A Additional Analyses

A.1 CKA Similarities

We compute the CKA [61196] and cosine similarities of network output logits on train and test set,
respectively. Table[3]shows the results.

Table 3: Pairwise CKA [61] and cosine similarities between non-flat (NF) and SWA/SAM solutions.
SWA solutions produce predictions more similar to NF ones than SAM.

Task ‘ SCKA(ONFa 0SWA) ‘ Scosine(oNF7 OSWA) ‘ SCKA(ONFa OSAM) ‘ Scosine(aNF7 OSAM)
WRN-CIFAR100 (Train) 0.9880 0.9812 0.9810 0.9240
WRN-CIFAR100 (Test) 0.9137 0.9732 0.8580 0.9045
GIN-Code2 (Train) 0.8522 0.9730 0.7276 0.9515
GIN-Code2 (Test) 0.8677 0.9750 0.7275 0.9516
RoBERTa-QNLI (Train) 0.9997 0.9991 0.9790 0.9510
RoBERTa-QNLI (Valid) 0.9830 0.9959 0.9550 0.9530
RoBERTa-RTE (Train) 0.9931 0.9891 0.9831 0.9628
RoBERTa-RTE (Test) 0.9314 0.9567 0.8808 0.8927
GIN-Molpcba (Train) 0.8886 0.9973 0.7441 0.9804
GIN-Molpcba (Test) 0.8772 0.9942 0.7232 0.9730

The results show that the SAM solutions produce predictions that are less similar to the non-flat
baseline than SWA solutions, as indicated by lower CKA and cosine similarities. This result is in line
with Observation 1 and 2 from Sec.[3.1]

A.2 Saddle point of SAM’s GIN solution
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(a) SAM solution. (b) SWA solution (for comparison).

Figure 6: SAM and SWA solution in 2D random plane for GIN-Code2 task. We depict §34M, §5WVA
by X, 4, respectively, the test set F1 score maximizer by B, and the training loss minimizer by
4. The converged SAM solution is distant from the training loss minimizer in the 2D plane:
Lirain(05*M) = 0.1779 > 0.0672 = Ly4in(0*). Further, losses (—) and F1 scores () are not
well-aligned. In contrast, the SWA solution is almost the training loss minimizer: Ly, (05VA) =
0.0661 ~ 0.0609 = Liin(6*). Also, losses and F1 scores are better aligned. Yet, §3M and §5VA
perform about equally well on the test set, see Fig. EFI

To gather further evidence on whether the SAM solution is a saddle point, we analyze its Hessian
eigenvalue density, following Ghorbani et al. [29]] and using the Stochastic Lanczos Quadrature
algorithm [30]. Fig.[7shows the density, including significant probability mass for both positive and
negative eigenvalues, indicating that the solution is a saddle point.

A.3 Why does SWA not work well on NLP tasks?

In Fig.al we saw that SWA had only a mild effect on the generalization performance of NLP tasks,
sometimes even decreasing it. Here, we seek to investigate why that is.
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Figure 7: Hessian Eigenvalue Density [29] of SAM’s GIN-Code2 solution: We observe significant
probability mass around both positive and negative eigenvalues, indicating that this solution is a
saddle point.

We consider two tasks: (i) the RTE task, for which SWA decreases the performance by around
—0.2319.90 compared to Adam, (ii) the QNLI task, for which SWA decreases the performance by
—0.08+0.11. In both cases, SAM improved the performance statistically significantly over Adam.

For the QNLI task in Fig.[8a we observe that SWA finds a lower/higher training loss/accuracy than
Adam, respectively. However, the test loss/accuracy is higher/lower at the SWA solutions and the loss
functions seem less well correlated in between both solutions (i.e, for « € [0, 1]).

For the RTE task in Fig.[8b] we note that SWA finds a solution that is closer to a sharply increasing
side. This may happen if the baseline optimizer skips or goes around sharper solutions (e.g., due to
large step sizes) and the average pulls it towards these suboptimal regions.

Further, in Table [3} we notice very high values of scia (0N, 05WA), scosine (ONF, 85VA) for both
training and test sets, indicating that the predictions are indeed very similar. In contrast,
scra(ONF, 05AM) s osine (ONF, B5AM) is lower, especially for the test set.

A4 Why does SAM not work well on GRL tasks?

Fig. [T0] shows the interpolations between the Adam and SAM solution. We do not observe a
significant loss/accuracy difference between the two different basins. One possible explanation for
this phenomenon is that the loss surface for this task is “globally well-connected” [96], yielding many
basins with very similar geometric properties.
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Figure 8: Training (blue) and test (red) losses (—) and accuracies (-----

) of linear interpolations

0(a) = (1 — )0 + a0’ between Adam solutions (e, « = 0.0) and SWA (4, o = 1.0).

Figure 9: GPP: Molpcba-GIN
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A.5 Does changing SAM’s p result in different basins?

Here, we plot linear interpolations of solutions obtained by smaller and larger p values. Overall,

we find that all solutions seem to lie in different basins indicated by high loss barriers in between
(o = 0.5) them.

A.5.1 WRN-28-10

For the WRN-28-10 model investigated in Sec.[3.1]and Sec.[d}, we set p = 0.1 (as determined by
hyper-parameter tuning on validation loss).

Figure 11: WRN-28-10: Changing SAM’s p result in different basins.
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A.5.2 GIN-Code2

For the GIN model investigated in Sec.[3.T]and Sec.[d] we set p = 0.15 (as determined by hyper-
parameter tuning on validation loss).

Figure 12: GIN-Code2: Changing SAM’s p result in different basins.
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A.6 Does changing the base optimizer impact SWA’s and SAM’s effectiveness?

The influence of the base optimizer on SWA/SAM'’s effectiveness is under-explored. In the previous
experiments, we use the default base optimizers from existing code repositories or, as reported in
previous works. Here, we want to conduct an initial investigation into its effect on SWA and SAM.

In the following experiments, we only switch the base optimizer and keep everything else fixed
(including hyper-parameters such as learning rate, etc.). We train (i) a ResNet-34 (similar to WRN-28-
10 but smaller) on CIFAR100, once per SGD with momentum and AdamW [73]], and (ii) a GIN model
on Code2, as in Sec.[3] but using RMSprop instead of Adam. We choose AdamW and RMSProp,
since they are commonly used in image classification [73} (19} 88]] and graph representation learning
(GRL) [714 170} 80Q], respectively.

Due to time constraints, we only report results obtained with one random seed (except for GIN-Code2
with Adam, which we already evaluated across three random seeds in our initial submission, see
Fig. @ Further, again due to time constraints, for the ResNet-34 task, we do not conduct a hyper-
parameter search of SAM’s p but set it to p = 0.05, as this value has been reported to be a good
default value [22]].

Table ] show the test performances with switched base optimizers. First, discussing task (i), we note
that AdamW under-fits the model and generalizes poorly compared to SGD. Here, SAM exacerbates
the performance even further, performing even worse than the AdamW baseline. The reasons for that
are unclear, and we leave an investigation into them for future work.

For task (ii) using RMSprop, we observe that both flat-minima optimizers improve over the baseline
performance. However, compared to when using Adam, they perform even more similarly, with SAM
only being 0.03% better. Interestingly, the combination WASAM again performs best.

Table 4: Test accuracies/F1 score of switched base optimizers.

Task | Baseline | SWA | SAM | WASAM
ResNet34 on CIFAR100 (SGD) 76.14 +1.50 +1.91 +2.60
ResNet34 on CIFAR100 (AdamW) 72.14 +0.57 -2.29 -1.11
GIN on Code2 (Adam) 15.73i0_11 + 0.83i0‘1] + 0.57i0]09 + ]--]-OiOAOQ
GIN on Code2 (RMSprop) 15.30 +0.67 +0.70 +1.62

A.7 Does changing the data augmentation impact SWA’s and SAM’s effectiveness?

In this ablation, we want to understand whether different amounts and data augmentation strategies
impact SWA’s or SAM’s effectiveness. As an experimental setup, we consider training a ResNet18 on
CIFAR100 for 200 epochs with SGD with a momentum of 0.9, initial learning rate 0.1, and cosine
learning rate schedule. The three data augmentation strategies are (i) none, (ii) basic (random crop,
random horizontal flipping), and (iii) AutoAugment following the CIFAR10 policy [135].

Table E] shows the results. We find that with no data augmentation used, SWA, SAM and WASAM
improve the baseline results by about the same amount, while SAM improves over SWA when data
augmentation is used, and WASAM performs best.

Table 5: Test accuracies of ResNet18 on Cifar100 with different data augmentation schemes.
Data Augmentation | Baseline | SWA | SAM | WASAM

None 60.78 +2.23 | +2.20 | +2.24
Basic 76.40 +0.13 | +0.74 | +1.01
AA [15] 67.59 +3.03 | +3.35 | +4.17

A.8 Does using a constant learning rate at the end of training improve SWA?

In this ablation, we aim to understand the impact of a constant learning rate at the end of the training,
as originally suggested by [48]]. We follow the same experimental setup as in Table [5]and choose
the Basic Data Augmentation. At the last 25% of training (starting from epoch 150), we set the
learning rate to 0.05. We find that this slightly worsens the SWA performance by —0.66% compared
to running SWA without changing the learning rate schedule, as explained in Sec. ]
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B Experimental details

B.1 Computer Vision

We mostly adopt the hyper-parameter values from Foret et al. [22] for WRN-28-10 and PyramidNet-
272, from Dosovitskiy et al. [19] for ViT, and from [87]] for MLP-Mixer models. We average all
results across three random seeds.

B.1.1 Supervised Classification

We train WideResNets [99] with 28 layers and width 10 (WRN28-10) and PyramidNet [38]]
with 110 layers and widening factor a« = 272 (PyramidNet-272) from scratch. The Vision
Transformer (ViT) base model with input patch size 16 (ViT-B/16) and MLP-Mixer base model
with input patch size 16 (MLP-Mixer-B/16) start from pre-trained checkpoints available at
https://console.cloud.google.com/storage/vit_models/. The reason for using pre-trained checkpoints
for the ViT and MLP-Mixer models is that, due to their lack of some inductive biases inherent to
CNN:ss, such as translation equivariance and locality, they do not generalize well when trained on
insufficient amounts of data [19]]. Table[6]shows the hyper-parameters for each architecture.

Table 6: Hyper-parameters for Supervised Classification (SC): CIFAR-{10, 100} (Table

Hyper-Parameter | WRN28-10 PyramidNet-272  ViT-B/16 MLP-Mixer-B/16

Base Optimizer SGD SGD SGD SGD

Batch size 256 256 100 170

Data augmentation Inception-style + Cutout [17]

Dropout rate 0.0

Epochs 200 200 - -

Gradient clipping norm - - 1.0 1.0

Learning rate schedule cosine

Peak learning rate 0.1 0.05 0.03 0.03

Steps - - 12500 12500

SGD Momentum 0.9

‘Warmup steps - - 500 500

Weight decay 5e — 4 5e —4 0.0 0.0
CIFAR-10

SAM p 0.05 0.05 0.1 0.02

Averaging start E' (SWA) 60% 60% 75% 90%

Averaging start £ (WASAM) 90% 75% 75% 90%
CIFAR-100

SAM p 0.1 0.1 0.2 0.05

Averaging start £ (SWA) 60% 60% 75% 90%

Averaging start £ (WASAM) 90% 75% 75% 90%

B.1.2 Self-Supervised Learning

Table[7]shows the hyper-parameters for each SSL method. We use implementations from the lightly
package, available at https://github.com/lightly-ai/lightly [86].

B.2 Natural Language Processing

For the task of Open Domain Question Answering, we adapt the hyper-parameter values and the 25
retrieved passages for each question from|47. We report the Exact Match score of FiD-base model on
Natural Questions (NQ) and TriviaQA test sets. For GLUE benchmark, we report Matthew’s Corr for
CoLA, Pearson correlation coefficient for STSB, and accuracy for the the rest of the datasets. Results
are all evaluated on the dev set of GLUE benchmark. We use the RoBERTa-base as our backbone
language model, implemented with Huggingface Transformers [92]]. Most of the task-specific
hyper-parameter values are adapted from |1l

B.3 Graph Representation Learning

We mostly adapt the hyper-parameter values from Hu et al. [45] for GCN [57], SAGE [37], and GIN
[93]], from Chen et al. [13] for [66] and ComplEx [89], and from Li et al. [68] for DGCN. Due to
high standard errors, we averaged the results of a few tasks more than three times, as mentioned in
the following tables.
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Table 7: Hyper-parameters for Self-Supervised Learning (SSL): CIFAR-10, ImageNette, results in
(Table[2)

Hyper-Parameter | MoCo SimCLR SimSiam BarlowTwins BYOL SwaV

Backbone Network ResNet-18

Base Optimizer SGD Adam

Data augmentation SimCLR [10] Multi-Crop [7]

Dropout rate 0.0

Epochs 800

Embedding dimensions 512

KNN memory bank size 4096

Learning rate schedule cosine

Peak learning rate 6e — 2 le—3

SGD Momentum 0.9 -

Weight decay e —4 le—6
CIFAR-10

Batch size 512

Crop size - 32

Gaussian blur 0%

SAM p 0.01 0.01 0.01 0.05 0.01 0.05

Averaging start I (SWA) 75% 90% 75% 90% 60% 60%

Averaging start £ (WASAM) | 90% 90% 90% 90% 75% 90%
ImageNette

Batch size 256

Crop size - 128, 64

Gaussian blur 50%

SAM p 0.01 0.01 0.02 0.05 0.05 0.01

Averaging start I/ (SWA) 50% 90% 75% 75% 90% 50%

Averaging start ¥ (WASAM) | 50% 50% 90% 75% 90% 50%

Table 8: Hyper-parameters for NPP tasks, results in Fig.

Hyper-Parameter | SAGE DGCN
NPP: OGB-Proteins
Aggregation method Mean Softmax
Base optimizer Adam Adam
Convolution layer SAGE DyResGEN
Dropout rate 0.0 0.1
Hidden dimensions 256 64
Learning rate 0.01 0.001
Normalization layer - Layer norm
Number of epochs 2000 1000
Number of layers 3 112
Number of random seeds 5 3
Training cluster number 1 15
Weight decay 0.0 0.0
SAM p 0.01 0.02
Averaging start £/ (SWA) 90% 90%
Averaging start E (WASAM) | 90% 90%
NPP: OGB-Products
Aggregation method Mean Softmax
Base optimizer Adam Adam
Batch size 20000 -
Convolution layer SAGE Gen
Dropout rate 0.5 0.5
Evaluation cluster number - 8
Learning rate 0.01 0.001
Hidden dimensions 256 128
Normalization layer - Batch norm
Number of epochs 30 50
Number of layers 3 14
Number of random seeds 5 3
Training cluster number - 10
Weight decay 0.0 0.0
SAM p 0.01 0.02
Averaging start £ (SWA) 90% 60%
Averaging start £ (WASAM) | 75% 90%
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Table 9: Hyper-parameters for GPP: OGB-Code2, results in Fig.

Hyper-Parameter | GCN GIN
GPP: OGB-Code2
Aggregation method Mean Mean
Base optimizer Adam Adam
Batch size 128 128
Convolution layer GCN GIN
Dropout rate 0.0 0.0
Learning rate 0.001 0.001
Hidden dimensions 300 300
Normalization layer Batch norm  Batch norm
Number of random seeds 3 3
Number of epochs 15 30
Number of layers 5 5
Virtual node embeddings True True
Vocabulary size 5000 5000
Weight decay 0.0 0.0
SAM p 0.2 0.15
Averaging start £ (SWA) 50% 50%
Averaging start ¥ (WASAM) 50% 50%

Table 10: Hyper-parameters for GPP: OGB-Molpcba, results in Fig.

Hyper-Parameter | GIN DGCN
GPP: OGB-Molpcba
Aggregation method Mean Mean
Batch size 512 512
Base optimizer Adam Adam
Convolution layer GIN GEN
Dropout rate 0.0 0.2
Learning rate 0.001 0.001
Normalization layer Batch norm  Batch norm
Number of epochs 100 50
Number of layers 5 14
Number of random seeds 3 3
Hidden dimensions 300 256
Virtual node embeddings False True
Weight decay 0.0 0.0
SAM p 0.01 0.15
Averaging start I/ (SWA) 90% 75%
Averaging start £ (WASAM) 90% 50%

Table 11: Hyper-parameters for LPP: OGB-Biokg, results in Fig.

Hyper-Parameter | CP  ComplEx
GPP: OGB-Biokg
Base optimizer Adam Adam
Batch size 500 500
Learning rate 0.1 0.1
Number of random seeds 3 3
Number of epochs 30 50
Rank 1000 1000
Regularizer N3 N3
Weight decay 0.0 0.0
SAM p 0.1 0.05
Averaging start ¥ (SWA) 50% 50%
Averaging start £ (WASAM) | 90% 50%
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Table 12: Hyper-parameters for LPP: OGB-Citation2, results in Fig.

Hyper-Parameter | GCN SAGE
GPP: OGB-Citation2
Aggregation method Mean  Mean
Base optimizer Adam  Adam

Batch size 256 512
Convolution layer GCN SAGE
Dropout rate 0.0 0.2
Hidden dimensions 256 256
Number of epochs 300 300
Number of layers 3 3
Number of random seeds 3 3
Normalization layer - -
Learning rate 0.001  0.0005
Virtual node embeddings False  False
Weight decay 0.0 0.0
SAM p 0.02 0.01
Averaging start &/ (SWA) 5% 90%
Averaging start £ (WASAM) | 60% 90%
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