |S|

ϵ(1−γ) ))
2) using sharper bounds on local variances of MDPs developed in [3].
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Remark 5.9. Although Assumption 5.4 seems quite restrictive, we argue that it is necessary to
establish sharp sample complexity bound, as shown in [26]. Specifically, without this assumption the
“quasi-Bernstein bound” (Lemma B.4) will not hold, thus we may not be able to get the Õ((1−γ)−3)
bound.
Remark 5.10. It can be noted that our sample complexity bound does not rely on the constraint set Y .
This is because we consider the setting where r and cy are known deterministic functions and the
only source of randomness comes from estimating the unknown transition dynamic using an offline
dataset.

Now we generalize our results to the case where the offline dataset is generated by a probability
measure. The proof can be found in the appendix.

Theorem 5.11. Suppose the dataset we use is generated by probability measure ν and Problem 5 can

be solved exactly. Then when m = O

(
|S||A|(log |S|)3 log(8|S|4|A|3/δ)

νminϵ2(1−γ)3

)
, a modification of SI-CRL is

(ϵ, δ)-optimal.

Remark 5.12. Here "a modification of SI-CRL" stands for the following procedure: first we transform
the original SICMDP to a new SICMDP satisfying Assumption 5.4, then we run SI-CRL to solve the
new SICMDP. One may refer to the proof in Appendix B for more details.

5.3 Iteration Complexity of SI-CRL

We give the iteration complexity of SI-CRL, i.e., how many iterations are required to output an
ϵ-optimal solution of Problem (5) when the inner-loop problem can be solved exactly. Our results is a
corollary of Theorem 4 in [23].

Theorem 5.13. If the inner-loop maximization problem in SI-CRL can be exactly solved, then
SI-CRL will output an ϵ-optimal solution of Problem (5) if the number of iterations T =

O

({
diam(Y )L

√
|S|2|A|d/[(1− γ)ϵ]

}d
)

.

6 Numerical Experiments

We design two numerical examples: toy SICMDP and discharge of sewage. By a set of numerical
experiments, we illustrate the SICMDP model and validate the efficacy of the SI-CRL algorithm
as well as the correctness of our theoretical results. We highlight that in the example of discharge
of sewage we find that the SICMDP framework greatly outperforms the CMDP baseline obtained
by discretizing the original problem in modeling realistic reinforcement learning problems. We
implement our methods with Python and LP problems are solved using a full-featured university
version of Gurobi [19]. Details of our implementation can be found in the appendix. All the
experiments are run on a workstation with 8 CPUs and no GPU.

6.1 Toy SICMDP

We consider a most simple SICMDP with |S| = 2, |A| = 2 and Y = [0, 1]. Its MDP part is specified
in Figure 1, where p ∈ (0.5, 1) and τ ≪ 1 is a small positive number. For each γ ∈ (0, 1), we design
Lipschitz cy and uy such that the optimal policy takes a0 with probability 0.9 and 0.5 on s0 and s1,
respectively. For details of the construction of Toy SICMDP, one may refer to the appendix. To make
our numerical results more reliable, we repeat all experiments in this subsection for 30 times and
report the average results. First, we would like to check the efficacy of the SI-CRL algorithm. We set
T sufficiently large such that the algorithm is guaranteed to converge. Then we gradually increase
m, the size of the dataset, and see whether SI-CRL can recover the pre-defined optimal policy. The
results are shown in Figure 3. It can be noticed that as m gets larger, the error term converges to
zero, showing that our SI-CRL algorithm may effectively solve reinforcement learning problems for
SICMDPs. Second, we would like to validate the theoretical results in Section 5. Specifically, we
investigate the sample complexity of SI-CRL for a fixed (ϵ, δ) (See Definition 5.1) when γ and νmin

vary. T is set to be sufficiently large as in the previous experiment. We present the results in Figure 3.
The logarithm of sample complexity vs. the transformed parameter of interest is approximately linear
with slope 1, which indicates our sample complexity bounds are correct and tight.
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Figure 1: MDP part of Toy SICMDP: The triple
means (action, probability, reward). The agent
should always take action a0 in both states if it
sets aside the constraints.

Figure 2: (Discharge of Sewage) The satellite
image is from NASA and is only for illustrative
purposes. The icons represent the locations of
the sewage outfalls.
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Figure 3: (Toy SICMDP) Left: The policy returned by SI-CRL converges to the optimal solution as
the dataset gets larger. The error term is defined as max

{
V π∗

(µ)− V π̂(µ), supy∈Y C π̂
y (µ)− uy

}
,

the dataset is generated by generative models. Middle: Sample complexity of SI-CRL with varying
γ; the dataset is generated by generative models. Right: Sample complexity of SI-CRL with varying
νmin; the dataset is generated by a probability measure. Here we set ϵ = 0.01, δ = 0.005

|S|2|A| . Straight
lines are obtained by linear regression.

6.2 Discharge of Sewage

To demonstrate the power of the SICMDP model and the SI-CRL algorithm, we consider a more
realistic and complex problem adapted from [18]. Assume there are |S| sewage outfalls in a region
[0, 1]d, with d = 2 or 3, and at each time point only one single outfall is active. The active outfall
would cause pollution in nearby areas, and the impact would decrease with Euclidean distance. We
need to figure out a strategy to switch between neighboring outfalls to avoid over-pollution at each
location of the region while minimizing the switching cost. Clearly, this problem can be formulated
as a SICMDP model with Y = [0, 1]d and corresponding cy and uy. For details of the construction
of the Discharge of Sewage, one may refer to the appendix. In the following numerical experiments,
we assume that an offline dataset generated by a generative model is available.

First, we numerically validate our theoretical bounds on sample complexity and iteration complexity.
In particular, we investigate the relationship between the sample complexity and iteration complexity
of SI-CRL and the size of state space |S|. Like the case in Toy SICMDP, we find the numerical
results fit well with our theoretical analysis. We show the results in Figures 4. As before, we run each
experiment for 30 times and report the averaged results.

Second, we compare our method with a naive CMDP baseline 3.3, showing the advantage of SICMDP
in modeling problems like Example 3.1, 3.2. In the baseline method, we only consider the constraints
on a grid of Y containing Tbaseline points, which allows us to model Discharge of Sewage as a standard
CMDP problem with Tbaseline constraints. The CMDP problem is then solved by the algorithm
proposed in [14]. We visualize the quality of solutions of our proposed method and baseline method
in Figure 5. It can be found that when T = Tbaseline, the policy obtained by our proposed methods is
of far better quality than the policy obtained by the baseline methods.
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Figure 4: (Discharge of Sewage) Left: Sample complexity of SI-CRL (ϵ = 0.015, δ = 0.005
|S|2|A| , T

sufficiently large) with different |S|. Middle and right: Iteration complexity of SI-CRL (ϵ = 0.015,
δ = 0.005

|S|2|A| , m sufficiently large) with different |S| when d = 2 (middle) and d = 3 (right),
respectively. Straight lines are obtained by linear regression.
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Figure 5: (Discharge of Sewage) Visualization of violation of constraints using SI-CRL (left) and
baseline (right). The heat refers to the number log

(
(C π̂

y (µ)− uy)+ + 5× 10−6
)
− log(5× 10−6).

Larger number means more serious violation of constraints. The red cross icons represent the
T = Tbaseline = 9 check points selected by the algorithms.
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Figure 6: (Discharge of Sewage) Error term of
our proposed method and the baseline method
when T and Tbaseline vary. (δ = 0.005

|S|2|A| , m suffi-
ciently large)
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Figure 7: Time consumption of our method and
the CMDP baseline to get a solution of given
accuracy. (δ = 0.005

|S|2|A| , m sufficiently large)

An anti-intuitive phenomenon is that although in our method we need to deal with multiple LP
problems while in the baseline we only solve one single LP problem, our method is still more
time-efficient than the CMDP baseline. Figure 7 indicates that our method takes less time to get a
solution of given accuracy, which is evaluated by the error term supy∈Y C π̂

y (µ)− uy . The reason is
that in SI-CRL we solve LP problems with a dual simplex method, thus re-optimization after adding
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a new constraint is much faster than re-solving the LP problem from scratch[25]. And our method
needs far fewer active constraints to attain the same accuracy as the baseline methods, see Figure 6.

7 Conclusion

We have studied a novel generalization of CMDP that we have called SICMDP. In particular, we have
considered a continuum of constraints rather than a finite number of constraints. We have devised
a reinforcement learning algorithm SI-CRL to solve SICMDP problems. Furthermore, we have
presented theoretical analysis for SI-CRL, establishing the sample complexity bounds as well as the
iteration complexity bounds. We have also performed the extensive numerical experiments to show
the efficacy of our proposed method and its advantage over traditional CMDPs. However, the SI-CRL
algorithm can only handle the tabular case, with a nice offline dataset avaliable. We would study the
SICMDP beyond the tabular case and develop efficient algorithms in future works.
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