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Abstract

We propose a locally hierarchical auto-regressive model with multiple resolutions
of discrete codes. In the first stage of our algorithm, we represent an image with a
pyramid of codes using Hierarchically Quantized Variational AutoEncoder (HQ-
VAE), which disentangles the information contained in the multi-level codes. For
an example of two-level codes, we create two separate pathways to carry high-level
coarse structures of input images using top codes while compensating for missing
fine details by constructing a residual connection for bottom codes. An appropriate
selection of resizing operations for code embedding maps enables top codes to
capture maximal information within images and the first stage algorithm achieves
better performance on both vector quantization and image generation. The second
stage adopts Hierarchically Quantized Transformer (HQ-Transformer) to process a
sequence of local pyramids, which consist of a single top code and its corresponding
bottom codes. Contrary to other hierarchical models, we sample bottom codes
in parallel by exploiting the conditional independence assumption on the bottom
codes. This assumption is naturally harvested from our first-stage model, HQ-VAE,
where the bottom code learns to describe local details. On class-conditional and
text-conditional generation benchmarks, our model shows competitive performance
to previous AR models in terms of fidelity of generated images while enjoying
lighter computational budgets.

1 Introduction

Deep generative models [1, 2, 3] have become the fundamental basis for synthesizing diverse images
of high-resolution from various forms of input supervision, including class conditions [2, 4], text
prompts [5, 6], and segmentation maps [7] to name a few. Most approaches in this paradigm are
roughly categorized into two groups depending on whether they explicitly maximize data likelihood or
not. GANs implicitly estimate underlying data distribution to generate novel and crispy samples, but
it typically suffers from a lack of diversity [1]. In contrast, it is widely accepted that likelihood-based
models are capable of generating diverse examples, compared to GANs, since they aim to cover
all modes of a data distribution [8]. This work focuses on auto-regressive models among many
likelihood-based approaches motivated by the existing works validating scalability [5, 9].

Auto-Regressive (AR) models factorize a data likelihood into a product of conditionals in the pre-
defined generation order. Since AR models already have mode-coverage property, we only need
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Figure 1: Illustration of generated images (the last row) by our algorithm trained on ImageNet, where
the first row shows the examples synthesized by the top codes only while the second row presents the
images from the bottom codes only.

to make minimal changes in architectures and optimization methods for the applications to various
domains including audio, language, and images. However, regardless of the modality, training AR
models in a high-dimensional space is computationally expensive since each conditional needs to
consider many past observations. In the context of image generation, VQ-VAE [10] introduces
a two-stage learning process, where the first stage represents an image by a discrete code map
while the second stage constructs AR priors [2, 11] on discrete sequences. To make this two-stage
framework effective, a sequence of the discrete codes has to hold sufficient information for high-
quality reconstruction of an original image while the sequence length should be reasonably short for
efficient training of AR models.

In this study, we postulate that leveraging the multi-scale structure is a simple but effective way for
representing an image as discrete codes with AR modeling. We aim to disentangle the information
residing in the hierarchy and design an efficient model to generate unseen images by exploiting the
multi-level structure maximally. To achieve this goal, we propose locally hierarchical auto-regressive
modeling by extending two-stage AR modeling. We first extend VQ-VAE to produce a two-level
pyramid of discrete codes, where the top code contains high-level coarse information and the bottom
encodes the low-level fine details. Using these locally hierarchical discrete representations, our
efficient AR model generates a novel example. Specifically, the top codes are sequentially generated
in a predefined order, and multiple bottom codes associated with a top code are decoded in parallel.
The main contributions of the proposed model are summarized below:

• We propose HQ-VAE (Hierarchically Quantized Variational Auto-Encoder), which encodes
an image using a pyramid of two-level codes through hierarchical vector quantization. To
improve the utility of the two-level codes, we disentangle the information contained in the
codes, where top codes capture high-level structural information in images while bottom
codes carry the remaining low-level details.

• We introduce HQ-Transformer (Hierarchically Quantized Transformer), which is an AR
model to generate images based on hierarchical discrete codes. We predict a sequence of
locally hierarchical codes efficiently by maximizing its likelihood based on the conditional
independence assumption imposed on bottom codes.

• The proposed algorithm achieves competitive performance on class- and text-conditional
image generation tasks while yielding high throughput in sample generation, compared to
various types of generative models.

Figure 1 illustrates several examples of generated images by the proposed algorithm. We also present
the synthesized images based only on top and bottom codes together, which clearly exhibits the
proper disentanglement of image contents and low-level details.
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2 Related Works

This section describes existing approaches closely related to our algorithm and highlights the differ-
ences between the prior works and ours.

Discrete representations for autoregressive models Learning AR priors based on discrete repre-
sentations turn out to be effective in language modeling [9, 12]. VQ-VAE [10] pioneers the two-stage
image generation process, where the first stage represents an image by a set of discrete codes and
the next stage constructs AR priors [2, 11] on the discrete sequences. Following VQ-VAE, many
approaches aim to further reduce the sequence length and improve the architecture [13, 14] or training
objectives [7] of the first stage. Specifically, VQ-GAN shortens the sequence length by using the
perceptual and adversarial losses and encoding the semantic information in the codes effectively.
However, these approaches still exhibit the fundamental trade-off between code sequence length and
generated image quality due to a lack of expressiveness of the single-scale vector quantization with
the reduced length of the code sequence.

Hierarchical representations for autoregressive models The construction of hierarchical codes
is an effective way to control the fundamental trade-off related to the length of the code sequence.
There exist several image representation and generation methods based on hierarchical discrete
codes [8, 15, 16]. VQ-VAE-2 [8] and HAM [15] make use of the hierarchical relationship between
the codes for unseen image generations in a coarse-to-fine manner. In particular, to tackle the trade-
off issue, VQ-VAE-2 [8] allocates a heavier model for processing coarse top codes and a lighter
model for dealing with fine bottom codes. RQ-Transformer [17] encodes an image into a stack of
code maps by iteratively quantizing residual vectors between latent features and code embeddings,
effectively reducing the spatial resolution of the code maps without degrading reconstruction quality.
Hierarchical VQ-VAE [16] encodes structural and textual information of an image using different
types of codes by training two separate VQ-VAEs, where one learns with the original images and
the other employs the residuals between the original and reconstructed images. The main idea of
Hierarchical VQ-VAE is about how to disentangle the information across the code levels but not
about how to train AR models based on this set of codes. Our approach constructs a pyramid of
discrete codes and exploits the codes using AR models to generate high-fidelity images.

Diffusion models Diffusion models [3, 18, 19] iteratively denoise a sample from white noise by
seeing the contexts in a bidirectional manner. Most diffusion models have been implemented based on
the U-Net [20] style architecture, meaning that the multi-scale feature of an image has been naturally
incorporated. However, they suffer from low throughput in the generation process because, even
though the inference requires a lot of iterative steps, the intermediate computation results between
the denoising steps are not reusable, unlike AR models.

3 Locally Hierarchical Auto-Regressive Models

This section describes the details of the proposed method for image generation. Our approach exploits
two levels of codes—top and bottom—for the representation of an image contrary to existing two-
stage approaches based on AR models. The proposed architecture encourages the top code to model
the overall structure of an image while facilitating the bottom code to complement the remaining
details of the image. To this end, we propose Hierarchically Quantized Variational AutoEncoder
(HQ-VAE) for the image vector quantization in the first stage followed by HQ-Transformer to learn
the distribution over a sequence of the top and bottom codes in the second stage. HQ-Transformer
achieves better perceptual quality and sampling speed using the underlying hierarchical structure.
Figure 2 illustrates the two-stage procedure of our algorithm based on an AR model.

3.1 Stage 1: Hierarchically Quantized VAE (HQ-VAE)

We present the architecture and the optimization method of the proposed HQ-VAE, for which we first
review the vector quantization technique and then discuss our hierarchical quantization module.

3.1.1 Notations for vector quantization

Vector quantization [21] maps a d-dimensional continuous feature vector to a discrete code, which is
given by identifying the nearest code embedding of the feature vector in a codebook. The codebook
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Figure 2: Conceptual illustration of the overall architecture: (a) components of HQ-VAE with residual
and resampling operations to encode different information levels in the top and bottom codes, and (b)
components of HQ-Transforms to train an AR prior on the top and bottom codes.

is a collection of tuples C = {(s, es)}, where es ∈ Rde denotes the embedding of code s and nC is
the size of the codebook C. Supposing that zij is a d-dimensional vector at a spatial location (i, j) in
a feature map z ∈ Rl×l×d, a code sij is given by

sij ≡ Q(zij ; C) = argmin
s
||zij − C[s]||, (1)

where C[·] returns the code embedding of an input code and Q(·; C) denotes the quantization process
based on a codebook C. Note that, since every element in a feature map has its own code, the spatial
resolution of the code map, denoted by s, is the same as that of the feature map.

3.1.2 Hierarchical vector quantization

Our approach adopts a hierarchical vector quantization scheme to encode input data using two levels
of discrete codes—top and bottom denoted by t and b, respectively. Ideally, the combination of
the two-level codes is expected to maintain the full representation power of an original feature map.
In addition, we desire the two kinds of codes to have sufficiently disentangled and heterogeneous
information; for example, top codes hold the high-level concept of inputs while bottom ones represent
remaining low-level details. To these ends, our network creates two separate pathways designated
for the top and bottom codes and makes the branch for bottom codes constrained to have residual
information. In specific, our hierarchical vector quantization transforms a feature map z ∈ Rrl×rl×d
into a tuple of two code maps (t,b), where t ∈ Z l×l and b ∈ Zrl×rl with an integer scaling factor
r ∈ {1, 2, . . . }.
Our scheme first captures the high-level information of a feature map by quantizing its downsampled
version using the top codes and computing their embeddings as follows:

ztop = Downsample(z; r), tij = Qtop(ztop
ij ; C

top
ij ), etop

ij = C top[tij ], (2)

where C top denotes the codebook of top codes and Downsample(·) is a generic pooling operation to
reduce the spatial resolution of a feature map. Given the top code map t, the bottom codes and its
embeddings are derived by

zbot = z− Upsample(etop; r), bij = Qbot(zbot
ij ; Cbot

ij ), ebot
ij = Cbot[bij ], (3)

where Cbot is the codebook of bottom codes and Upsample(·) is any upsampling operation to increase
the spatial resolution of a feature map. Figure 2(left) illustrates this hierarchical quantization
procedure. Note that the residual vector between the original feature map and the upsampled top
code embedding map, denoted by zbot, involves sampling and quantization errors. The bottom codes
with their embeddings should compensate for the errors and improve the reconstruction quality of the
original feature map when combined with the top-level information.
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Figure 3: Comparison of different implementations of resampling operations in our hierarchical
vector quantization procedure. When the average pooling and nearest interpolation are used for
resizing as in (a), the reconstructed images from the top codes only are too blurry. On the other hand,
resizing by pixel-unshuffle and pixel-shuffle operations leads to significantly better reconstruction
quality in the same condition as shown in (b).

One question is which operations are appropriate for Downsample(·) and Upsample(·). We observe
that non-learnable layers give favorable solutions for the resizing operations compared to naïve
learnable counterparts. Straightforward choices for those operations are the average pooling and
the interpolation with nearest neighbors. Despite the reasonable performance given by this strategy,
Figure 3a exhibits that the overall structure reconstructed by the top code embeddings is below
expectation. Instead, it turns out that a combination of pixel-unshuffle and pixel-shuffle operations [22]
effectively pushes more information into the top codes while making the bottom codes focus on local
details. Given the feature map z ∈ Rrl×rl×d and a scaling factor r, the pixel-unshuffle operation
returns a tensor in the shape of l × l × r2d, encoding high-level information of the original feature
map. To compute the residual, we pixel-shuffle the top code embedding and restore the original
dimensionality of z. Figure 3 clearly demonstrates that the top codes given by the pixel-unshuffle
followed by the quantization hold the primary information of an input image more than the ones
given by the average pooling.

3.1.3 HQ-VAE: architecture and optimization

Overall structure HQ-VAE consists of three parts: encoder E(·), decoder D(·), and hierarchical
quantizerH(·; r), as shown in Figure 2(left), where r is the additional scaling factor for the top code.
Given an image x, an encoder E(·) extracts the feature map z. Then, the hierarchical quantizer
H(·; r) is applied to the feature map, providing the top and bottom codes (t,b) and their associated
code embeddings: etop and ebot. Now, the decoder D(·) takes the top and bottom code embeddings to
reconstruct the input image.

Objective function To train three parts in HQ-VAE, our objective function is composed of the
reconstruction loss introduced in VQ-VAE [10] as well as adversarial and perceptual losses to improve
the fidelity of reconstructed images [7]. Here, we only present the reconstruction loss as below:

Lrec(x;E,D,H) = ‖x−D([etop, ebot])‖22 +
∑

i∈{top,bot}

[
‖sg(zi)− ei‖22 + β‖sg(ei)− zi‖22

]
, (4)

where sg(·) refers to a stop-gradient operation, and β is set to 0.25 as suggested in [10]. The first
term measures `2 distance between the reconstructed and original images. The second term enforces
both the top and bottom code embedding to be located close to the inputs of the quantizers. To update
the codebook, we make use of exponential moving average (EMA) to accelerate convergence as
discussed in [10].
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Implementation details We adopt the same network structures of the encoder and the decoder as
VQ-GAN [7] except two minor modifications. To increase throughput in training, we set the stride
of the first convolution layer in the encoder and the last transposed convolution layer in the decoder
as 2, instead of 1 in the original implementation. We replace the batch normalization [23] in the
discriminator by the group normalization [24] to achieve consistent results regardless of batch sizes.

3.2 Stage 2: Hierarchically Quantized Transformer (HQ-Transformer)

This section presents HQ-Transformer (see Figure 2(right)) to autoregressively model the top and
bottom codes by fully exploiting their spatial relationships obtained from the first stage.

3.2.1 Formulation

Our objective is to maximize the log-likelihood of a tuple of t and b. Given the scaling factor r for the
top, the resizing operation aligns a single top code ti with r2 bottom codes b(i,k), where 1 ≤ k ≤ r2.
Figure 2 illustrates an example of top and bottom codes with r = 2 (in the input embedding
transformer part), where all bottom codes aligned with a single top code ti are bi = (b(i,1), b(i,r2)).
The likelihood of the top and bottom codes is given by

Pθ (t,b) = Pθ
(
t1 · · · tl2 , b(1,1) · · · b(l2,r2)

)
=

l2∏
i=1

Pθ (ti,bi|t<i,b<i) , (5)

where the inequality symbol (< i) denotes a collection of all indices less than i. The conditional is
further factorized into

Pθ (ti,bi|t<i,b<i) = Pθ (bi|ti, t<i,b<i)Pθ (ti|t<i,b<i) . (6)

The last term in (6) is maximized by predicting the current position given the previous top and bottom
codes. By assuming that the bottom codes are conditionally independent given the associated top
code, the first term of the right-hand side is formulated more efficiently as follows:

Pθ (bi|ti, t<i,b<i) ,
r2∏
k=1

Pθ
(
b(i,k)|ti, t<i,b<i

)
, (7)

Note that the assumption we made here is reasonable because the bottom codes are supposed to
contain local details while the top codes are enforced by our stage 1 model, HQ-VAE, to encode a
global landscape.

3.2.2 Model

Similar to GPT-like architectures [9, 25], HQ-Transformer consists of three sub-modules based on
the transformer architecture, which are referred to as Input Embedding Transformer (IET), Main
Transformer (MT), and Prediction Head Transformer (PHT), as illustrated in Figure 2(right). IET
generates an embedding to be used as an input for MT, and the hidden state given by MT is fed into
PHT to generate top and bottom codes, which are given back to IET in the next step. We discuss each
of the three modules in the rest of this section.

Input Embedding Transformer (IET) IET transforms a tuple of (ti,bi) into a single embedding
vector ui, ∀i. To implement this, we first construct a local embedding by summing up the code
embedding and the positional encoding, which is given by

mtop
i = etop,in

i + PEtop[i] + PEbot[0]

mbot
(i,k) = ebot,in

(i,k) + PEbot[k], for k = 1, · · · , r2,
(8)

where etop,in
i and ebot,in

(i,k) are the learnable code embedding of ti and b(i,k), respectively, and PEtop[·]
and PEbot[·] denote the learnable positional encoding for the top and bottom2. Note that the code

2PEbot[0] is introduced to distinguish the top code from the bottom ones.
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embeddings are learned within this IET module, by which we construct the codebooks C top,in and
Cbot,in. These local embeddings are refined by a bidirectional transformer,

utop
i ,u

bot
(i,1), · · · ,u

bot
(i,r2) = IET

(
mtop
i ,m

bot
(i,1), · · · ,m

bot
(i,r2)

)
, (9)

where the structure is the same as GPT-2 [9] and we employ a single GPT-2 block composed of a self-
attention followed by an MLP block. Then, the final input embedding ui for the main Transformer
block is simply given by averaging all updated local embeddings as

ui = Average(utop
i ,u

bot
(i,1), · · · ,u

bot
(i,r2)). (10)

Main Transformer (MT) This module updates the outputs of IET by a stack of NMT causal
self-attention and MLP blocks:

h0,h1, · · · ,hl2−1 = MT(SOS,u1,u2, · · · ,ul2−1), (11)

where the sequence length is equal to the number of top codes and the start-of-sentence token (SOS)
is employed as the first input of the MT(·) function. This function also has the same structure as
GPT-2.

Prediction Head Transformer (PHT) This module predicts the top and bottom codes from the
hidden representation derived by the main transformer, where the bottom codes are generated in
parallel based on their associated top code and a hidden representation from MT. In specific, we first
define the input sequence of PHT as below:

v
(k)
i =

{
hi + PEhead(k) if k = 0,

etop,head
i + PEhead(k) if 1 ≤ k ≤ r2,

(12)

where etop,head
i denotes the learnable code embedding of ti defined within PHT and PEhead[·] denotes

the learnable positional encoding for top and associated bottom codes defined within PHT. This
sequence is then updated to produce the conditional probabilities of the top and bottom codes as
follows:

p
(0)
i+1, p

(1)
i+1, · · · , p

(r2)
i+1 = PHT(v(0)

i ,v
(1)
i , · · · ,v(r2)

i ), (13)

where each output probability is defined as

p
(k)
i =

{
P (ti|t<i,b<i) if k = 0,

P
(
b(i,k)|ti, t<i,b<i

)
if 1 ≤ k ≤ r2 . (14)

Note that we predict the bottom code distributions in parallel. In PHT, we employ a self-attention
block of a mixture of the positions of a top code and multiple bottom codes, which is conditioned on
the top position while the attention between bottom positions is unconditional. Compared to the full
autoregressive modeling on the bottoms, such a parallel decoding scheme for bottom codes leads to a
speed-up in sampling and even better image generation quality. We will discuss its benefits in the
experiments section.

3.2.3 Computational complexity of HQ-Transformer

Given the top code t ∈ Z l×l and the bottom code b ∈ Zrl×rl, where r is a scaling factor for the
quantization of top codes, the length of the top codes is Ltop = l2 and the number of codes in a
local patch is Llocal = 1 + r2 because there exist r2 bottom codes associated with a single top code.
The time complexities of IET, MT, and PHT are then given by O(NIETLtopL

2
local), O(NMTL

2
top) and

O(NPHTLtopL
2
local), respectively, where NIET, NMT, and NPHT are the numbers of attention blocks in

individual modules. The time complexity of MT dominates those of the other two modules because
NMT is larger than NIET and NPHT. Because the code map size of VQ-GAN is equal to the bottom
code resolution of HQ-Transformer, the computational complexity of VQ-GAN, O(NMTL

2
topr

4), is
higher than the complexity of HQ-Transformer, O(NMTL

2
top).
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Table 1: Class-conditional image generation performance on ImageNet in terms of FID, precision,
recall, and throughput. The values in parentheses are obtained by rejection sampling.

Models Parameter
size

Code map
resolution FID ↓ Precision ↑ Recall ↑ Throughput ↑

# images/sec
ADM [26] 554 M - 10.94 (4.59) 0.69 (0.82) 0.63 (0.52) 0.12 (0.07)

ImageBART [27] 3.5 B 16× 16 21.19 (7.44) - - -
VQ-Diffusion [19] 370 M 32× 32 11.89 (5.32) - - 2.66 (0.13)

LDM-4 [18] 400 M 64× 64 10.56 (3.60) 0.71 (0.87) 0.62 (0.48) 0.70 (0.30)
MaskGIT [28] 228 M 16× 16 6.18 (4.02) 0.80 0.51 11.04 (0.55)
VQ-VAE-2 [8] 13.5 B 32× 32 + 64× 64 ∼ 31 (∼ 10) 0.36 0.57 -

ViT-VQGAN [13] 1.6 B 32× 32 4.17 (3.04) - - -
VQ-GAN [7] 1.4 B 16× 16 15.78 (5.20) - - 6.76 (0.34)

RQ-Transformer [17] 1.4 B 8× 8× 4 8.71 (3.89) 0.71 0.58 37.03 (1.85)
RQ-Transformer [17] 3.8 B 8× 8× 4 7.55 (3.80) 0.73 (0.82) 0.58 (0.50) 23.22 (2.90)

HQ-TVAE (S) 530 M 8× 8 + 16× 16 9.36 (4.98) 0.69 (0.78) 0.55 (0.51) 78.87 (19.72)
HQ-TVAE (M) 870 M 8× 8 + 16× 16 8.46 (4.47) 0.71 (0.79) 0.56 (0.52) 70.00 (17.50)
HQ-TVAE (L) 1.4 B 8× 8 + 16× 16 7.15 (4.35) 0.73 (0.81) 0.55 (0.50) 49.44 (12.36)

Table 2: Text-conditional image generation performance on the CC3M validation set.
Models Parameter size Code map resolution FID ↓ CLIP-score ↑ Throughput ↑

ImageBART [27] 2.8 B 16× 16 22.61 0.23 1.75
LDM [18] 645 M 64× 64 17.01 0.24 3.9

VQ-GAN [7] 1.5 B 16× 16 28.86 0.20 2.69
RQ-Transformer [17] 654 M 8× 8× 4 12.33 0.26 46.47

HQ-TVAE (S) 579 M 8× 8 + 16× 16 12.86 0.26 54.88

3.3 Sampling from HQ-Transformer and HQ-VAE

For inference, we first generate discrete codes using HQ-Transformer and synthesize new images
using HQ-VAE based on the codes. We begin with the start-of-sentence (SOS) token and obtain its
hidden representation from MT in HQ-Transformer, where the class-conditional SOS is employed
in the case of class-conditional generation. Then, PHT takes the hidden representation as its input
embedding at the first step and predicts a top code distribution. We sample a top code from the
distribution and forward it to the next step of PHT to obtain the bottom codes, which are actually
acquired in parallel by forwarding the top code embedding to the multiple next steps. The top and
bottom codes are given to IET, which outputs the embedding for the input to MT. We repeat this
procedure in an auto-regressive manner until we obtain all the top and bottom codes. Once completing
the generation of the codes, we finally produce a synthetic image using the decoder of HQ-VAE
based on the discrete codes.

4 Experiments

We evaluate our models, referred to as HQ-TVAE hereafter, on class- and text-conditional image
generation tasks.

4.1 Conditional Image Generation

Experiment settings We train our models on 1.2M images in the train split of ImageNet [29] for
class-conditional image generation. For text-conditional tasks, we employ 15M image-text pairs in
Conceptual Caption (CC) [30] and Conceptual-12M [31]. In the training phase of both cases, we
resize the short axis of an image to 256 and randomly crop it to acquire a 256× 256 image. In testing,
we also resize the short axis to 256 and crop the image at the center.

The scaling factor in HQ-VAE is set to 2, i.e., r = 2, to produce the top and bottom codes of 8× 8
and 16× 16 resolution by default, respectively. We test three versions of HQ-Transformer by varying
hyperparameters: (a) NMT = 12, and NPHT = 4 for the smallest model, (b) NMT = 24 and NPHT = 4
for the mid-size model, and (c) NMT = 42, and NPHT = 6 for our largest model. In all cases,
NIET = 1 and other parameters related to the network size are fixed. We describe more details about
the network architecture in the supplementary document. As evaluation metrics, we adopt Fréchet
Inception Distance (FID) [32] and precision & recall (PR) [33] for class-conditional generation, and
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(a) Generated samples (b) Top code-conditional image generation

Figure 4: Class-conditional image generation results. Images constructed by both top and bottom
codes for an ImageNet class lorikeet (90) are illustrated in (a). Given an image generated from the top
code only, the left-most image in (b) (with a red bounding box), which corresponds to the upper-right
image in (a) (with a green bounding box), HQ-Transformer samples several different bottom codes
visualized at the first row in (b) and generates realistic images with diverse details as shown in the
second row in (b).

Table 3: Comparison of image reconstruction quality on the ImageNet validation set. RQ-VAE* is a
modified version of its original model obtained by adopting the same architecture used in HQ-VAE.

Model Code map resolution rFID ↓ Codebook size Effective code usage
DALL-E [5] 32× 32 32.01 8192 -

AugVAE-SL [14] 32× 32 3.28 8192 -
ViT-VQGAN [13] 32× 32 1.28 8192 -

VQ-GAN [7] 16× 16 4.90 16384 973
RQ-VAE [17] 8× 8× 4 3.20 16384 16353

RQ-VAE* [17] 8× 8× 5 3.37 16384 16322
HQ-VAE (16× 16) 8× 8 + 16× 16 2.61 8192 + 8192 8119 + 8192
HQ-VAE (32× 32) 16× 16 + 32× 32 0.57 8192 + 8192 8192 + 8192

FID and CLIP-score [34] for the text-conditional generation task. We measure the throughput of
sample generation on a single Tesla A100 GPU.

Class-conditional image generation Table 1 presents that our largest model, HQ-TVAE (L),
achieves the best FID (7.15) compared to other two-stage AR models with similar sequence lengths
such as VQ-GAN (16× 16) and RQ-Transformer (8× 8× 4). We observe that HQ-TVAE reports
the highest throughput in sample generation than other models because it generates r2 bottom codes
in parallel given an associated top code. Compared to ADM [26], our smallest model (S) generates
images of similar quality while achieving 650 times throughput. We also conduct rejection sampling
in all the models based on ResNet-101 [35] with an acceptance rate of 0.25 and report the results
within the parentheses in Table 1. Figure 4 demonstrates the qualitative results of our approach,
which also include the generated images based only on top codes to visualize the representation
disentanglement. Interestingly. contrary to typical generative models, HQ-TVAE restricts the diversity
of generated images within details by sampling only bottom codes from HQ-Transformer with fixed
top codes.

Text-conditional image generation Table 2 presents FIDs and CLIP-scores of several models
measured on the CC3M validation split, and the throughput in sample generation. The results show
that our model is comparable to RQ-Transformer in terms of FID (12.86 vs. 12.33) and CLIP-score
(0.26 vs. 0.26) while achieving 18%p higher throughput than RQ-Transformer.

4.2 Analysis of HQ-VAE and HQ-Transformer Models

Comparison with other stage 1 methods Table 3 compares HQ-VAE implementations with two
different feature map sizes (shown in the parentheses) from the encoder with the existing stage 1
models, where we measure FIDs between the original and reconstructed images, referred to as rFID.
The last column of the table reports the utilization of codebook(s) for the representations of the images
in the ImageNet validation dataset, and our algorithm turns out to make full use of the codebooks.
rFID from HQ-VAE (8× 8 + 16× 16) is better than the baselines with the similar sequence length,
e.g., RQ-VAE (8 × 8 × 4) and RQ-VAE (8 × 8 × 5). In addition, HQ-VAE (16 × 16 + 32 × 32)
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Table 4: Ablation study on HQ-VAE.
Downsampling op. Epochs rFID ↓

Conv2 + Perceptual loss 15 3.72
Avg. Pool. 15 3.67

PixelUnshuffle 15 3.14
PixelUnshuffle 50 2.61

Table 5: Ablation study on HQ-Transformer
Decoding policy Label type FID ↓

Global conditioning One-hot 23.25
Locally sequential conditioning One-hot 11.33

Locally hierarchical conditioning 10.01
Locally hierarchical conditioning Soft (τ = 1) 9.36

Table 6: Performance of HQ-TVAE with more than two levels of codes. The performance is evaluated
on the ImageNet validation split. HQ-VAEs and HQ-Transformers are trained for 15 and 100 epochs
respectively for a fair comparison.

Code map resolution rFID ↓ Code utilization FID ↓ Precision ↑ Recall ↑
4× 4 + 8× 8 18.65 7524 + 8192 37.59 0.49 0.38

4× 4 + 8× 8 + 16× 16 2.48 1954 + 7763 + 8192 15.66 0.61 0.54
8× 8 + 16× 16 3.14 8008 + 8192 13.59 0.67 0.52

8× 8 + 16× 16 + 32× 32 0.65 2656 + 8192 + 8192 11.10 0.64 0.58

outperforms ViT-VQGAN (32× 32) although we admit that ViT-VQGAN can be implemented more
efficiently based on the hierarchical code maps.

Ablation study on HQ-VAE Table 4 supports the rationale of our choice, showing that resizing
with pixel-unshuffle and -shuffle outperforms the average pooling followed by the nearest interpolation
by 0.53 in FID since it prevents information loss during the downsampling operation. We also observe
that longer training boosts rFID performance from 3.14 to 2.61. Note that learnable resizing turns
out to be not effective, where we adopt a simple network with single convolution and transposed
convolution layers with kernel size 2 and stride 2, for downsampling and upsampling, respectively.
We impose the same loss function on the reconstructed images using only the top codes to avoid top
code collapse. Refer to the supplementary document for a more detailed analysis.

Ablation study on HQ-Transformer Table 5 compares the effect of decoding policies and high-
lights the benefit of the proposed locally hierarchical decoding. VQ-VAE-2 [8] first generates the
entire top codes and then derives the bottom codes one by one with global conditioning on the
sequence of the top codes. RQ-Transformer [17] sequentially generates a top code and the relevant
bottom codes, locally conditioned on the generated codes from the previous steps. We observe that
our decoding strategy achieves better FID than the sequential methods since error accumulation
during sampling is alleviated by our parallel decoding of bottom codes. We also validate the effects
of soft-labeling as an alternative to one-hot labeling in the cross-entropy loss function for training
HQ-Transformer as proposed in RQ-Transformer [17]. The use of soft labels with temperature τ = 1
in our case improves performance as similarly observed in [17].

Multi-level extensions Table 6 present that three-level architectures outperform the two-level
counterparts. For these experiments, we train two different combinations of three-level codes
{(4 × 4), (8 × 8), (16 × 16)} and {(8 × 8), (16 × 16), (32 × 32)}. The results show that the use
of three-level codes is helpful for improving performance at the early stage of training (15 epochs
for training HQ-VAE). However, they fail to achieve additional gains with more iterations probably
due to the lower usage of top codes as shown in the “code utilization" column of the table. Detailed
architectures for multi-level extensions are described in the supplementary document.

5 Conclusion

We presented a two-stage auto-regressive model, which consists of HQ-VAE and HQ-Transformer, to
generate images based on hierarchically quantized codes. HQ-VAE represents an image by two-level
discrete codes with different spatial resolutions, where it encodes the high-level structure of an image
using the top codes and the low-level information using the bottom codes. HQ-Transformer models
the multi-level codes efficiently and the combination of the two modules successfully generates
unseen images. Experiments confirm the capability and potential of our model for high-quality and
high-resolution image generation with a fraction of computational cost compared to existing methods.
Acknowledgement This work was partly supported by IITP grant [No.2022-0-00959, (Part 2)
Few-Shot Learning of Causal Inference in Vision and Language for Decision Making, 2021-0-
01343, Artificial Intelligence Graduate School Program (Seoul National University)] and NRF grant
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