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Abstract

We investigate nonlinear instrumental variable (IV) regression given high-
dimensional instruments. We propose a simple algorithm which combines ker-
nelized IV methods and an arbitrary, adaptive regression algorithm, accessed as
a black box. Our algorithm enjoys faster-rate convergence and adapts to the di-
mensionality of informative latent features, while avoiding an expensive minimax
optimization procedure, which has been necessary to establish similar guarantees.
It further brings the benefit of flexible machine learning models to quasi-Bayesian
uncertainty quantification, likelihood-based model selection, and model averaging.
Simulation studies demonstrate the competitive performance of our method.

1 Introduction

Instrumental variable (IV) analysis is widely used for causal inference [1–3]. Given confounded
observational data, IV analysis identifies the causal effect through the use of instruments. Nonlinear
IV regression is typically defined by the following conditional moment restrictions (CMRs):

E(y − f0(x) | z) = 0 a.s. [P (dz)] (1)

where f0 is the causal effect function of interest, and x,y, z denote the observed treatment, response
and instrument, respectively. Similar CMR problems also appear in other applications of causal
statistics and machine learning [see, e.g., 4, 5, for examples].

Starting from [6], recent works have demonstrated great promise in applying flexible machine learning
(ML) methods to IV regression. Modern ML methods are appealing due to their adaptivity to the
informative latent structure in data [7]: they may adapt to the low dimensionality of the informative
latent features even if the observed input is high-dimensional and its signal-to-noise ratio is low.
Sample complexity gaps have been established in such settings, between deep models based on neural
networks (NNs) or trees, and linear models such as fixed-form kernels [8–10]. In IV regression, such
adaptivity will be highly desirable when the observed instruments are high-dimensional, which is
prevalent in applications such as genomics [11], and may also arise from the general desire to use
structured data as instrument. Following previous work in the parametric setting [12, 13], we refer to
this problem of learning informative latents in instruments as instrument learning. It generalizes the
classical problem of instrument selection [14–16].

Comparing with standard supervised learning, IV regression is more challenging, due to the need to
estimate a conditional expectation operator which defines (1). Consequently, establishing adaptivity
guarantees becomes more difficult. While many recent works have demonstrated promising empirical
results using deep models, they are often used as heuristics [e.g., 6], or justified with crude slow-rate
analyses, which establish convergence rates that saturate at Ω(n−1/4) [e.g., 17]. This is in contrast
to faster rates which approach n−1/2 as the regularity of model improves. The only exception is
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a minimax formulation of IV estimation [5, 18–20]. [19] establish faster rate convergence for this
formulation, for models with local Rademacher complexity bounds. Though local Rademacher
analysis covers many adaptive ML procedures [e.g., 10, 21], it still does not fully explain the success
of modern ML approaches, with prominent alternatives including implicit regularization [22] and
PAC-Bayesian analyses [23]. From a practical perspective, minimax optimization is computationally
expensive, yet it cannot be avoided in the framework of [19], unless we instantiate their method
with the less flexible kernel models. It requires additional hyperparameter tuning, which can be
challenging in causal problems where validation is indirect and more difficult. It also prevents the use
of such flexible models for uncertainty quantification, or inference, for which reliable methods have
only been developed for linear nonparametric models [24–26].

This work bridges the gap between sharp theoretical guarantees and robust, practical implementation.
We assume our prior knowledge about the causal effect function f0 is characterized by a reproducing
kernel Hilbert space (RKHS)H, and focus on the flexibility of conditional expectation estimation.
This is often possible, because the treatment variable is determined by the problem at hand, and
thus has a fixed dimensionality.2 We then present a surprisingly simple algorithm, with faster rate
guarantees which in many cases match the best known in literature. The algorithm defines the
conditional expectation estimates using a learned kernel, the basis of which is defined by applying
adaptive regression algorithms to random draws from a Gaussian process (GP) prior. Given this
learned first-stage kernel andH, we can estimate f0 using kernelized IV methods [19, 20, 27], which
have closed-form solutions and can be efficiently approximated (e.g., with Nyström [19]). Our
method allows easy hyperparameter tuning, and exhibits competitive performance in simulations. It
accesses the regression algorithm as a black box, thus allowing for the use of any ML methods and
benefits from their established theoretical guarantees. It also enables fast quasi-Bayesian uncertainty
quantification [24, 28, 29] with improved flexibility.

Our algorithm connects to many ideas in literature. Most notably, it can be viewed as an infinite-
dimensional generalization of [12, 13], which consider a linear outcome model with fixed dimension-
ality, and use ML methods to learn the optimal instruments [30, 31]. Our setting requires different
analyses, for defining an infinite-dimensional estimation target and quantifying errors with its intrinsic
complexity. Additionally, analysis of the resultant IV estimator is complicated by the ill-posedness
of infinite dimensional IV models [32]. A more subtle distinction is in the choice of basis: while
for finite-dimensional function spaces we can pick any set of basis (i.e., features) and apply the
black-box regressor separately, in our case seemingly obvious choices of basis lead to inferior results
(Appendix C.5.3). Our analysis also connects to the multi-task learning literature, to which we make
technical contributions. Section 6 discusses related work in detail.

The remaining of the paper is organized as follows: Section 2 reviews background knowledge.
Section 3 introduces the instrument learning problem, and reduces it to a general kernel learning
problem. We solve the latter problem in Section 4, and return to IV in Section 5 with our main results.
We review related work in Section 6, and present numerical experiments in Section 7.

2 Notations and Setup

Notations Denote the joint data distribution as P (dz × dx × dy), its marginal distributions as
P (dx), P (dz), etc., and their support as X ,Z . For functions of observed variables (e.g., x or z),
∥·∥2 denotes the L2 norm w.r.t. the respective marginal data distribution. ∥·∥∞ denotes the L∞ norm.
We use the notation [m] := {1, . . . ,m}. Boldface (x,y, z) emphasizes the denotation of random
variables. For any kernel k, GP(0, k) refers to the “standard Gaussian process” [33] with zero mean,
and covariance defined by k. ≲,≳,≍ represent (in)equalities up to constants; the hidden constants
will not depend on any sample size. Õ(·) denotes inequality up to logarithm factors.

Problem Setup Nonparametric IV regression (NPIV) is formulated as (1) [34, 35]. Introduce the
conditional expectation operator E : L2(P (dx))→ L2(P (dz)), f 7→ E(f(x) | z = ·), and define
g0(z) := E(y | z = z). We can then express (1) as a linear inverse problem:

Ef0 = g0, (2)
where we observe g0 up to regression error. NPIV deviates from standard inverse problems in its
need to estimate both f0 and E. Following conventions in the two stage least square method [1], we

2Our method can also be applied when x contains high-dimensional exogenous covariates; see Appendix G.
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refer to the modeling of f0 as the second stage, and that of E – or equivalently, that of Ef for all f
in a hypothesis space – as the first stage. The following assumption describes the setup in full detail:

Assumption 2.1 (NPIV). (i) The data variables x,y, z satisfy (1), and y is bounded by B. (ii) We
observe two sets of i.i.d. samples, with matching (marginal) distributions: D(n2)

s2 := {(zi, xi, yi) :
i ∈ [n2]}, D(n1)

s1 := {(z̃i, x̃i) : i ∈ [n1]}.

We impose (ii) since such additional samples are sometimes available, as discussed in e.g. [27]. If
only n samples from the joint distribution are available, we can set n1 = n2 = n/2.

In the main text, we assume that our prior knowledge about f0 is fully characterized by an RKHSH,
in the following sense.

Assumption 2.2 (second stage RKHS). (i) X is a bounded subset of Rdx ; the reproducing kernel
kx of H is bounded and continuous. (ii) The integral operator Tx : f 7→

∫
kx(x, ·)f(x)P (dx) has

eigenvalues λi(Tx) ≲ i−(b+1), for some b > 0. (iii) One of the following holds true:

(iii).a (“kernel scheme”): f0 ∈ H.

(iii).b (“GP scheme”): b > 1; and for all n, ∃f†n ∈ H s.t. ∥f†n−f0∥H≲ n
1/2
b+1 , ∥f†n−f0∥2≲ n−

b/2
b+1 .

In the above, (i) and (ii) are common technical assumptions: (i) ensures the existence of Mercer’s
representation, and (ii) is a complexity measure, with a larger value of b indicating a smaller
hypothesis space. (iii) requiresH is correctly specified for regression; its two cases cover the different
assumptions in standard RKHS-based estimation and GP modeling. (iii).a is intuitive. (iii).b is
standard in the posterior contraction literature [36]; it roughly requires f0 to be (at least) as regular as
“typical” samples from GP(0, kx), in the sense of [36, Theorem 2.1]. This is different from (iii).a
because whenH is infinite dimensional, almost all GP samples fall out ofH [37, 38]. Our algorithm
applies to both settings, but analysis of the GP scheme requires additional effort. It is useful as it
allows for quasi-Bayesian uncertainty quantification using a GP(0, kx) prior [26].

The RKHS assumption has been employed in a thread of recent work [27, 20, 39, 26], and generalizes
the sieve method in literature [34, 40, 4]. It is most reasonable when x has moderate dimensions; for
example, when f0 satisfies certain L2-Sobolev regularity conditions, we can set kx to be a suitable
Matérn kernel (Example A.1-A.2). Appendix G studies a more general setting, where x and z
include additional, high-dimensional exogenous covariates. Nonetheless, the assumption will be less
reasonable when the treatment variable is high-dimensional and variable selection is needed for it.

NPIV is typically an ill-posed inverse problem [35]. We now quantify the degree of ill-posedness:

Assumption 2.3. The operator E is compact, with singular values si(E) ≍ i−p, where p > 0.

Such mildly ill-posed settings [41] match our polynomial eigendecay assumption for the kernel.
In the severely ill-posed setting where the decay of si(E) is exponential, kernels with a similar
eigendecay should be used. While the analyses of the two settings share many ideas, the Bayesian
inverse problem literature typically restricts to the former for technical reasons [42, 43].

3 From Instrument to Kernel Learning

As we assumeH is a correctly specified second-stage model, it remains to determine the first stage. In
this section, we show that an ideal first stage model can be defined using another RKHS I , determined
byH and E. Although its kernel kz has an unknown form, we demonstrate that we can access noisy
samples from GP(0, kz), which, as Section 4 below shows, enable efficient learning of I . This can be
viewed as instrument learning, as I will only depend on the informative features in z (Example 3.1).

Let us first consider the GP scheme (Assumption 2.2 (iii).b) which roughly requires f0 to be similar to
typical samples from GP(0, kx). From a Bayesian perspective, an ideal prior for Ef0 should match
the distribution of Ef , for f ∼ GP(0, kx). This distribution is “almost equivalent” to another GP:
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Lemma 3.1 (proof in Appendix B). Denote by [g]∼ the L2 equivalence class of g.3 Under
Assumptions 2.1, 2.2, there exists a kernel kz , with integral operator Tz = ETxE

⊤, s.t. for
f ∼ GP(0, kx), g ∼ GP(0, kz), [g]∼ has the same distribution as E[f ]∼.

Informally, the lemma shows that GP(0, kz) matches the distribution of Ef . It is thus intuitive that
kz could be a good choice for the first stage. The following lemma further motivates its use in the
kernel scheme: its (i) shows that I fulfills the conditions in previous work [19, 27]: the restriction of
E on H has image contained in I, and is a bounded linear map to I. (ii) shows that I, as a set of
functions, cannot be made smaller while maintaining (i) .
Lemma 3.2 (proof in Appendix B). Let I be the RKHS defined by kz . Under Assumptions 2.1, 2.2,
(i) for any f ∈ H, there exists g ∈ I s.t. [g]∼ = E[f ]∼; (ii) for any g ∈ I, there exists f ∈ H
satisfying the above. In both cases, we have ∥f∥H= ∥g∥I .

We now demonstrate that I only depends on the informative latent features.
Example 3.1 (informative latent structure). Let Φ : Z → Z̄ be a feature extractor that maps the
observed instruments z to latent features z̄ := Φ(z), s.t. E(f(x) | z) = E(f(x) | Φ(z)) for all L2-
integrable f . Then we can apply Lemma 3.1, with E replaced by Ē : f 7→ E(f(x) | z̄) ∈ L2(P (dz̄)),
leading to a latent-space RKHS Ī with kernel k̄z . Ī induces the input-space RKHS

I := {g = ḡ ◦ Φ : ḡ ∈ Ī}, ∥ḡ ◦ Φ∥I := ∥ḡ∥Ī ; kz(z, z
′) = k̄z(Φ(z),Φ(z

′)).

The above kz satisfies Lemma 3.1-3.2.4 Observe that I perfectly approximates {Ef : f ∈ H}, but its
complexity only depends on Ī. In particular, kz has the same Mercer eigenvalues as k̄z (Claim B.2),
the decay of which is a standard complexity measure [e.g., 44, Ch. 7].

While kz has ideal properties, it cannot be used directly as it involves the unknown operatorE. Instead,
we need to construct an approximation from data. Our main insight is that we can effectively draw
noisy samples from GP(0, kz); as we develop in Section 4, such samples enable the approximation of
kz . To see how the noisy samples are obtained, consider f ∼ GP(0, kx). By Lemma 3.1, g = Ef
is L2-equivalent to clean samples from GP(0, kz); and we have f(x) = g(z) + (f(x)− (Ef)(z)),
where the latter term is unpredictable given z, and from this perspective can be viewed as noise. Thus,
if we apply any regression algorithm to f ∼ GP(0, kx), with z as input, we will recover a “denoised”
sample from GP(0, kz), up to regression errors.

In the informative latent feature setting, optimal regression error can only be achieved by methods
that adapt to such structures [8–10]. Approximating I with such “denoised” samples can then
be viewed as a knowledge distillation procedure, which results in a compact representation of the
adaptive regression algorithm. This is particularly beneficial in the NPIV setting: as discussed in the
introduction, using a learned kernel eliminates the need of minimax optimization in estimation, and
allows the (indirect) use of adaptive methods for uncertainty quantification.

4 Black-Box Kernel Learning

In this section, we address the problem of kernel learning given noisy GP samples. As our results
apply to more general settings, we first state the assumptions with full generality.
Assumption 4.1 (RKHS). There exist a continuous function Φ : Z → Z̄ , and a reproducing kernel k̄z
over Z̄ , s.t. (i) the random variable z̄ = Φ(z) is supported on a bounded subset of Rdl ; k̄z is bounded.
(ii) The eigenvalues of the integral operator Tz̄ : ḡ 7→

∫
k̄z(z̄, ·)g(z̄)P (dz̄) satisfy λi(Tz̄) ≲ i−(b̄+1),

for some b̄ > 0. (iii) ḡ ∼ GP(0, k̄z) have finite sup norm with probability 1.

The above assumption applies to a latent-space kernel k̄z . As shown in Example 3.1, Φ and k̄z induce
an input-space kernel kz , and RKHS I, which inherit the assumed regularity conditions. Our goal is
to estimate kz . This is harder than the estimation of k̄z , as it also involves Φ.

3Recall the L2 space is not a function space, and consists of equivalence classes of functions. Note that for
readability, we may occasionally ignore this distinction in the main text, and use (a version of) E to also denote
the corresponding map between function spaces. All such denotations can be made unambiguous (Remark B.1),
and all null set ambiguities in this section can be removed under mild additional assumptions (Lemma B.5).

4There may be multiple kernels satisfying Lemma 3.1, but they are equivalent up to null sets (Claim B.2); the
ambiguity can be removed under mild assumptions (Lemma B.5).
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All conditions for k̄z are satisfied by Matérn kernels with a sutiable order; see Appendix A. Ap-
pendix B.1 discusses its applicability in the IV setting, where I is defined as in Section 3. Briefly,
(ii) always holds for b̄ ≥ max{b, 2p − 1}, and if H is further correctly specified in the sense of
Assumption E.1, b̄ = b+ 2p. (i) and (iii) hold under mild technical assumptions.

We will “denoise” noisy GP(0, kz) samples using a regression oracle, which is specified below:

Assumption 4.2 (regression oracle). Let D(n1) := {(z̃i, g(z̃i) + ei)} be n1 iid replications of the
rvs (z, g(z) + e), s.t. E(e | z) = 0 and g(z) + e has a 1-subgaussian distribution. Then the oracle
returns estimator ĝu,n1 s.t. Eg∼GP(0,kz)ED(n1)∥ĝu,n1 − g∥22≤ ξ2n1

, for some ξn1 → 0.

In the IV setting, we have g = Ef ∼ GP(0, kz), and E(e | z) = E(f(x)− (Ef)(z) | z) = 0; the
subgaussian condition is verified by Lemma A.4.

To provide some intuition on adaptivity, we instantiate the assumption with the DNN model in [10],
and compare the resulted ξn with fixed-form kernels:

Example 4.1 (adaptivity of DNN oracles). Let Z ⊂ Rdz , Φ : Z → Z̄ be β1-Hölder regular, Ī be a
Matérn-β2 RKHS, and β1, β2 ≥ 1. Let the regression oracle return a ϵ2opt-approximate empirical risk
minimizer for the model in [10]. Then for any ϵ > 0, it holds that (see Appendix C.5.1 for derivations)

ξn = Õ
(
n−

β1
2β1+dz + n

− β2−ϵ
2β2+dl + ϵopt

)
=: Õ

(
ϵfea,n + n

− β2−ϵ
2β2+dl + ϵopt

)
(3)

In the above, ϵfea,n characterizes the hardness of feature learning, i.e., learning Φ. The second
term characterizes that of kernelized regression given the optimal features: it matches the optimal
regression rate if we had full knowledge about Φ, or equivalently, I, and would be attainable by
kernel ridge regression (KRR) using I.

As long as ϵopt is small, (3) will match the minimax rate up to logarithms. When β1/dz < β2/dl, the
minimax rate is ϵfea,n ≫ n−β2/(2β2+dl), meaning that the hardness of feature learning cannot be
overlooked. Otherwise, the rate ξn nearly matches the rate given full knowledge of the unknown I,
up to the infinitesimal ϵ > 0; this is realistic when, e.g., dz ≫ dl and Φ is linear (β1 =∞).

We are interested in the high-dimensional regime where dz ≫ dl. In this case, fixed-form Matérn or

RBF kernels could only attain the rate of O(n−
min{β1,β2}

2min{β1,β2}+dz ), which can always be much worse
than (3), regardless of the hardness of feature learning. This comparison suggests that fixed-form
kernels cannot adapt to the latent feature structure to avoid the curse of dimensionality.5

We now define the approximate RKHS. Let {g(j) : j ∈ [m]} be i.i.d. samples from the GP prior,
and ĝ(j)u,n1 be the respective estimate returned by the regression oracle, constructed from the shared
dataset D(n1) = {(z̃i, g(j)(z̃i) + ϵ

(j)
i ) : i ∈ [n1], j ∈ [m]} where ϵ(j)i are subgaussian, mean-

zero noise. Let ĝ(j)n1 := min{Ck log n, ĝ
(j)
u,n1(·)}, where Ck is a constant determined by I. Define

Ĝn(z) := (ĝ
(1)
n1 (z), . . . , ĝ

(m)
n1 (z)). Our approximate RKHS is defined as

Ĩ := {g(z) = θ⊤Ĝn1
(z) for some θ ∈ Rm}, with norm ∥g∥Ĩ :=

√
m∥θ∥2. (4)

As Ĩ is a finite-dimensional linear space, it is an RKHS. We can check that ∥g∥∞≤ Ck log n1∥g∥Ĩ .

Theoretical Results Under a given model, regression error is decomposed into approximation and
estimation (i.e., generalization) errors. We first present the approximation error bound:

Theorem 4.1 (proof in Appendix C.2). Under Assumptions 4.1, 4.2, there exists a universal constant
cr > 0, and an event En1 determined by g(1...m) and D(n1) with PD(n1)En1 → 1, on which for any
g∗ ∈ L2(P (dz)), there exists g̃∗ ∈ Ĩ s.t.

∥g̃∗∥Ĩ ≤ cr∥Projm′g∗∥I , (5)

∥g̃∗ − g∗∥2 ≤ cr∥Projm′g∗∥I(ξn1
+m−(b̄+1)/2)

√
log n1 + ∥g∗ − Projm′g∗∥2, (6)

where m′ = [m/2], and Projm′ denotes the projection onto the top m′ Mercer eigenfunctions of kz .

5[10] establishes formal lower bounds. Also, for small β2, we can replace dz with a manifold dimensionality
of Z , but it can still be much larger than dl.
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We will use Ĩ to estimate functions on a separate dataset with n2 samples. For a single regression
task, the estimation error can be simply bounded as Õ(

√
m/n2) [45]. However, our analysis of IV

estimation will require quantifying the intrinsic complexity of Ĩ, which will also allow the use of a
larger m in practice. The following proposition provides one such result; it will be used in Section 5,
to analyze IV estimation in the kernel scheme (Assumption 2.2 (iii).a).

Proposition 4.2 (proof in Appendix C.3). Let Ĩ,D(n1) be defined as above, and δn2
be the critical

radius of the local Rademacher complexity of the norm ball Ĩ1 [46, Ch. 14]. On the event defined in
Theorem 4.1, we have δn2

= Õ(n
−(b̄+1)/2(b̄+2)
2 +m−(b̄+1)/2 + ξn1

).

IV estimation in the GP scheme is more delicate, and requires additional analysis of Ĩ, which is
deferred to App. D. Before we proceed, however, we illustrate the results on a simple regression task:

Example 4.2 (Example 4.1, cont’d). Let Φ, I be defined as before, and ĝ(j)n1 be estimated by the DNN
oracle. Suppose ϵopt is not greater than the other terms. Then

i. Let m = ⌈nb̄/(b̄+1)2

1 ⌉. On the event in Theorem 4.1, for any g∗ ∈ I, there exists g̃∗ ∈ Ĩ s.t.
∥g̃∗∥Ĩ≤ cr∥g∗∥I , ∥g̃∗ − g∗∥2= Õ(∥g∗∥Iξn1

).
ii. Let g∗ ∼ GP(0, kz). A refined analysis, based on Corollary C.6, shows that when m =

⌈n1/(b̄+1)
1 ⌉, there exists g̃ s.t. ∥g̃∥Ĩ≲ n

1/2(b̄+1)
1 ,Eg∗∼GP(0,kz)∥g̃ − g∗∥2= Õ(ξn1

).

(See Appendix C.5.2 for derivations, and another high-probability bound in the GP scheme.)

Let ĝ∗n be the truncated OLS estimate using Ĩ, on a dataset {(zi, g∗(zi) + ei) : i ∈ [n2]} where
E(ei | zi) = 0,Var(ei) ≤ 1, ∥g∗∥∞≤ B. Then E∥ĝ∗n − g∗∥2= Õ(∥g̃∗ − g∗∥2+B

√
m/n2) [45,

Thm. 11.3]. When n1 = n2, the latter term is≪ ξn2
, and case (ii) above always matches the DNN

rate. Case (i) matches the DNN rate when feature learning becomes harder (ξ2n1
≳ n

−b̄/(b̄+1)
1 );

otherwise the rate may be slightly inferior, but still approaches n−1/2
1 as the regularity b̄ improves.

As discussed in Example 4.1, when dz > dl, the DNN rate can outperform fixed-form kernels by a
large margin. The above example demonstrates a similar superiority of the learned kernel.

5 Results for IV Regression

We shall use the approximate first stage Ĩ for IV regression, by plugging Ĩ andH to the kernelized
estimators in [19, 26]; see Algorithm 1. We analyze the resulted estimators in this section, while
deferring implementation details, including hyperparameter selection, to Appendix F.

Algorithm 1 Kernelized IV with learned instruments.

Require: D(n1)
s1 ,D(n2)

s2 ; regression algorithm Regress; second-stage kernel kx; m ∈ N
1: for j ← 1 to m do
2: Sample f (j) ∼ GP(0, kx)
3: ĝ

(j)
u,n1 ← Regress({(z̃i, f (j)(x̃i)) : i ∈ [n1]})

4: end for {the m invocations of Regress may be replaced with a single vector-valued regression}
5: Define k̃z(z, z′) := 1

m

∑m
j=1 ĝ

(j)
n1 (z)ĝ

(j)
n1 (z

′),where ĝ(j)n1 := min{ĝ(j)u,n1(·), C logm}.
6: return KernelizedIV(D(n2)

s2 , k̃z, kx) {See (7) below, or Appendix F for the closed-form solution}

Both [19] and the posterior mean estimator of [26] have the form

argmin
f∈H

ℓn2
(f)+µ∥f∥2H:= argmin

f∈H
max
g∈Ĩ

1

n2

n2∑

i=1

(yi−f(xi)−κg(zi))g(zi)−λ∥g∥2Ĩ+µ∥f∥
2
H. (7)

Their difference lies in the regularization scaling, which arises from the different assumptions about
f0 andH (Assumption 2.2). Thus, we analyze the resulted two estimators separately, in Section 5.1
and Section 5.2 below. In the setting of [26] we are also able to justify the use of likelihood-based
model comparison and (quasi-)Bayesian model averaging (BMA).
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5.1 Estimation in the Kernel Scheme

[19] establish faster rate convergence of the point estimator under simple assumptions. We now
provide corresponding results using our learned Ĩ, by plugging in the results in Section 4.

Proposition 5.1 (proof in Appendix E.1). Assume Assumptions 2.1, 2.2 (kernel scheme), 4.1 and 4.2.
Let Ĩ be defined by k̃z in Algorithm 1, and f̂n2 be defined by (7), with κ, λ, ν set as in Appendix E.1.
On the event defined in Theorem 4.1, we have

∥E(f̂n2
− f0)∥2= Õp((ξn1

+ n
− b+1

2(b+2)

2 )(1 + ∥f0∥2H)). (8)

Let us compare the result with [19] in the setting of Example 4.1. Suppose n1 = n2. [19] establishes
the rate of Op((ξ

′
n2

+ n
−(b+1)/(b+2)
2 )(1 + ∥f0∥2H)), where ξ′n2

is comparable with a first-stage
regression rate established from local Rademacher analysis. For the DNN model in Example 4.1, we
have ξ′n = Θ̃(ξn) = Õ(ϵfea,n+n−b̄/2(b̄+1)) in the general case,6or ξ′n = Õ(ϵfea,n+n−(b̄+1)/2(b̄+2))
assuming additional regularity (Remark C.3). Thus, the two rates are equivalent if ϵfea is sufficiently
large, meaning that the difficulty of feature learning cannot be ignored. Otherwise, [19] may be better
if b̄ < b + 1; this is a somewhat narrow range, as b̄ ≥ max{2p − 1, b}. Recall that our method is
more appealing computationally: directly instantiating [19] with DNNs requires solving a minimax
problem similar to (7), while for our learned kernel (7) can be evaluated in closed form.

We can also compare (8) with kernelized IV using a fixed-form first stage. In the above setting, its
best rate is also provided by [19], and is dominated by the kernel regression error in Ex. 4.1 which, as
we discussed, can be much worse than ξn. Our improved rate has been made possible by the fact
that we are approximating a first-stage model with optimal adaptivity (Ex. 3.1), at a rate that is also
adaptive to the informative latent structure (Ex. 4.1).

In summary, our algorithm combines the best of both worlds: it maintains the sharp guarantees of
adaptive models, and the simplicity of kernel methods.

5.2 Quasi-Bayesian Estimation and Uncertainty Quantification

Quasi-Bayesian analysis enables efficient uncertainty quantification for NPIV, without introducing
extra risks of model misspecification [24, 28]. [26] studies a quasi-Bayesian posterior constructed
from (7) and a GP(0, kx) prior. It is defined through the Radon-Nikodym derivative w.r.t. the
prior, (dΠ(·|D(n2)

s2 )/dΠ)(f) ∝ e−n2ℓn2 (f). For kernel first-stage models, the quasi-posterior can be
evaluated in closed form (App. F). For general models, however, it is entirely unclear if approximate
inference can be possible, since for any parameter f , evaluation of ℓn(f) involves solving a separate
optimization problem. Our kernel learning algorithm enables the (indirect) use of such models.

Analysis of (quasi-)Bayesian procedures is more challenging, partly because of the weaker regulariza-
tion. Thus, [26] introduced additional assumptions. Our analysis is further complicated by a different
assumption on I, and approximation errors in Ĩ, which necessitate further assumptions. App. E.2
discusses these assumptions in detail. For simplicity, we state the result in a “rate-optimal” case:7

Theorem 5.2 (posterior contraction; proof in App. E.3). Assume Asms. 2.1, 2.2 (GP scheme), 2.3, 4.1,
4.2, D.1, D.2, E.1, E.2. Let n1 be s.t. ξ2n1

log n2 + n
−(b+2p)/(b+2p+1)
1 ≲ n−1

2 , and m ≍ n1/(b+2p+1)
1 .

Let Πn1
(· | D(n2)

s2 ) be defined in (52) in appendix. Then, with D(n1)
s1 -probability→ 1, we have

ED(n2)
s2

Πn1({f : ∥f − f0∥2≥Mϵ̄n2} | D(n2)
s2 )→ 0,

ED(n2)
s2

Πn1
({f : ∥E(f − f0)∥2≥Mδ̄n2

} | D(n2)
s2 )→ 0,

where δ̄n2 = Õ(n−(b+2p)/2(b+2p+1)
2 ), ϵ̄n2 = Õ(n−b/2(b+2p+1)

2 ).

6With some abuse of notation, we also use Õ to hide the infinitesimal deterioration of the polynomial order.
7Classical NPIV lower bounds continue to hold given full knowledge of E [47], so the rate n−b/2(b+2p+1)

2 is
minimax optimal irrespective of n1. In our setting, it is certainly desirable to improve the dependency on n1,
and our restriction is only employed to simplify proof. In simulations we find the choice of n1 = n2 works well.
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Theorem 5.2 immediately implies Theorems 5, 6 in [26] for our Ĩ, with the extra logarithms, as
their proofs do not involve the first stage. Those results establish Sobolev norm rates, and justify
uncertainty quantification by lower bounding the magnitude of posterior spread.

In the nonparametric Bayes literature, contraction results like Theorem 5.2 often lead to the justifica-
tion of marginal likelihood-based model selection and averaging. This is also the case here. The key
ingredient is the following marginal quasi-likelihood bound:
Corollary 5.3 (proof in Appendix E.4). In the setting of Theorem 5.2, for some C > 0 we have

PD(n2)
s2

(C−1n
1

b+2p+1

2 log−
6
b n2 ≤ − log Πn1(D(n2)

s2 ) ≤ Cn
1

b+2p+1

2 log2 n2)→ 1.

This result allows the comparison of a finite number of second-stage RKHSes. Of particular interest
is the comparison between power RKHSes (Defn. A.1), which often have intuitive interpretations:
e.g., for a Matérn RKHSH and γ ∈ (2/(b+1), 1), the power RKHSHγ is equivalent to lower-order
Matérn RKHSes ([48]; Ex. A.3). We can verify that suchHγ fulfills the assumptions aboutH. Thus,
provided the other assumptions continue to hold, Corollary 5.3 will hold for all suchHγ , with b+ 1
replaced by γ(b+ 1), showing the marginal likelihood has a different asymptotics. Consequently, it
establishes asymptotically valid comparison between such models, and justifies the use of BMA.

Analysis of more general settings requires additional effort: NPIV is an inverse problem, and we
anticipate the subtleties of model selection in nonparametric inverse problems. For example, analyses
are usually restricted to the selection of γ [43, 49, 50], and the γ > 1 case requires additional
assumptions [49].8 In the IV setting, it should also be noted that valid model comparison requires
a good approximation to E|H, since otherwise the quasi-likelihood becomes less meaningful at
any finite sample size. The same intuition applies to other model selection procedures [18, 20, 27]
based on the estimated violation of (1). When the approximation cannot be guaranteed, it could be
preferable to stick to the prior knowledge and fix a conservative choice forH.

6 Related Work

Multi-Task Learning Our Example 4.2 can also be viewed as quantifying sample efficiency
improvements in multi-task learning, if we view the GP prior draws as the labeling functions for a
handful of diverse training tasks, which share the representation Φ. This general idea is not new:
starting from [51, 52], a line of recent work establishes similar results. Most related is [52, Sec. 5],
which assumes a fixed-dimensional linear model for ḡ, and an adaptive Φ with metric entropy bounds.
We assume more general models for both components, and do not require different training tasks to
have separate inputs. On the flip side, [52] allows for non-iid training tasks. [52, Sec. 6] investigated
infinite-dimensional ḡ, but established a slow rate. We are unaware of any work that established
fast-rate convergence for infinite-dimensional top-level models, or used ML models as a black box.
Both aspects may be interesting for multi-task learning, and are necessary for instrument learning.

Causal Statistics The double machine learning framework [53] also uses black-box ML models to
estimate certain nuisance parameters in the model. While the operator E can be viewed as a nuisance
parameter, the structure of the NPIV problem is quite different: [54, p. 8] noted that it is very unclear
if such a view can be helpful for NPIV estimation; consistent with their remarks, we have also been
unable to cast our problem into the double ML framework. Note that double ML has been applied to
semiparametric estimation and inference for IV [53, 55–57], which are orthogonal to our goal.

It has long been known [30, 31] that under a linear outcome model f0(x) = θ⊤x, using E(x | z) as
instrument leads to

√
n-consistent estimates. Our Section 3 can be viewed as an infinite-dimensional

generalization of this observation.9 Given high-dimensional instruments and a parametric outcome
model, there is a large body of literature on efficient inference; see [12] for a review. As we move to
nonparametric models, we focus on estimation which becomes much more challenging, in the spirit
of [54]. Still, we have provided qualitative characterization for uncertainty estimates in Section 5.2.

For the use of ML for nonlinear IV, [6] studied a heuristic application of NNs. We discussed the
minimax formulation in introduction. [5, 26] justified the use of NNs with the respective neural

8We do not cover it here for brevity, noting that it is well-understood in inverse problem settings [43, 49].
9As noted in [27], when f0 ∈ H for some RKHSH, the first stage should model E(f(x) | z) for all f ∈ H,

as opposed to merely modeling E(x | z). Note that [27] did not study the optimal choice of the first stage.
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Figure 1: Predictive performance: test MSE vs sample size n1 = n2 for all method, andD ∈ {2, 100}.
Full results are in App. H.2.

Table 1: Runtime results for all methods in the predictive experiment, for N = 2500, D = 100.

Method AGMM-Tree AGMM-NN AGMM-RBF Proposed

Runtime / s 1374± 418 303± 16 6.7± 0.1 25.9± 5.6

tangent kernels (NTKs) which, like other fixed-form kernels, cannot adapt to the informative latent
structure [8, 9]. [39, 58] investigated the combination of an NN-based second stage and a linear first
stage, which could be useful in complementary scenarios. [17] considered feature learning in both
stages, but only established a slow rate; as the authors noted, it is also unclear if their algorithm
reliably minimizes the empirical risk.

For model selection in the setting of Section 5.2, [59] prove the validity of bootstrap-based selection
for the sieve estimator [34]. [39, 60] investigate the use of marginal likelihood for two different
kernel-based IV estimators: [60] establish a crude −1/4 log n upper bound for the log marginal
likelihood, and [39] connect it to the empirical leave-one-out validation error. Neither result fully
justifies model selection as our Corollary 5.3. For kernelized IV models, [20, 27, 61] proposed
validation statistics for comparing a finite number of first stage models.

7 Simulation Study

Our main simulation setup is adapted from [18, 19]; Appendix H.4 presents additional experiment on
the demand dataset [6, 17]. In [18, 19], the observed z,x,y are generated by

z̄ ∼ Unif[−3, 3]⌊D
2 ⌋, z = h(z̄), u ∼ N (0, 1), x := z̄1 + u+ ex, y := (f0(x) + u+ ey − µ)/σ,

where u is the confounder, ex, ey ∼ N (0, 0.12) are independent noise, and the constants µ, σ
standardize y. We consider three choices for h: (i) D = 2, h is the identity function; this recovers
the setup in previous work, and quantifies the hardness of the NPIV problem given true instruments.
(ii) dim z = D ∈ {40, 100}, h is a three-layer DNN; this simulates a feature learning scenario, and
ensures the observation has a low signal-to-noise ratio (O(1/D)). (iii) h maps z̄1 to a MNIST [62] or
CIFAR-10 [63] image with matching label; the MNIST setting also appeared in previous work.

We consider two choices for f0: (i) a widely used collection of functions (e.g., sin, abs) in [18]. (ii)
f0 ∼ GP(0, kx). (ii) ensures the correct specification ofH and allows us to focus on the first stage.

We use a DNN as the black-box learner, and a RBF kernel for H, with bandwidth determined by
marginal likelihood (72). We set N1 = N2 ∈ {500, 2500, 5000}. We defer setup details and full
results to Appendix H, and summarize the findings below:

Hyperparameter Selection (App. H.1) We first study hyperparameter selection in instrument
learning. We set f0 ∼ GP , D ∈ {2, 40, 100}. We find our validation statistics (71) always correlates
with the counterfactual MSE ∥f̂n− f0∥22, and that across a large hyperparameter space, trained DNNs
always outperform first-stage models based on RBF kernels, or randomly initialized DNNs.

Predictive Performance (App. H.2) For h defined as in (i-ii), we compare our algorithm with
[19, AGMM], instantiated with kernel, tree and NN models. As shown in [19], the baselines have
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Table 2: Test MSE, radius and estimated coverage rate of the 90% L2 credible ball (CB), and the
average coverage of pointwise 90% credible interval (CI), for f0 ∼ GP, D = 100. For the CB
coverage rate estimate, we report its 95% Wilson score interval [64]. Full results are in App. H.3.

Method n1 = n2 Test MSE 90% CB. Rad. 90% CB. Cvg. 90% CI. Cvg.

Proposed
500 .097 ±.065 .201 ±.025 .923 [.888, .948] .915 ±.123

2500 .035 ±.024 .074 ±.008 .917 [.880, .943] .908 ±.127

5000 .024 ±.016 .049 ±.004 .920 [.884, .946] .905 ±.134

RBF
500 .431 ±.192 .240 ±.036 .187 [.147, .235] .640 ±.191

2500 .176 ±.089 .175 ±.023 .517 [.460, .573] .822 ±.136

5000 .126 ±.072 .156 ±.019 .660 [.605, .711] .855 ±.143

competitive performance on this setup; the latter two models also enjoy adaptivity guarantees. A
representative subset of results are plotted in Fig. 1: our method has stable performance as we move
to high dimensions, demonstrating excellent adaptivity. In contrast, fixed-form kernels fail to identify
the informative features. AGMM-tree and AGMM-NN also have deteriorated performance as D
increases, despite their theoretical guarantees, presumably due to the challenges in optimization.
Table 1 reports the run time of all methods in this experiment. As we can see, our method is more
efficient than both adaptive baselines.

For image-based h, we compare with AGMM-NN and [39], which report the best results in the
MNIST setting. Our method outperforms both baselines.

Uncertainty Quantification (App. H.3) Table 2 presents a subset of results for f0 ∼ GP . Com-
paring with a fixed-form RBF first stage, our method produces sharper credible intervals, which
also have better coverage. For f0 specified as in [18], we experiment with BMA over a grid of RBF
kernels, and present visualizations in Appendix H.3. We find that when the model is more correctly
specified, BMA produces conservative uncertainty estimates which are nonetheless informative.
However, when all models are severely misspecified (e.g., when f0 is a step function), we cannot
expect model-based uncertainty estimates to have ideal coverage.

Exogenous Covariates (App. H.4) We evaluate the extended algorithm in Appendix G on the
demand dataset [6], which is a widely used simulation design with high-dimensional exogenous
covariates. As shown in the appendix, our extended algorithm has competitive performance.
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