
A Theorem 1 Proof

In this section, we prove Theorem 1, which we restate here for convenience.
Theorem A.1 (Message passing in FMs). The gradient descent operator GD (7) on the node
embeddings of a DistMult model (Equation (4)) with the maximum likelihood objective in Equation (3)
and a multi-relational graph T defined over entities E induces a message-passing operator whose
composing functions are:

qM(φ[v], r, φ[w]) =

{
φ[w]� g(r) if (r, w) ∈ N 1

+[v],
(1− Pθ(v|w, r))φ[w]� g(r) if (r, w) ∈ N 1

−[v];
(14)

qA({m[v, r, w] : (r, w) ∈ N 1[v]}) =
∑

(r,w)∈N 1[v]

m[v, r, w]; (15)

qU(φ[v], z[v]) = φ[v] + αz[v]− βn[v], (16)

where, defining the sets of triplets T −v = {(s, r, o) ∈ T : s 6= v ∧ o 6= v},

n[v] =
|N 1

+[v]|
|T |

EPN1
+

[v]
Eu∼Pθ(·|v,r)g(r)� φ[u] +

|T −v|
|T |

EPT−vPθ(v|s, r)g(r)� φ[s], (17)

where PN 1
+[v] and PT −v are the empirical probability distributions associated to the respective sets.

Proof. Remember that we assume that there are no triplets where the source and the target node are
the same (i.e. (v, r, v), with v ∈ E and r ∈ R), and let v ∈ E be a node in E . First, let us consider the
gradient descent operator GD over v’s node embedding φ[v]:

GD(φ, T)[v] = φ[v] + α
∑

(v̄,̄r,w̄)∈T

∂ logP (w̄ | v̄, r̄)
∂φ[v]

.

The gradient is a sum over components associated with the triplets (v̄, r̄, w̄) ∈ T ; based on whether
the corresponding triplet involves v in the subject or object position, or does not involve v at all, these
components can be grouped into three categories:

1. Components corresponding to the triplets where v̄ = v ∧ w̄ 6= v. The sum of these
components is given by:∑
(v,̄r,w̄)∈T

∂ logP (w̄ |v, r̄)
∂φ[v]

=
∑

(v,̄r,w̄)∈T

[
∂Γ(v, r̄, w̄)

∂φ[v]
−
∑
u

P (u|v, r̄)∂Γ(v, r̄, u)

∂φ[v]

]

=
∑

(r̄,w̄)∈N 1
+[v]

φ[w̄]� g(r̄)−
∑

(v,̄r,w̄)∈T

∑
u

P (u|v, r̄)g(r̄)� φ[u].

2. Components corresponding to the triplets where v̄ 6= v ∧ w̄ = v. The sum of these
components is given by:∑

(v̄,̄r,v)∈T

∂ logP (v| v̄, r̄)
∂φ[v]

=
∑

(v̄,̄r,v)∈T

[
∂Γ(v̄, r̄, v)

∂φ[v]
−
∑
u

P (u| v̄, r̄)∂Γ(v̄, r̄, u)

∂φ[v]

]

=
∑

(v̄,̄r)∈N 1
−[v]

g(r̄)� φ[v̄] (1− P (v| v̄, r̄)).

3. Components corresponding to the triplets where v̄ 6= v ∧ w̄ 6= v. The sum of these
components is given by:∑

(v̄,̄r,w̄)∈T

∂ logP (w̄ | v̄, r̄)
∂φ[v]

=
∑

(v̄,̄r,w̄)∈T

[
0−

∑
u

P (u| v̄, r̄)∂Γ(v̄, r̄, u)

∂φ[v]

]

=
∑

(v̄,̄r,w̄)∈T

−P (v| v̄, r̄)∂Γ(v̄, r̄, v)

∂φ[v]
.

=
∑

(v̄,̄r,w̄)∈T

−P (v| v̄, r̄)g(r̄)� φ[v̄].

14

Collecting these three categories, the GD operator over φ[v], or rather the node representation update
in DistMult, can be rewritten as:

GD(φ, T)[v] = φ[v] + α
∑

{(r̄,w̄)∈N 1
+[v]}

φ[w̄]� g(r̄) +
∑

(r̄,v̄)∈N 1
−[v]

φ[v̄]� g(r̄) (1− P (v| v̄, r̄))

︸ ︷︷ ︸
v’s neighbourhood→v

(18)

−α
∑

(v̄,̄r,w̄)∈T ,v̄ 6=v,w̄ 6=v

P (v| v̄, r̄)g(r̄)� φ[v̄]− α
∑

(v,̄r,w̄)∈T

∑
u

P (u|v, r̄)g(r̄)� φ[u]

︸ ︷︷ ︸
beyond neighbourhood→v

.

(19)
Note that the component “v’s neighbourhood → v” (highlighted in red) in Equation (18) is a sum
over v’s neighbourhood – gathering information from positive neighbours φ[w̄], (·, w̄) ∈ N 1

+[v] and
negative neighbours φ[v̄], (·, v̄) ∈ N 1

−[v]. Hence, each atomic term of the sum can be seen as a
message vector between v and v’s neighbouring node. Formally, letting w be v’s neighbouring node,
the message vector can be written as follows

m[v, r, w] = qM(φ[v], r, φ[w]) =

{
φ[w]� g(r), if (r, w) ∈ N 1

+[v],

φ[w]� g(r)(1− P (v|w, r)), if (r, w) ∈ N 1
−[v],

(20)

which induces a bi-directional message function qM . On the other hand, the summation over these
atomic terms (message vectors) induces the aggregate function qA:

z[v] = qA({m[v, r, w] : (r, w) ∈ N 1[v]})

=
∑

(r̄,w̄)∈N 1
+[v]

ml[v, r̄, w̄] +
∑

(r̄,v̄)∈N 1
−[v]

ml[v̄, r̄, v] =
∑

(r,w)∈N 1[v]

m[v, r, w]. (21)

Finally, the component “beyond neighbourhood→ v” (highlighted in blue) is a term that contains
dynamic information flow from global nodes to v. If we define:

n[v] =
1

|T |
∑

(v,̄r,w̄)∈T

∑
u

P (u|v, r̄)g(r̄)� φ[u] +
1

|T |
∑

(v̄,̄r,w̄)∈T ,v̄ 6=v,w̄ 6=v

P (v| v̄, r̄)g(r̄)� φ[v̄],

the GD operator over φ[v] then boils down to an update function which utilises previous node state
φ[v], aggregated message z[v] and a global term n[v] to produce the new node state:

GD(φ, T)[v] = qU(φ[v], z[v]) = φ[v] + αz[v]− βn[v]. (22)
Furthermore, n[v] can be seen as a weighted sum of expectations by recasting the summations over
triplets as expectations:

n[v] =
|N 1

+[v]|
|T |

E(v,̄r,w̄)∼PN1
+

[v]
Eu∼P (·|v,̄r)g(r̄)� φ[u] +

|T −v|
|T |

E(v̄,̄r,w̄)∼PT−vP (v| v̄, r̄,)g(r̄)� φ[v̄]

(23)

where T −v = {(v̄, r̄, v̄′) ∈ T | v̄ 6= v ∧ v̄′ 6= v} is the set of triplets that do not contain v.

A.1 Extension to AdaGrad and N3 Regularisation

State-of-the-art FMs are often trained with training strategies adapted for each model category. For
example, using an N3 regularizer [17] and AdaGrad optimiser [4], which we use for our experiments.
For N3 regularizer, we add a gradient term induced by the regularised loss:

∂L

∂φ[v]
=

∂Lfit

∂φ[v]
+ λ

∂Lreg

∂φ[v]
=

∂Lfit

∂φ[v]
+ λsign(φ[v])φ[v]2

where Lfit is the training loss, Lreg is the regularisation term, sign(·) is a element-wise sign function,
and λ ∈ R+ is a hyper-parameter specifying the regularisation strength. The added component
relative to this regularizer fits into the message function as follows:

qM(φ[v], r, φ[w]) =

{
φ[w]� g(r)− λsign(φ[w])φ[w]2, if (r, w) ∈ N 1

+[v],

φ[w]� g(r)(1− P (v|w, r))− λsign(φ[w])φ[w]2, if (w, r) ∈ N 1
−[v];

(24)

15

Our derivation in Section 3 focuses on (stochastic) gradient descent as the optimiser for training
FMs. Going beyond this, complex gradient-based optimisers like AdaGrad use running statistics of
the gradients. For example, for an AdaGrad optimiser, the gradient is element-wisely re-scaled by

1√
sv+ε∇φ[v]L where s is the running sum of squared gradients and ε > 0 is a hyper-parameter added

to the denominator to improve numerical stability. Such re-scaling can be absorbed into the update
equation:

AdaGrad(φ, T)[v] = φ[v] + (αz[v]− βn[v]) ∗ 1√
s[v] + ε

.

In general, we can interpret any auxiliary variable introduced by the optimizer (e.g. the velocity) as
an additional part of the entities and relations representations on which message passing happens.
However, the specific equations would depend on the optimizer’s dynamics and would be hard to
formally generalise.

A.2 Extensions to Other Score Functions e.g. ComplEx

The two main design choices in Theorem A.1 are 1) the score function Γ, and 2) the optimization
dynamics over the node embeddings. In the paper, we chose DistMult and GD because of their
mathematical simplicity, leading to easier-to-read formulas. We can adapt the theorem to general,
smooth scoring functions Γ : .E ×R× E → R by replacing occurrences of the gradient of DistMult
with a generic∇Γ (the gradient of DistMult w.r.t. φ[v] at (v, r, w) is simply g(r)� φ[w]). This gives
us the following lemma:
Lemma A.2 (Message passing in FMs). The gradient descent operator GD (7) on the node em-
beddings of a general score function with the maximum likelihood objective in Equation (3) and a
multi-relational graph T defined over entities E induces a message-passing operator whose compos-
ing functions are:

qM(φ[v], r, φ[w]) =

{
∇φ[v]Γ(v, r, w) if (r, w) ∈ N 1

+[v],
(1− Pθ(v|w, r))∇φ[v]Γ(w, r, v) if (r, w) ∈ N 1

−[v];
(25)

qA({m[v, r, w] : (r, w) ∈ N 1[v]}) =
∑

(r,w)∈N 1[v]

m[v, r, w]; (26)

qU(φ[v], z[v]) = φ[v] + αz[v]− βn[v], (27)

where, defining the sets of triplets T −v = {(s, r, o) ∈ T : s 6= v ∧ o 6= v},

n[v] =
|N 1

+[v]|
|T |

EPN1
+

[v]
Eu∼Pθ(·|v,r)∇φ[v]Γ(v, r, u)+

|T −v|
|T |

EPT−vPθ(v|s, r)∇φ[v]Γ(s, r, v), (28)

where PN 1
+[v] and PT −v are the empirical probability distributions associated to the respective sets.

Accordingly, the node representation updating equations in Section 3.1 can be re-written as follows

GD(φ, {(v, r, w)})[v] = φ[v] + α

∇φ[v]Γ(v, r, w)︸ ︷︷ ︸
w→v

−
∑
u∈E

Pθ(u|v, r)∇φ[v]Γ(v, r, u)︸ ︷︷ ︸
u→v

 ,

GD(φ, {(v, r, w)})[w] = φ[w] + α(1− Pθ(w|v, r))∇φ[w]Γ(v, r, w)︸ ︷︷ ︸
v→w

,

GD(φ, {(v, r, w)})[u] = φ[u] + α

−Pθ(u|v, r)∇φ[u]Γ(v, r, u)︸ ︷︷ ︸
v→u

 .

16

∇φ[·]Γ can be different for different models. For example, here we offer a specific derivation for
ComplEx [39]. Let d = K/2 be the hidden size for ComplEx. The ComplEx score function is given
as follows

Γ(v, r, w) =< ψ[r](0:d), φ[v](0:d), φ[w](0:d) > + < ψ[r](0:d), φ[v](d:), φ[w](d:) >

+ < ψ[r](d:), φ[v](0:d), φ[w](d:) > − < ψ[r](d:), φ[v](d:), φ[w](0:d) >
(29)

where (0 : d) indicates the real part of the complex vector and (d :) indicates the image part of the
complex vector. The gradients of the ComplEx score function with respect to the real/image node
representations are given by ∂Γ(v,r,w)

∂φ[v](0:d)
= ψ[r](0:d) � φ[w](0:d) + ψ[r](d:) � φ[w](d:),

∂Γ(v,r,w)
∂φ[v](d:)

=

ψ[r](0:d) � φ[w](d:) − ψ[r](d:) � φ[w](0:d),
∂Γ(v,r,w)
∂φ[w](0:d)

= ψ[r](0:d) � φ[v](0:d) − ψ[r](d:) � φ[v](d:),
∂Γ(v,r,w)
∂φ[w](d:)

= ψ[r](0:d) � φ[v](d:) + ψ[r](d:) � φ[v](0:d). Concatenating gradients for the real part and
the image part, we have the gradients

∇φ[v]Γ(v, r, w) =
∂Γ(v, r, w)

∂φ[v](0:d)
‖ ∂Γ(v, r, w)

∂φ[v](d:)
,

∇φ[w]Γ(v, r, w) =
∂Γ(v, r, w)

∂φ[w](0:d)
‖ ∂Γ(v, r, w)

∂φ[w](d:)
.

B Additional Results on Inductive KGC Tasks

In this paper, we describe the results on FB15K237_v1_ind under some random seed. To confirm
the significance and sensitivity, we further experiment with additional 5 random seeds. Due to our
computational budget, for this experiment, we resorted to a coarse grid when performing the hyper-
parameters sweeps. Following standard evaluation protocols, we report the mean values and standard
deviations of the filtered Hits@10 over 5 random seeds. Numbers for Neural-LP, DRUM, RuleN,
GraIL, and NBFNet are taken from the literature [37, 49]. “-” means the numbers are not applicable.
Table 4 summarises the results. REFACTOR GNNS are able to make use of both types of input
features, while textual features benefit both GAT and REFACTOR GNNS for most datasets. Increasing
depth benefits WN18RR_vi_ind (i ∈ [1, 2, 3, 4]) most. Future work could consider the impact of
textual node features provided by different pre-trained language models. Another interesting direction
is to investigate the impact of depth on GNNs for datasets like WN18RR, where many kinds of
hierarchies are observed in the data.

In addition to the partial ranking evaluation protocol, where the ground-truth subject/object entity
is ranked against 50 sampled entities,5 we also consider the full ranking evaluation protocol, where
the ground-truth subject/object entity is ranked against all the entities. Table 5 summarises the
results. Empirically, we observe that full ranking is more suitable for reflecting the differences
between models than partial ranking. It also has less variance than partial ranking, since it requires
no sampling from the candidate entities. Hence, we believe there is good reason to recommend the
community to use full ranking for these datasets in the future.

C Additional Results on The Impact of Meaningful Node Features

To better understand the impact that meaningful node features have on REFACTOR GNNS for
the task of knowledge graph completion, we compare REFACTOR GNNS trained with RoBERTa
Encodings (one example of meaningful node features) and REFACTOR GNNS trained with Random
Vectors (not meaningful node features). We perform experiments on FB15K237_v1 and vary the
number of message-passing layers: L ∈ {3, 6,∞}. Table 3 summarises the differences. We can see
that meaningful node features are highly beneficial if REFACTOR GNNS are only provided with a
small number of message-passing layers. As more message-passing layers are allowed, the benefit of
REFACTOR GNNS diminishes. The extreme case would be L =∞, where the benefit of meaningful
node features becomes negligible. We hypothesise that this might be why meaningful node features
haven not been found to be useful for transductive knowledge graph completion.

5One implementation for such evaluation can be found in GraIL’s codebase.

17

https://github.com/kkteru/grail/blob/master/test_ranking.py#L448

Depth 3 6 ∞
∆ Test MRR 0.060 0.045 0.016

Table 3: The Impact of Meaningful Node Feature on FB15K237_v1. ∆ Test MRR is computed
by test mrr (textual node features) − test mrr (random node features). Larger ∆
means meaningful node features bring more benefit.

#Message-Passing Layers

Te
st

 M
R

R

#P
ar

am
s

(M
)

0.0

0.1

0.2

0.3

0.4

0.5

0

2

4

6

1 2 3 6 9

GAT ReFactorGNN -- #Params GAT 　 -- #Params ReFactorGNN

Figure 4: Performance vs Parameter Efficiency as #Layers Increases on FB15K237_v2. The left axis
is Test MRR while the right axis is #Parameters. The solid lines and dashed lines indicate the changes
of Test MRR and the changes of #Parameters.

18

Ta
bl

e
4:

H
its

@
10

w
ith

Pa
rt

ia
lR

an
ki

ng
ag

ai
ns

t5
0

N
eg

at
iv

e
Sa

m
pl

es
.“

[T
]”

in
di

ca
te

s
us

in
g

te
xt

ua
le

nc
od

in
gs

of
en

tit
y

de
sc

ri
pt

io
ns

[2
9]

as
in

pu
t(

po
si

tio
na

l)
no

de
fe

at
ur

es
;“

[R
]”

in
di

ca
te

s
us

in
g

fr
oz

en
ra

nd
om

ve
ct

or
s

as
in

pu
t(

po
si

tio
na

l)
no

de
fe

at
ur

e.

W
N

18
R

R
FB

15
k-

23
7

N
E

L
L

-9
95

v1
v2

v3
v4

v1
v2

v3
v4

v1
v2

v3
v4

N
o

Pr
et

ra
in

[R
]

0.
22

0
±

0.
04

8
0
.2

26
±

0.
01

3
0
.2

4
4
±

0.
0
20

0.
2
18
±

0
.0

50
0
.2

15
±

0.
01

9
0
.2

07
±

0.
00

8
0
.2

11
±

0
.0

02
0
.2

0
5
±

0.
0
08

0.
5
43
±

0.
02

2
0
.2

07
±

0
.0

08
0
.2

1
6
±

0.
0
0
4

0.
1
98
±

0.
00

6
N

o
Pr

et
ra

in
[T

]
0
.2

6
7±

0.
0
2
0

0
.2

36
±

0
.0

20
0.

2
92
±

0.
02

5
0.

2
5
3±

0.
0
22

0
.2

4
2
±

0
.0

18
0
.2

2
7
±

0.
0
07

0.
24

0
±

0.
01

1
0
.2

44
±

0.
00

3
0
.5

3
8±

0.
07

9
0.

23
4±

0
.0

1
7

0
.2

42
±

0.
02

0
0.

1
9
1±

0.
0
36

N
eu

ra
l-

L
P

0.
74

4
0.

6
89

0.
46

2
0.

6
71

0.
5
29

0.
58

9
0.

52
9

0.
5
59

0.
4
08

0.
78

7
0.

8
27

0.
8
06

D
R

U
M

0.
7
4
4

0.
6
89

0.
4
62

0.
67

1
0.

52
9

0.
5
87

0.
5
29

0.
5
59

0.
19

4
0.

78
6

0.
8
2
7

0.
80

6
R

ul
eN

0.
80

9
0.

78
2

0.
53

4
0.

7
16

0.
49

8
0.

7
7
8

0.
8
77

0.
85

6
0.

53
5

0.
8
18

0.
77

3
0.

61
4

G
A

T
(3

)[
R

]
0.

58
3
±

0.
02

2
0
.7

97
±

0.
00

2
0
.5

6
0
±

0.
0
05

0.
6
60
±

0
.0

15
0
.3

33
±

0.
04

2
0
.3

12
±

0.
03

6
0
.4

07
±

0
.0

72
0
.3

6
3
±

0.
0
50

0.
9
06
±

0.
00

4
0
.3

03
±

0
.0

31
0
.3

5
1
±

0.
0
0
9

0.
1
87
±

0.
09

8
G

A
T

(6
)[

R
]

0
.8

5
0±

0.
0
1
4

0
.8

41
±

0
.0

01
0.

6
31
±

0.
02

0
0.

8
0
2±

0.
0
04

0
.4

0
1
±

0
.0

2
0

0.
4
45
±

0.
01

8
0.

46
1±

0.
0
48

0
.4

0
6
±

0
.1

4
3

0
.8

1
1±

0.
03

9
0.

67
0±

0
.0

5
5

0
.3

41
±

0.
04

2
0.

3
0
1±

0.
0
02

G
A

T
(3

)[
T

]
0
.9
7
0
±
0
.0
0
2

0.
9
8
0±

0
.0

01
0.

8
97
±

0.
00

5
0
.9

60
±

0.
00

1
0
.8

06
±

0
.0

03
0
.9

4
2
±

0.
0
01

0.
94

1
±

0.
00

2
0
.9

54
±

0
.0

01
0.

93
8±

0.
0
05

0.
8
39
±

0.
00

1
0
.9

62
±

0
.0

01
0
.3

5
4
±

0.
0
02

G
A

T
(6

)[
T

]
0
.9

6
5
±

0.
0
02

0.
98

6
±

0.
00

1
0
.9

2
0
±

0
.0

0
2

0
.9

7
0
±

0.
0
03

0.
8
26
±

0.
0
04

0
.9

4
3
±

0.
00

1
0
.9

2
7±

0.
0
03

0.
92

7
±

0
.0

0
1

0.
90

4±
0.

0
00

0.
81

1±
0.

0
01

0
.8

8
0
±

0
.0

0
1

0
.2

9
7±

0.
0
03

G
ra

IL
0.

82
5

0.
78

7
0.

5
84

0.
73

4
0.

6
42

0.
8
18

0.
82

8
0.

8
93

0.
5
9
5

0.
9
33

0.
9
14

0.
7
3
2

N
B

FN
et

0.
9
4
8

0.
90

5
0.

8
9
3

0.
8
90

0.
83

4
0.

9
49

0.
9
51

0.
9
6
0

-
-

-
-

R
eF

ac
to

rG
N

N
(3

)[
R

]
0.

89
9
±

0.
00

3
0
.8

42
±

0.
00

4
0
.6

0
5
±

0.
0
00

0.
8
01
±

0
.0

02
0
.6

73
±

0.
00

0
0
.8

12
±

0.
00

2
0
.8

33
±

0
.0

03
0
.8

7
7
±

0.
0
02

0.
9
13
±

0.
00

0
0
.9

13
±

0
.0

11
0
.8

9
3
±

0.
0
0
0

0.
8
38
±

0.
00

2
R

eF
ac

to
rG

N
N

(6
)[

R
]

0
.8

8
5±

0.
0
0
0

0
.8

54
±

0
.0

03
0.

7
38
±

0.
00

6
0.

8
1
7±

0.
0
04

0
.7

8
7
±

0
.0

07
0
.9

0
3
±

0.
0
03

0.
90

3
±

0.
00

2
0
.9

20
±

0.
00

2
0
.9

7
1±

0.
00

7
0.

95
7±

0
.0

0
3

0
.9

35
±

0.
00

3
0.

9
2
7±

0.
0
01

R
eF

ac
to

rG
N

N
(3

)[
T

]
0
.9

18
±

0.
0
0
2

0.
9
7
3±

0
.0

01
0.

9
10
±

0.
00

3
0
.9

34
±

0.
00

1
0
.9

00
±

0
.0

04
0
.9

5
9
±

0.
0
01

0.
95

2
±

0.
00

2
0
.9

68
±

0
.0

01
0
.9
5
5
±
0
.0
0
4

0.
9
31
±

0.
00

1
0
.9

78
±

0
.0

01
0
.9

2
9
±

0.
0
01

R
eF

ac
to

rG
N

N
(6

)[
T

]
0
.9
7
0
±
0
.0
0
2

0
.9
8
8
±
0
.0
0
1

0
.9
4
4
±
0
.0
0
2

0
.9
8
7
±
0
.0
0
0

0
.9
2
0
±
0
.0
0
1

0
.9
6
3
±
0
.0
0
1

0
.9
6
2
±
0
.0
0
2

0
.9
7
0
±
0
.0
0
2

0
.9

4
9±

0.
0
11

0
.9
6
3
±
0
.0
0
1

0
.9
9
4
±
0
.0
0
0

0
.9
5
5
±
0
.0
0
2

Ta
bl

e
5:

H
its

@
10

w
ith

Fu
ll

R
an

ki
ng

ag
ai

ns
tA

ll
C

an
di

da
te

E
nt

iti
es

.“
[T

]”
in

di
ca

te
s

us
in

g
te

xt
ua

le
nc

od
in

gs
of

en
tit

y
de

sc
ri

pt
io

ns
[2

9]
as

in
pu

t(
po

si
tio

na
l)

no
de

fe
at

ur
es

;“
[R

]”
in

di
ca

te
s

us
in

g
fr

oz
en

ra
nd

om
ve

ct
or

s
as

in
pu

t(
po

si
tio

na
l)

no
de

fe
at

ur
e.

W
N

18
R

R
FB

15
k-

23
7

N
E

L
L

-9
95

v1
v2

v3
v4

v1
v2

v3
v4

v1
v2

v3
v4

N
o

Pr
et

ra
in

[R
]

0.
02

0
±

0.
00

6
0
.0

04
±

0.
00

1
0
.0

0
4
±

0.
0
03

0.
0
03
±

0
.0

01
0
.0

13
±

0.
00

3
0
.0

12
±

0.
00

1
0
.0

04
±

0
.0

01
0
.0

0
2
±

0.
0
01

0.
2
55
±

0.
02

1
0
.0

04
±

0
.0

01
0
.0

0
1
±

0.
0
0
1

0.
0
03
±

0.
00

1
N

o
Pr

et
ra

in
[T

]
0
.0

2
7±

0.
0
0
9

0
.0

07
±

0
.0

03
0.

0
06
±

0.
00

1
0.

0
0
5±

0.
0
01

0
.0

1
4
±

0
.0

01
0
.0

1
0
±

0.
0
01

0.
00

7
±

0.
00

1
0
.0

06
±

0.
00

1
0
.2

6
2±

0.
03

1
0.

00
6±

0
.0

0
2

0
.0

06
±

0.
00

2
0.

0
0
3±

0.
0
01

G
A

T
(3

)[
R

]
0.

17
1
±

0.
00

8
0
.5

04
±

0.
02

6
0
.2

6
0
±

0.
0
22

0.
0
89
±

0
.0

17
0
.0

74
±

0.
00

3
0
.0

50
±

0.
01

4
0
.0

51
±

0
.0

19
0
.0

2
3
±

0.
0
12

0.
8
06
±

0.
01

9
0
.0

03
±

0
.0

02
0
.0

0
8
±

0.
0
0
7

0.
0
08
±

0.
00

4
G

A
T

(6
)[

R
]

0
.5

7
5±

0.
0
0
5

0
.6

98
±

0
.0

03
0.

3
12
±

0.
00

0
0.

6
0
6±

0.
0
02

0
.0

4
8
±

0
.0

0
4

0.
0
28
±

0.
00

4
0.

03
3±

0.
0
18

0
.0

1
5
±

0
.0

2
6

0
.4

9
1±

0.
11

2
0.

11
0±

0
.0

4
8

0
.0

31
±

0.
01

0
0.

0
3
1±

0.
0
02

G
A

T
(3

)[
T

]
0
.7

94
±

0.
0
0
0

0.
8
2
6±

0
.0

00
0.

4
68
±

0.
00

0
0
.7

05
±

0.
00

0
0
.3

31
±

0
.0

00
0
.5

8
5
±

0.
0
00

0.
50

5
±

0.
00

0
0
.4

49
±

0
.0

00
0.

85
6±

0.
0
00

0.
2
45
±

0.
00

0
0
.3

45
±

0
.0

00
0
.0

7
8
±

0.
0
00

G
A

T
(6

)[
T

]
0
.8

1
5
±

0.
0
00

0.
80

8
±

0.
00

0
0
.4

6
9
±

0
.0

0
0

0
.7

0
1
±

0.
0
00

0.
4
16
±

0.
0
00

0
.4

8
3
±

0.
00

0
0
.3

9
1±

0.
0
00

0.
38

8
±

0
.0

0
0

0.
85

1±
0.

0
00

0.
18

9±
0.

0
00

0
.1

3
7
±

0
.0

0
0

0
.0

2
3±

0.
0
00

R
eF

ac
to

rG
N

N
(3

)[
R

]
0.

82
6
±

0.
00

0
0
.7

58
±

0.
00

2
0
.3

7
4
±

0.
0
04

0.
7
07
±

0
.0

00
0
.4

55
±

0.
01

0
0
.6

03
±

0.
00

8
0
.5

56
±

0
.0

03
0
.5

8
7
±

0.
0
03

0.
9
07
±

0.
00

4
0
.7

00
±

0
.0

01
0
.6

3
0
±

0.
0
0
1

0.
5
11
±

0.
00

1
R

eF
ac

to
rG

N
N

(6
)[

R
]

0
.8

2
6±

0.
0
0
1

0
.7

69
±

0
.0

05
0.

4
40
±

0.
00

1
0.

7
3
1±

0.
0
00

0
.5

5
8
±

0
.0

07
0
.6

9
4
±

0.
0
06

0.
63

9
±

0.
00

6
0
.6

40
±

0.
00

0
0
.9
6
7
±
0
.0
0
5

0
.7
6
4
±
0
.0
0
9

0.
6
97
±

0.
00

5
0
.7
0
3
±
0
.0
0
1

R
eF

ac
to

rG
N

N
(3

)[
T

]
0
.8

0
5
±

0.
00

0
0
.7

9
6
±

0
.0

0
3

0
.4

8
3
±

0.
0
0
0

0.
6
82
±

0.
0
00

0
.5

89
±

0
.0

01
0
.6

72
±

0.
00

1
0.

6
10
±

0.
00

1
0.

61
1±

0
.0

0
1

0
.9

18
±

0.
00

0
0.

6
29
±

0.
00

1
0
.6

3
4±

0.
0
00

0
.3

0
5
±

0.
0
00

R
eF

ac
to

rG
N

N
(6

)[
T

]
0
.8
4
4
±
0
.0
0
4

0
.8
4
8
±
0
.0
0
3

0
.5
2
2
±
0
.0
0
1

0
.7
8
1
±
0
.0
0
1

0
.6
1
9
±
0
.0
0
0

0
.7
2
1
±
0
.0
0
1

0
.6
6
3
±
0
.0
0
0

0
.6
6
0
±
0
.0
0
0

0
.9

1
3±

0.
0
00

0.
73

3±
0.

0
00

0
.7
1
1
±
0
.0
0
0

0
.4

1
7±

0.
0
00

19

D Additional Results on Parameter Efficiency

Figure 4 shows the parameter efficiency on the dataset FB15K237_v2.

E Discussion on Complexity

We can analyse the scalability of REFACTOR GNNS along three axes, the number of layers L, the
embedding size d, and the number of triplets/edges in the graph |T |. For scalability w.r.t. to the
number of layers, let L denote the number of message-passing layers. Since REFACTOR GNNS
tie the weights across the layers, the parameter complexity of REFACTOR GNNS is O(1), while it
is O(L) for standard GNNs such as GATs, GCNs, and R-GCNs. Additionally, since REFACTOR
GNNS adopt layer-wise training enabled via the external memory for node state caching, the training
memory footprint is also O(1) as opposed to O(L) for standard GNNs. For scalability w.r.t the
embedding size, let d denote the embedding size. REFACTOR GNNS scale linearly with d, as opposed
to most GNNs in literature where the parameter and time complexities scale quadratically with d.
For scalability w.r.t. the number of triplets/edges in the graph, we denote the entity set as E , the
relation set as R, and the triplets as T . NBFNet requires O(LT 2d + LT V d2) inference run-time
complexity since the message-passing is done for every source node and query relation – quadratic
w.r.t the number of triplets T while REFACTOR GNNS are of linear complexity w.r.t T . Extending
the complexity analysis in NBFNet [49] to all the triplets, we include a detailed table for complexity
comparison in Table 6. The inference complexity refers to the cost per forward pass over the entire
graph.

Parameter Training Memory Inference Memory Training Time Inference Time
Complexity Complexity Complexity Complexity Complexity

GAT O(Ld2) O(L|V |d) O(L|V |d) O(L|V |d2 + L|T |d) O(L|V |d2 + L|T |d)
R-GCN O(L|R|d2) O(L|V |d) O(L|V |d) O(L|T |d2 + L|V |d2) O(L|T |d2 + L|V |d2)

NBFNet O(L|R|d2) O(L|V ||T |d) O(L|V ||T |d) O(L|T |2d+ L|T ||V |d2) O(L|T |2d+ L|T ||V |d2)
REFACTOR GNNS O(|R|d) O(|V |d) O(L|V |d) O(|T ||V |d) O(L|T ||V |d)

Table 6: Complexity Comparison.

F Discussion on Expressiveness of FMs, GNNs and REFACTOR GNNS

We envision one interesting branch of future work would be a unified framework of expressiveness
for all three model categories: FMs, GNNs and REFACTOR GNNS. To the best of our knowledge,
there are currently two separate notions of expressiveness, one for FMs and the other for GNNs.
While these two notions of expressiveness are both widely acclaimed within their own communities,
it is unclear how to bridge them and produce a new tool supporting the analysis of the empirical
applications (REFACTOR GNNS) that seam the two communities.

Fully Expressiveness for Adjacency Recovery. In the FM community, a FM is said to be fully
expressive [13] if, for any given graph T over entities E and relationsR , it can fully reconstruct the
input adjacency tensor with a embedding size bounded by min(|E||R|, |T |+ 1). We can generalise
this expressiveness analysis to the spectrum of FM-GNN models (REFACTOR GNNS). In the L→∞
limit, REFACTOR GNNS are as fully expressive as the underlying FMs. In fact, a REFACTOR GNN
based on DistMult [45] is not fully expressive (because of its symmetry); however a REFACTOR
GNN based, e.g. on ComplEx [39, 17] can reach full expressiveness for L→∞.

Weisfeiler-Leman Tests for Nodes/Graphs Separation. For GNNs, established results concern
the separation power of induced representations in terms of Weisfeiler-Leman (WL) isomorphism
tests [42, 6]. However, none of these results is directly applicable to our setting (e.g. they only
consider one relationship). Nevertheless, if we consider our REFACTOR GNNS in a one-relationship,
simple graph setting, following the formalism of [6], we note that the REFACTOR Layer function
cannot be written in Guarded Tensor Language since at each layer it computes a global term n[v].
Moreover, REFACTOR GNNS only process information coming from two nodes at one time. These
two facts imply that REFACTOR GNNS have a separation power upper bound comparable to the
1-WL test, i.e. comparable to 1-MPNN (not guarded).

20

We are not aware of explicit connections between the two above notions of expressiveness. We think
there is some possibility that we can bridge them, which itself will be a very interesting research
direction, but would require a very substantial amount of additional work and presentation space and
is thus beyond the scope of this paper.

Alternatively, we can also increase the expressiveness of REFACTOR GNNS by adding more parame-
ters to the message, aggregation and update operators. For example, introducing additional MLPs to
transform the input node features or include non-linearity in the GNN update operator. This would be
a natural way to increase the expressiveness of REFACTOR GNNS.

Another method for increasing expressive power for link prediction task only is to extend ReFac-
tor GNNs from node-wise to pairwise (Sec 2.2 in our paper) representations like GraIL [37] and
NBFNet [49], which is more computationally intensive, but yields more powerful as node representa-
tions are not standalone but adapted to a specific query.

G Experimental Details: Setup, Hyper-Parameters, and Implementation

As we stated in the experiments section, we used a two-stage training process. In stage one, we sample
subgraphs around query links and serialise them. In stage two, we load the serialised subgraphs
and train the GNNs. For transductive knowledge graph completion, we test the model on the same
graph (but different splits). For inductive knowledge graph completion, we test the model on the
new graph, where the relation vocabulary is shared with the training graph, while the entities are
novel. We use the validation split for selecting the best hyper-parameter configuration and report the
corresponding test performance. We include reciprocal triplets into the training triplets following
standard practice [17].

For subgraph serialisation, we first sample a mini-batch of triplets and then use these nodes as seed
nodes for sampling subgraphs. We also randomly draw a node globally and add it to the seed nodes.
The training batch size is 256 while the valid/test batch size is 8. We use the LADIES algorithm [50]
and sample subgraphs with depths in [1, 2, 3, 6, 9] and a width of 256. For each graph, we keep
sampling for 20 epochs, i.e. roughly 20 full passes over the graph.

For general model training, we consider hyper-parameters including learning rates in [0.01, 0.001],
weight decay values in [0, 0.1, 0.01], and dropout values in [0, 0.5]. For GATs, we use 768 as the
hidden size and 8 as the number of attention heads. We train GATs with 3 layers and 6 layers. We
also consider whether or not to combine the outputs from all the layers. For REFACTOR GNNS, we
use the same hidden size as GAT. We consider whether the ReFactor Layer is induced by a SGD
operator or by a AdaGrad operator. Within a ReFactor Layer, we also consider the N3 regulariser
strength values [0, 0.005, 0.0005], the α values [0.1, 0.01], and the option of removing the n[v], where
the message-passing layer only involves information flow within 1-hop neighbourhood as most the
classic message-passing GNNs do.

We use grid search to find the best hyper-parameter configuration based on the validation MRR.
Each training run is done using two Tesla V100 (16GB) GPUs with, where data parallelism was
implemented via the DistributedDataParallel component of pytorch-lightning. For inductive learning
experiments, inference for all the validation and test queries on small datasets like FB15K237_v1
takes about 1-5 seconds, while on medium datasets it takes approximately 20 seconds, and on big
datasets like WN18RR_v4 it requires approximately 60 seconds. For most training runs, the memory
footprint is less than 40% (13GB). The training time for 20 full passes over the graph is about 1, 7,
and 21 minutes respectively for small, medium, and large datasets.

Our code will be available at ReFactorGNN. We adapted the LADIES subgraph sampler from the GPT-
GNN codebase [11] for sampling on knowledge graphs. The datasets we used can be downloaded
from the repositories Datasets for Knowledge Graph Completion with Textual Information about
Entities and GraIL - Graph Inductive Learning. We implemented REFACTOR GNNS using the
MessagePassing API in PyTorch Geometric. Specially, we used message_and_aggregate function to
compute the aggregated messages.

21

https://github.com/yihong-chen/ReFactorGNN
https://github.com/UCLA-DM/GPT-GNN
https://github.com/villmow/datasets_knowledge_embedding
https://github.com/villmow/datasets_knowledge_embedding
https://github.com/kkteru/grail
https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/sparse_tensor.html

H Potential Negative Societal Impact

Our work focus on efficient reasoning over knowledge graphs. A potential negative societal impact is
that some people might use the methods for inferring private information using their own collected
knowledge graphs. However, this issue is also commonly faced by any other research work on
knowledge graph reasoning.

22

	Introduction
	Background
	Factorisation-based Models for KGC
	GNN-based Models for KGC

	Implicit Message-Passing in FMs
	The Edge View
	The Node View

	ReFactor GNNs
	Experiments
	ReFactor GNNs for Transductive Learning (Q1)
	ReFactor GNNs for Inductive Learning (Q2)
	Beyond Message-Passing (Q3)

	Related Work
	Conclusion & Future Work
	Theorem 1 Proof
	Extension to AdaGrad and N3 Regularisation
	Extensions to Other Score Functions e.g. ComplEx

	Additional Results on Inductive KGC Tasks
	Additional Results on The Impact of Meaningful Node Features
	Additional Results on Parameter Efficiency
	Discussion on Complexity
	Discussion on Expressiveness of FMs, GNNs and ReFactor GNNs
	Experimental Details: Setup, Hyper-Parameters, and Implementation
	Potential Negative Societal Impact

