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A Implementation Details

Network design. Our network contains 8 layers of MLP where each layer has 256 nodes. We adopt
a skip connection in the fourth layer as employed in DeepSDF [10] and ReLU activation functions in
the last two layers of MLP. To make sure the network learns an unsigned distance, we further adopt a
non-linear projection g(x) = |x| before the final output.

Training settings. During training, we employ the Adam optimizer with an initial learning rate of
0.001 and a cosine learning rate schedule with 1k warn-up iterations. We start the training of next
stage after the previous one converges. In experiment, we found the iteration of 40k, 60k and 70k
suitable for the change of stages. Since the 3rd and 4th stages bring little advance as shown in Tab.7
of the main paper, we specify the number of stages as two in practical, so the network has been
trained in total 60k iterations. For the surface reconstruction of real scanned complex scenes, we
increase the iterations to 300k for a better convergence.

Evaluation settings. For experiments on ShapeNet and 3D Scenes [16], we employ the same
evaluation settings as GIFS [15] and OnSurf [9]. We also follow SAP [11] to construct experiments
on the SRB dataset [14], however, SAP didn’t provide the evaluation settings of point numbers on
the SRB dataset. For a fair comparison, we use the evaluation code provided by SAP and test the
reconstructed results provided by the author of SAP under different evaluation settings where we
found that sampling 50k points on the reconstructed shapes and 150k points on the ground truth
shapes can completely reproduce the results of SAP.

B Proofs

Assumption: Given a raw point cloud which is a discrete representation of the surface, we have
made a reasonable assumption: the closer the query location is to the given point cloud, the smaller
the error of searching the target point on the given point cloud.

In the task of surface reconstruction, one of the key properties is local planarity, that is, the surface
can be approximated by tangent plane with infinite accuracy. In graphics, the common form of
expressing surfaces is polygon mesh. To complete our proof, we provide a few necessary definitions,
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Definition 1. Polygon mesh is a collection of vertices, edges and faces that defines the surface of 3D
shape S = (V, F ). Vertices V = {v1, . . . , vw} determine the position of the faces in 3D space. The
edges represent the connection between two vertices, thus a closed set of edges forming the faces
F = {f1, . . . , fe}.

Definition 2. Given a point cloud P = {pi, i ∈ [1, N ]}, its ground truth surface model S = (V, F )
consists of vertices V = {v1, . . . , vw} and faces F = {f1, . . . , fe}. Assume that given a set of query
points Q = {qi, i ∈ [1,M ]}, the nearest point of query point qi on the model S = (V, F ) is gi, and
gi must be on one of the faces F . We define the meaning of error of searching the target point on the
given point cloud, E(S, P,Q) =

∑
i∈[1,M ] minj∈[1,N ] ∥gi − pj∥2.

Review our strategy for sampling query points: We sample m queries around each point pi on P .
A Gaussian function N (µ, σ2) is adopt to calculate the sampling probability for generaing query
location qi,jσ , j ∈ [1,m], where µ = pi. Suppose we collect two sets of query points Qσ1 = {qi,jσ1

|
i ∈ [1, N ], j ∈ [1,m]} and Qσ2

= {qi,jσ2
| i ∈ [1, N ], j ∈ [1,m]}, where σ1 and σ2 are standard

deviations of the sampled Gaussian function.

Theorem 1. Given a point cloud P = {pi, i ∈ [1, N ]} and its ground truth surface model S = (V, F ).
Assume two sets of query points Qσ1

and Qσ2
are sampled, where σ1 > σ2 , then E(S, P,Qσ1

) >
E(S, P,Qσ2

).

Proof 1. Queries qi,jσ , j ∈ [1,m] are sampled around point pi of the given point cloud P . Assume
that the nearest surface point on the model S = (V, F ) to the query point qi,jσ is gi,jσ , where gi,jσ

on the face f i,j,k
σ . The point pi must be on one of the faces F , assuming that this face is fu.

Let Qi
σ1

=
{
qi,jσ1

| j ∈ [1,m]
}

,Qi
σ2

=
{
qi,jσ2

| j ∈ [1,m]
}

, where σ1 > σ2. We decompose Qi
σ1

and Qi
σ2

to the two sides, Q+
σ1,i

=
{
qi,jσ1

| f i,j,k
σ1

= fu
}

,Q+
σ2,i

=
{
qi,jσ2

| f i,j,k
σ2

= fu
}

, and Q−
σ1,i

={
qi,jσ1

| f i,j,k
σ1

̸= fu
}

, Q−
σ2,i

=
{
qi,jσ2

| f i,j,k
σ2

̸= fu
}

. Therefore E(S, P,Qi
σ1
) = E(S, P,Q+

σ1,i
) +

E(S, P,Q−
σ1,i

), E(S, P,Qi
σ2
) = E(S, P,Q+

σ2,i
) + E(S, P,Q−

σ2,i
). Since the sampling probability

is calculated based on Gaussian function, that is defined by density function µ(q), assuming that
fu = nTx+ d,

E(S, P,Q+
σ1,i

) =

∫
||gi,jσ1

− pi∥2µ(qi,jσ1
)d(qi,jσ1

)

=
∑

j∈[1,m]

||qi,jσ1
−

qi,jσ1
· nT + d

nT · nT
· nT − pi∥2

1√
(2π)3σ1|I|

e−
1
2 (q

i,j
σ1

−pi)
Tσ1I(q

i,j
σ1

−pi)

(1)

Since E(S, P,Q+
σ1,i

) will decrease with decreasing σ1, then we get E(S, P,Q+
σ1,i

) > E(S, P,Q+
σ2,i

).

The geometric distribution of f i,j,k
σ appearing around fu can be regarded as randomly distributed, the

E(S, P,Q−
σ,i) is also randomly distributed and independent of the density function, so that in a sta-

tistical sense, E(S, P,Q−
σ1,i) = E(S, P,Q−

σ2,i
). Then we get E(S, P,Qσ1,i) > E(S, P,Qσ2,i). The

case of arbitrary other Qj
σ1

and Qj
σ2

proven similarly. So we proof E(S, P,Qσ1) > E(S, P,Qσ2).

C Additional Experiments

The effect of training iterations. We further test the effect of training iterations of the first and
second stage. Since we use an end-to-end training strategy, we set a relatively small number of
training iterations for the second stage. In experiments, we set the numbers of iteration in the first
stage to 30k, 40k and 50k, and the second stage to 15k, 20k and 25k. For testing the effect of the
iteration numbers in the first stage, we set the iteration numbers of second stage to the default 20k,
and the iteration numbers of first stage is set to the default 40k while testing the second stage. The
results in Tab. 1 show that too few training iterations will lead to an under fitting problem and too
many training iterations will result in network degradation.

Efficiency comparison on field learning. We make a comparison with Neural-Pull [8], IGR [5],
Point2mesh [6] on the computational cost of optimizing for a single point cloud in Table 2. The
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Stage1 30k 40k 50k
Chamfer-L2 0.1158 0.1112 0.1137

Stage2 15k 20k 25k
Chamfer-L2 0.1125 0.1112 0.1133

Table 1: Effect on training iterations of different stages.

results show that our proposed method converges faster than all the baselines with fewer memory
requirements.

Methods Neural-Pull IGR Point2mesh Ours

Time (s) 1150 1212 4028 667
Memory (GB) 2.2 6.1 5.2 2.0

Table 2: Efficiency comparison on field learning.

Efficiency comparison on mesh extraction. We further evaluate the efficiency of our method. The
comparison is shown in Tab. 3. For reproducing the mesh generation process of NDF [4], we use the
default 1×106 points and the parameters provided by NDF to generate a mesh with ball-pivoting-
algorithm (BPA) [1]. It’s clear that our method achieves a tremendous advantage over NDF even with
a relatively high resolution (e.g.2563). The reason is that our method allows a straightforward surface
extracting from the learned UDFs while the ball-pivoting-algorithm used by NDF requires a lot of
calculations for neighbour searching and normal estimation.

Method NDF [4] Ours 643 Ours 1283 Ours 2563 Ours 3203

Time 2080.7 s 3.0 s 21.9 s 162.2 s 307.6 s

Table 3: Efficiency comparison of surface generation.

The complete comparison under 3D Scene dataset. We also provide the complete comparison
under all the five scenes of the 3D Scene dataset [16]. The results is shown in Tab. 4. We provide a
comprehensive comparison with NDF by comparing both the generated point cloud (*PC) and the
generated mesh (*mesh). We use L1 and L2 chamfer distance (L2CD, L1CD) as evaluation metrics.

D Additional Visualizations

Visualizations of the unsigned distance field. To further evaluate the effectiveness of our consistency-
aware field learning, we visualize the learned unsigned distance fields with Neural-Pull [8] loss in
Eq. (2) of our submission and our field consistency loss in Eq. (3) of our submission. Fig. 1 shows
the visual comparison under two different shapes with complex inner structures. For the storey bus,
training with the loss proposed by Neural-Pull fails to handle the rich structures, thus leads to a
chaotic distance field where no details were kept. On the contrary, our proposed consistency-aware
learning can build a consistent distance field where the detailed structures are well preserved. It’s
clear that our method learns a highly continuous unsigned distance field and has the ability to keep
the field around complex structures correct (e.g. the seats, tires and stairs), which also helps to extract
a high fidelity surface.

Visual comparison with ball-pivoting-algorithm. To further explore the advantage of our straightfor-
ward surface extraction algorithm, we use the same setting as NDF [4] to adopt ball-pivoting-algorithm
(BPA) [1] to extract mesh from our generated point cloud and make a comparison with the mesh
extracted using our method as shown in Fig. 2. Even with a carefully selected threshold, the mesh
generated by BPA is still far from smooth and has a number of holes, and also fails to retain the
detailed geometric information. On the contrary, our method allows to extract surfaces directly from
the learned UDFs, thus is able to reconstruct a continuous and high-fidelity mesh where the geometry
details is well preserved.

Visualizations of our generated intermediate and final point clouds. As shown in Fig. 3, we
provide the visualizations of the raw input point cloud as ‘Input’ and the intermediate point cloud
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Burghers Lounge Copyroom Stonewall Totempole
L2CD L1CD L2CD L1CD L2CD L1CD L2CD L1CD L2CD L1CD

10
0/
m

2

COcc [12] 8.904 0.040 6.979 0.041 6.78 0.041 12.22 0.051 4.412 0.041
LIG [7] 3.112 0.044 9.128 0.054 4.363 0.039 5.143 0.046 9.58 0.062

DeepLS [3] 3.111 0.050 3.894 0.056 1.498 0.033 2.427 0.038 4.214 0.043
NDFPC [4] 0.320 0.012 0.417 0.013 0.291 0.012 0.252 0.010 0.767 0.015

NDFmesh [4] 0.463 0.014 0.484 0.015 0.439 0.015 0.248 0.011 0.624 0.014
OnSurf [9] 0.544 0.018 0.435 0.013 0.434 0.017 0.371 0.016 3.986 0.040

OursPC 0.121 0.010 0.277 0.013 0.150 0.010 0.079 0.008 0.090 0.008
Oursmesh 0.212 0.011 0.245 0.011 0.214 0.012 0.118 0.009 0.145 0.009

50
0/
m

2

COcc [12] 26.97 0.081 9.044 0.046 10.08 0.046 17.70 0.063 2.165 0.024
LIG [7] 3.080 0.046 6.729 0.052 4.058 0.038 4.919 0.043 9.38 0.062

DeepLS [3] 0.714 0.020 10.88 0.077 0.552 0.015 0.673 0.018 21.15 0.122
NDFPC [4] 0.304 0.014 0.261 0.011 0.162 0.010 0.239 0.012 0.919 0.021

NDFmesh [4] 0.546 0.018 0.314 0.012 0.242 0.012 0.226 0.012 1.049 0.025
OnSurf [9] 0.609 0.018 0.529 0.013 0.483 0.014 0.666 0.013 2.025 0.041

OursPC 0.072 0.008 0.146 0.011 0.072 0.008 0.038 0.007 0.064 0.008
Oursmesh 0.192 0.011 0.099 0.009 0.120 0.009 0.069 0.008 0.131 0.010

10
00

/m
2

COcc [12] 27.46 0.079 9.54 0.046 10.97 0.045 20.46 0.069 2.054 0.021
LIG [7] 3.055 0.045 9.672 0.056 3.61 0.036 5.032 0.042 9.58 0.062

DeepLS [3] 0.401 0.017 6.103 0.053 0.609 0.021 0.320 0.015 0.601 0.017
NDFPC [4] 0.575 0.019 0.303 0.012 0.186 0.011 0.407 0.016 1.333 0.026

NDFmesh [4] 1.168 0.027 0.393 0.014 0.269 0.013 0.509 0.019 2.020 0.036
OnSurf [9] 1.339 0.031 0.432 0.014 0.405 0.014 0.266 0.014 1.089 0.029

OursPC 0.087 0.010 0.057 0.009 0.083 0.010 0.043 0.007 0.086 0.010
Oursmesh 0.191 0.010 0.092 0.008 0.113 0.009 0.066 0.007 0.139 0.009

Table 4: Surface reconstruction for point clouds under 3D Scene. L2CD×1000.

updated by the well-moved queries which serves as the target point cloud at the second stage, as
shown by ‘Stage2’. We also provide the generated dense point cloud by moving the queries to the
approximated surface using Eq. (1) in our submission as shown by ‘Ours’. The raw input point
cloud is highly discrete and fails to provide detailed supervision for surface reconstruction. On the
contrary, the intermediate point cloud updated by the well-moved queries shows great uniformity and
continuity, thus can provide the supervision of fine geometries such as the detailed steering wheel and
tires of the car. The quantitative comparison of using the raw input point cloud and the intermediate
point cloud as target for surface reconstruction is shown in Tab. 6 of our submission, where leveraging
the intermediate point cloud as target can achieve 10% improvement over leveraging the raw input
point cloud. Furthermore, due to our progressive surface approximation strategy, our generated dense
point cloud can maintain uniformity and keep the detailed geometric.

Visualizations of meshes extracted with different settings. We provide the visualizations of the
extracted surfaces with different resolutions as shown in Fig. 4. It shows that a higher resolution
leads to a more detailed reconstruction. Moreover, our designed mesh refinement operation brings
great improvement in surface smoothness and local details due to the accurate unsigned distance
values predicted by the neural network.

More visualization comparisons. We provide more visual comparisons under Surface Reconstruc-
tion Benchmark (SRB) dataset [14] in Fig. 5 and MGD dataset [2] in Fig. 6, respectively.

E Future works.

We consider two potential future works of our method. First, although the experiments under real
scanned shapes and scenes proved the ability of our proposed method in handling noises with unknown
distributions, we think it’s an interesting future work to extend our method for reconstructing surfaces
from high-noisy point clouds in an unsupervised way. Second, by transferring the sliding window
strategy [3, 13] to our method, it’s exciting to see the ability of extending our method for representing
large scale data.
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𝑂𝑢𝑟𝑠𝑁𝑒𝑢𝑟𝑎𝑙-𝑝𝑢𝑙𝑙 𝑙𝑜𝑠𝑠

Figure 1: Visualizations of the unsigned distance field. The darker the color, the closer it is to
the approximated surface. For a clear contrast, we set the color of the space far away from the
approximated surface to orange.

𝐼𝑛𝑝𝑢𝑡 𝑂𝑢𝑟𝑠𝐵𝑎𝑙𝑙-𝑃𝑖𝑣𝑜𝑡𝑖𝑛𝑔-𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

Figure 2: Visual comparison with ball-pivoting-algorithm.
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𝐼𝑛𝑝𝑢𝑡(10𝑘) 𝑆𝑡𝑎𝑔𝑒2(50𝑘) 𝑂𝑢𝑟𝑠(100𝑘)

Figure 3: Visualizations of our generated intermediate and final point clouds.
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𝑤/𝑜 𝑟𝑒𝑓𝑖𝑛𝑒
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2563

𝑤/𝑜 𝑟𝑒𝑓𝑖𝑛𝑒
2563

𝑟𝑒𝑓𝑖𝑛𝑒

Figure 4: Visualizations of extracted mesh with different settings.
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GTInput IGR SAP NDF Ours

Figure 5: More visualizations under SRB dataset.

OursNeural-pullNDFInput GT

Figure 6: More visualizations under MGD dataset.
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