
A Normalizing flows498

Normalizing flows (Papamakarios et al., 2021) represent a general framework for density estimation499

of a multi-dimensional distribution with arbitrary dependencies. Briefly, suppose X ∼ PX is a500

random variable in Rd. Now, let Z ∼ N (0, Id) be a multivariate standard normal distribution. We501

assume there exists a mapping G that is triangular, increasing, and differentiable such that502

G(X) = Z.

A formal treatment of when such a G exists can be found in Bogachev et al. (2005). However,503

a sufficient condition is that the density of X is greater than 0 on Rd and the cumulative density504

function of Xj , conditional on the previous components X≤j , is differentiable with respect to505

Xj , X≤j (Papamakarios et al., 2021):506

Ui = Gi(X) ≡ Fi(Xi|X≤i)

From this construction, each Ui is independent of all previous Ui and has distribution Unif[0, 1].507

From there, we simply set Zi = Φ−1(Ui), where Φ is the CDF of the standard normal.508

Since Gi(X) depends only on the elements in X up to i, it is triangular. Because pX > 0, the509

conditional cdfs are strictly increasing, so G is an increasing map. Finally, since each cdf is510

differentiable, the entire map G is differentiable, and its Jacobian is non-zero.511

Because of the inverse mapping theorem, G is invertible and we can write512

X = G(Z).

Normalizing flows are a collection of distributions that parameterize a family of invertible, differen-513

tiable transformations Gθ from a fixed base distribution Z to an unknown distribution X . Using the514

change-of-variables theorem, we can express the distribution of X in terms of the base distribution515

density pZ and the transformation Gθ:516

pθ(X) = p(Gθ(X))

∣∣∣∣det

(
∂Gθ(X)

∂X

)∣∣∣∣
where ∂Gθ(X)

∂X is the Jacobian of G. The goal is to find a parameter value θ̂ that maximizes the517

likelihood of the observed X:518

θ̂ = arg max
θ

pθ(X).

A key feature of normalizing flows is that they are composable.519

A.1 Flow Architecture520

In experiments, the first layer G is a Gaussianization flow (Meng et al., 2020) applied elementwise:521

Gj(Xj) = Φ−1

(
M∑
m=1

σ

(
Xj − µj,m

sj,m

))
,

where Φ−1 is the standard normal inverse CDF. With sufficiently large M , this Gaussianization522

layer can approximate any univariate distribution. This is composed with a Masked Autoregressive523

Flow (MAF) F (Papamakarios et al., 2017), which consists of MADE layers interspersed with batch524

normalization and reverse permutation layers:525

MADEj,k = (Xj − µj,k) exp(−αj,k)

where µj = fµj,k(X<j)

αj = fαj,k(X<j)

F = MADEj,K ◦ BatchNorm ◦ Reverse ◦MADEj,K−1 ◦ · · ·BatchNorm ◦ Reverse ◦MADEj,1

Here, fµj and fαj are fully connected neural networks.526
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B Proof of convergence527

Theorem 1. Let X ∈ RN×D be a random feature matrix, where each row Xi,· is independent and528

identically distributed; x ∈ RN×D be the observed feature matrix; and αj be the p-value as defined529

in Equation (4) with test statistic Tj(X). Suppose there exists a sequence of functions (Gn)
∞
n=1 and530

a base random variable Z satisfying the following conditions:531

1. Each Gn is continuously differentiable and invertible.532

2. Gn → G pointwise for some map G that is triangular, increasing, continuously differen-533

tiable, and satisfies G(Xi,·)
D
= Z.534

For n = 1, 2, . . . , let Xn be the random feature matrix where each row i is independent and has535

distribution Xn
i,· = (Gn)−1(Z). Then, the p-value in Equation (5) calculated using K MCMC536

samples targeting Xn
·,j | Xn

·,−j = x·,−j converges to the correct p-value αj with probability 1.537

The assumption that Gn → G depends on the universality of the family of normalizing flows chosen.538

Universality has been shown for a wide variety of normalizing flows (Huang et al., 2018; Meng et al.,539

2020; Kobyzev et al., 2020).540

Proof of Theorem 1. Without loss of generality, we consider the first feature, which is indexed by541

j = 1. Let pX be the density of each row of the matrix Xi,· and pZ the density of the base variable542

Z. For each i.i.d observation at i = 1, . . . , N , we define F to be the cumulative distribution function543

of Xi,1 conditional on the other features Xi,−1 = xi,−1:544

F (x1) , P(Xi,1 ≤ x1|Xi,−1 = xi,−1) =

∫ x1

−∞ pX(x′1, xi,−1)dx′1∫∞
−∞ pX(x′1, xi,−1)dx′1

=

∫ x1

−∞ pZ(G(x′1, xi,−1))|∂G(x′1, xi,−1)|dx′1∫∞
−∞ pZ(G(x′1, xi,−1))|∂G(x′1, xi,−1)|dx′1

.

(7)

For a particular mapping Gn, we define Fn analogously:545

Fn(x1) ,

∫ x1

−∞ pZ(Gn(x′1, xi,−1))|∂Gn(x′1, xi,−1)|dx′1∫∞
−∞ pZ(Gn(x′1, xi,−1))|∂Gn(x′1, xi,−1)|dx′1

. (8)

Since Gn and G are continuously differentiable,546

pZ(Gn(x′1, xi,−1))|∂Gn(x′1, xi,−1)| → pZ(G(x′1, xi,−1))|∂G(x′1, xi,−1)| as n→∞. (9)

Then, by the dominated convergence theorem, Fn → F pointwise.547

Let Xn
i,1 ∼ Fn. Since Fn → F pointwise, and F is a distribution function, Xn

i,1 converges548

in distribution to Xi,1 | Xi,−1 = xi,−1. Likewise, the joint distribution across all independent549

observations, written Xn
·,1, converges in distribution to X·,1 | X·,−1 = x·,−1.550

Now, let X̃n
·,1 be equal in distribution to Xn

·,1, but sampled such that it is independent of the outcome551

Y . It follows from the reasoning above that X̃n
·,1 converges to the desired null distribution X̃·,1|X·,−1552

as n→∞. Define g1(x̃·,1) , 1[T1(X) < T1([x̃·,1, X·,−1])]. With the regularity condition that T1 is553

discontinuous on a set of measure zero, the expectation converges:554

lim
n→∞

EX̃n·,1(g1)→ EX̃·,1|X·,−1=x·,−1
(g1) = α1. (10)

The Cesaro average of g calculated over MCMC samples that target the distribution of X̃n
·,1 under the555

probability law of Gn converges almost surely to EX̃n·,1(g1) (Smith & Roberts, 1993). That is,556

lim
K→∞

α̂j,K,n = lim
K→∞

1

K

K∑
k=1

g1(X̃·,1,k) = EX̃n·,1(g1) w.p.1. (11)

Combining Equation (10) and Equation (11) gives the desired result.557
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C Feature datasets558

Name Covariate Response N D # Relevant Source

Gaussian Mixture Synthetic Synthetic 100, 000 100 20 -
scRNA-seq Real Synthetic 100, 000 100 10 10x Genomics (2017)

Soybean Real Real 5, 128 4, 236 - Xavier et al. (2019)

559

Licensing All of the data used is available for personal use. Terms for the scRNA-seq data can be560

found here: https://www.10xgenomics.com/terms-of-use. The scRNA-seq data was accessed561

using scvi-tools (Gayoso et al., 2021), distributed under the BSD 3-Clause license. The soybean data562

is part of the SoyNAM R package (Xavier et al., 2019), distributed under the GPL-3 license.563

D Architecture and training details for synthetic experiments564

D.1 FlowSelect565

For FLOWSELECT , the joint distribution was fitted with a GaussMAF normalizing flow as described566

in Appendix A. The first Gaussianization layer consisted of M = 6 clusters, followed by 5 layers of567

MAF. Within each MAF layer, the neural network consisted of three masked fully connected residual568

layers with 100 hidden units, followed by a BatchNorm layer.569

We trained the Gaussianization layer first with 100 epochs and learning rate 1 × 10−3 within the570

ADAM optimizer. This allowed the Gaussianization layer to learn the marginal distribution of each571

feature. Then, we jointly trained the whole architecture with 100 epochs and learning rate 1× 10−3572

using ADAM.573

MCMC We draw 1000 samples using a Metropolis-Hastings procedure. The proposal distribution574

is a random walk:575

X∗i,j,k ∼ N (X̃i,j,k−1, σ̂
2
j ),

where σ̂2
j is the sample conditional variance:576

σ̂2
j = Σ̂j,j − Σ̂j,−jΣ̂

−1
−j,−jΣ̂

T
j,−j

where Σ̂j = V̂ar(X)

D.2 Variable selection methods577

Linear For the linear response, we estimate a linear model with an L1 penalty (aka the LASSO) on578

training data:579

β̂ = arg min
β

1

N
‖Xβ − Y ‖22 + λ

D∑
j=1

|βj | (12)

The penalization term λ is selected via 5-fold cross-validation.580

Nonlinear For the nonlinear response, we fit a random forest on the training data. The hyperparam-581

eters are the defaults in the scikit-learn implementation.582

Feature statistic If f̂(X) is the fitted regression function, then the feature statistic is the negative583

mean-squared error:584

T (X,Y ) = − 1

N
‖f̂(X)− Y ‖22.

D.3 Competing methods585

For DDLK (Sudarshan et al., 2020), KnockoffGAN (Jordon et al., 2019), and DeepKnockoffs,586

(Romano et al., 2020), we used the exact architecture and hyperparameter settings from their respective587

papers. For the ablation study in Section 5.3, we use the exact implementation in Tansey et al. (2021).588

For these methods, we used the code that the researchers graciously made publicly available:589
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Method Link

DDLK https://github.com/rajesh-lab/ddlk/
DeepKnockoffs https://github.com/msesia/deepknockoffs/

HRT (MDN) https://github.com/tansey/hrt/
KnockoffGAN https://github.com/firmai/tsgan/tree/master/alg/knockoffgan

590

For MASS (Gimenez et al., 2019), we followed their described procedure and fit a mixture of591

Gaussians to the feature distribution using scikit-learn, selecting the number of components via the592

Akiake Information Criterion (AIC). We then used the knockoffs R package, available on CRAN,593

to sample knockoffs using the estimated parameters for each component.594

For RANK (Fan et al., 2020), we estimate the sparse precision matrix using the Graphical LASSO595

(Friedman et al., 2008) implemented in sci-kit learn, using cross-validation to tune the regularization596

parameter. We then use the knockoffs R package to sample the knockoffs with this covariance.597

E Architecture and training details for soybean GWAS598

Discrete flows For the discrete flows in the soybean example, we use a single layer of MADE599

which outputs a dimension of size 4. µ is then set equal to the argmax of this output.600

For training the flows, we use a relaxation of argmax with temperature equal to 0.1.601

Discrete MCMC Each feature has K = 4 values, so we can enumerate all four possible states602

for each proposal and sample in proportional to these probabilities via a Gibbs Sampling procedure.603

Setting the probabilities leads to an acceptance rate of 1, and the samples are uncorrelated since the604

previous sample doesn’t enter into the proposal distribution605

Predictive model For the predictive model of each trait conditional on the SNPs, we use a fully606

connected neural network. This network has three hidden layers of size 128, 256, and 128. ReLU607

activations are used between each fully connected layer. Dropout is used on both the input layer and608

after each hidden layer with p = 0.2. The learning rate in ADAM was set to 1× 10−5, with early609

stopping implemented using a held-out validation set.610

The feature statistic for each sample is the negative mean-squared error (MSE) for each observation.611

Runtime To obtain sufficient resolution on roughly 4200 simultaneous tests, we drew 100,000612

samples from our model. The runtime was 10 hours using a single NVIDIA 2080 Ti.613

Selected SNPs Table 1 shows the SNPs selected by FLOWSELECT that are associated with oil614

content in soybeans.

Chromosome SNP p-value
4 Gm04_42203141 1.60e-04
5 Gm05_37467797 1.90e-04
8 Gm08_15975626 2.10e-04
14 Gm14_1753922 9.00e-05
14 Gm14_1799390 1.60e-04
14 Gm14_1821662 2.90e-04
18 Gm18_1685024 5.00e-05

Table 1: Selected SNPs for soybean GWAS experiment.

615
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F Runtime comparison of each controlled feature selection method616

Method Runtime (min)

DeepKnockoff 3.0
KnockoffGAN 3.73
MASS 12.6
DDLK 91.9
FLOWSELECT 59.4

Table 2: The median runtime for each method on the scRNA-seq data with D = 100 features
and N = 100, 000 observations. All experiments were implemented using PyTorch, except for
KnockoffGAN, which was implemented in Tensorflow, and MASS, which we implemented using
scikit-learn and the knockoffs R package. The experiments were conducted using an Intel Xeon Gold
6130 CPU and an NVIDIA GeForce RTX 2080 Ti GPU.

G Comparison to Holdout Randomization Test of Tansey et al. (2021)617

Mixture-of-Gaussians scRNA-seq

Figure 4: Comparison of FLOWSELECT to the HRT procedure in Tansey et al. (2021) which samples
the complete conditionals using multiple mixture-density-networks (MDNs). Each column shows the
power and observed false discovery rate (FDR) at targeted FDRs of 0.05, 0.1, and 0.25 (indicated by
the dashed lines). The experimental settings for each dataset are the same as in Figure 2.
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H Oracle Model-X618

Figure 5: FDR control and power of Oracle Model-X knockoffs on the mixture-of-Gaussians dataset
(compare to Figure 2).

I DDLK with true joint distribution619

Figure 6: FDR control and power of DDLK on the mixture-of-Gaussians dataset using the ground
truth feature density in training (compare to Figure 2).
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J Observed Power and FDR control for given number of MCMC samples620

Figure 7: Power and FDR control of FLOWSELECT on the scRNA-seq dataset as a function of the
number of MCMC samples at targeted FDRs of 0.05, 0.1, and 0.25 (indicated by the dashed lines).
This suggests that the consequence of terminating the MCMC chain prematurely leads to a drop in
power but FDR control is still maintained.

K Mixture-of-Gaussians results for FDR and Power under Sudarshan et al.621

(2020) settings622

Figure 8: Mixture-of-gaussians setup with ρ = (0.6, 0.4, 0.2) and N = 2000 to match the settings in
Sudarshan et al. (2020). In the linear response setting, which matches the data-generating process of
Sudarshan et al. (2020), all competing knockoff-based methods (i.e., DDLK, KnockoffGAN, and
DeepKnockoff) as well as FlowSelect control the FDR at 5%, 10% and 25% levels and achieve a
power of about 0.75. In the non-linear response setting, none of the methods control FDR, except
for DeepKnockoffs which had nearly zero power. The good performance in the linear setting can
be explained by the LASSO feature statistic shrinking most null features to zero since they have
relatively low correlation. Since FDR control should hold for any response setting, these findings
suggest that none of the methods do well in modeling the underlying distribution with N = 2000
observations.
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L Learned normalizing flow mapping on mixture-of-Gaussians and623

scRNA-seq datasets624

Figure 9: Plot of features mapped to flow space by the learned normalizing flow within FLOWSELECT
with j = 1 on the x-axis and j = 2 on the y-axis. Mapped features are shown for the mixture-of-
Gaussians and scRNA-seq datasets, and they are compared to samples from a true standard Gaussian
distribution.
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