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A Log-Sobolev inequalities

For completeness we derive Theorem 2.3. We begin with proving the LSI for a Rademacher random
variable, i.e., a discrete random variable that takes the values {−1,+1} with equal probability.

Theorem A.1 (LSI for Rademacher distribution, Gross [1975]). let Z be Rademacher random
variable that take values in {−1,+1} with probability of 1

2 . Set the discrete gradient of a function
f : {−1,+1} → R to be

∇f(z) ≜
f(z)− f(−z)

2
. (1)

Then the following LSI holds:

Ent
[
ef(Z)

]
≤ 2EZ∼{−1,+1}

[(
∇ef(Z)/2

)2]
. (2)

Proof. The quantities that constitute the LSI for Rademacher random variables take the form:

Ent
[
ef(Z)

]
=

ef(1)f(1) + ef(−1)f(−1)

2
− ef(1) + ef(−1)

2
log

(
ef(1) + ef(−1)

2

)
EZ∼{−1,+1}

[(
∇ef(Z)/2

)2]
=

(
ef(1)/2 − ef(−1)/2

2

)2

. (3)

Setting a = f(1) and b = f(−1) the log-Sobolev inequality implies that:

1

2
(a2 log a2 + b2 log b2)− a2 + b2

2
log

a2 + b2

2
≤ 1

2
(b− a)2. (4)

In the following, we assume without loss of generality that a ≤ b. Let’s also define

g(r) ≜
1

2
(a2 log a2 + r2 log r2)− a2 + r2

2
log

a2 + r2

2
− 1

2
(r − a)2. (5)

Given this notation, proving the LSI for Rademacher random variables amounts to proving that
g(b) ≤ 0. To prove the inequality g(b) ≤ 0 we follow these steps:

1. g′(a) = 0,

2. for any a < r ≤ b holds g′(r) ≤ 0.
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First, we have:

g′(r) = r log r2 + r − r

(
log

(
a2 + r2

2

)
+ 1

)
− (r − a) (6)

= r log r2 − r log

(
a2 + r2

2

)
− (r − a). (7)

One can easily verify that g′(a) = 0. To prove that g′(r) ≤ 0 we show that g′′(r) ≤ 0 for any
a < r ≤ b, thus guaranteeing that g′(r) is non-positive.

g′′(r) = log r2 + 2− log

(
a2 + r2

2

)
− 2r2

a2 + r2
− 1 (8)

= log

(
2r2

a2 + r2

)
− 2r2

a2 + r2
+ 1. (9)

Using the fact that 1 + logα− α ≤ 0 for any α we are able to verify that g′′(r) ≤ 0.

The LSI for Rademacher complexity extends to Gaussian distributions using the central limit theorem,
which asserts that an average of i.i.d. Rademacher random variables converges to Gaussian distribution.
This extension relies on tensorization of the functional entropy, which effortlessly scales to high-
dimensional settings.

Theorem A.2 (Tensorization of Rademacher random variables, Gross [1975], Boucheron et al.
[2013]). Let Z1, ..., Zd be i.i.d. Rademacher random variables and let

Enti[f(z1, ..., zd)] ≜ Ent[f(z1, ..., zi−1, Zi, zi+1, ..., zd)] (10)

≜ EZi
[f(z1, ..., zi−1, Zi, zi+1, ..., zd) log(f(z1, ..., zi−1, Zi, zi+1, ..., zd))] (11)

− (EZi
[f(z1, ..., zi−1, Zi, zi+1, ..., zd)]) log (EZi

[f(z1, ..., zi−1, Zi, zi+1, ..., zd)]) .

Tensorization of independent random variables Z1, ..., Zd implies the bound:

Ent[f(Z1, ..., Zd)] ≤ EZ1,...,Zd
[

d∑
i=1

Enti[f(Z1, ..., Zd)]]. (12)

Proof. We denote the d-th tuple by z = (z1, ..., zd) and set z[d]\i = (z1, ..., zi−1, zi+1, ..., zd).
Following the definitions:

Ent[f(Z1, ..., Zd)] = 2−d
∑
z

f(z) log f(z)−

(
2−d

∑
z

f(z)

)
log

(
2−d

∑
z

f(z)

)
, (13)

Enti[f(z1, ..., zd)] = 2−1
∑
zi

f(z) log(f(z))−

(
2−1

∑
zi

f(z)

)
log

(
2−1

∑
zi

f(z)

)
.(14)

(15)

We assume without loss of generality1 that
∑

z 2
−df(z) = 1 and set q(z) ≜ 2−df(z). Since

f(z) ≥ 0, then q(z) is a distribution and its entropy is H(q) = −
∑

z q(z) log q(z). Then:

Ent[f(Z1, ..., Zd)] = d−H(q). (16)

We denote the marginal distribution by q(z[d]\i) =
∑

zi
q(z[d]\i, zi). Then

Enti[f(z1, ..., zd)] =
∑
zi

q(z[d]\i, zi) log(q(z[d]\i, zi))− q(z[d]\i) log(q(z[d]\i)),(17)

EZ1,...,Zd
[Enti[f(z1, ..., zd)]] = −H(q) +H(q[d]\i) + 1, (18)

1Since Ent(cf) = cEnt(f), for any c > 0, then Ent[cf ] ≤ E[
∑d

i=1 Enti[cf ]] if and only if Ent[f ] ≤
E[
∑d

i=1 Enti[f ]].
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where q[d]\i is the distribution of q(z[d]\i). With these equalities in mind,

Ent[f(Z1, ..., Zd)] ≤ EZ1,...,Zd

[
d∑

i=1

Enti[f(z1, ..., zd)]

]
⇐⇒ H(q) ≤ 1

d− 1

d∑
i=1

H(q[d]\i) (Han’s inequality). (19)

The right hand side of the above equation is know as Han’s inequality.

We use tensorization and the central limit theorem to extend the LSI of Rademacher random variables
to derive the LSI for Gaussian random variables.
Theorem A.3 (Gaussian log-Sobolev inequality (LSI), Gross [1975]). Let Z be a Gaussian random
variables Z ∼ N (0, 1). Then

Ent[ef(Z)] ≤ 1

2
E[f ′(Z)2ef(Z)]. (20)

Proof. In the following, we denote by Z1, ..., Zd Rademacher random variables. We set
fd(Z1, ..., Zd) = f

(∑d
i=1 Zi√

d

)
. Using tensorization and the LSI for Rademacher random variables:

Ent[fd(Z1, ..., Zd)] ≤ EZ1,...,Zd
[

d∑
i=1

Enti[fd(Z1, ..., Zd)]] (21)

≤ 1

2
EZ1,...,Zd


d∑

i=1

EZi∼{−1,+1}


f

(∑d
j=1 Zj√

d

)
− f

(∑d
j ̸=i Zj√

d
− Zi√

d

)
2


2

e
f

(∑d
i=1 Zi√

d

)
(22)

=
1

2
EZ1,...,Zd

1d
d∑

i=1

EZi∼{−1,+1}


f

(∑d
j=1 Zj√

d

)
− f

(∑d
j ̸=i Zj√

d
− Zi√

d

)
2√
d


2

e
f

(∑d
i=1 Zi√

d

)
 .(23)

The theorem follows using the central limit theorem as limd→∞

∑d
i=1 Zi√

d
= Z, when Z ∼ N (0, 1)

and

f(Z) = lim
d→∞

fd(Z1, ..., Zd), (24)

f ′(Z) = lim
d→∞

f

(∑d
j=1 Zj√

d

)
− f

(∑d
j ̸=i Zj√

d
− Zi√

d

)
2√
d

. (25)

The above provides a LSI for the standard Gaussian distribution. While we can use the same technique
to prove a LSI for Z ∼ N (µ, σ2), we separate these two theorems for clarity and turn to prove the
general case as a corollary.
Theorem A.4 (Gaussian log-Sobolev inequality (LSI), Gross [1975]). Let Z ∼ N (µ, σ2) be a
Gaussian random variable with mean µ and variance σ2. Then

Ent[ef(Z)] ≤ 1

2
σ2 E[f ′(Z)2ef(Z)]. (26)

Proof. The proof follows via a simple change of variable. Let Ẑ ∼ N (0, 1), then µ+σẐ ∼ N (µ, σ2).
We set g(Ẑ) ≜ f(µ+σZ). We use the LSI for the standard Gaussian: Ent[eg(Ẑ)] ≤ 1

2 E[g
′(Ẑ)2eg(Ẑ)]

and note that g′(ẑ) = σf ′(z).

Theorem 2.3 for multivariate Gaussians holds when applying tensorization for each Gaussian inde-
pendently.
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B Proofs

Theorem B.1. Let ℓ(w, x, y) ≜ ℓ̂(Wx, y) be a differentiable loss function over x = (x1, ..., xd) and
k classes y ∈ {1, ..., k}, with Lipschitz constant g, i.e., ∥∇tℓ̂(t, y)∥ ≤ g. Consider a Gaussian prior
distribution p ∼ N(0, σ2

p). Under the conditions of Lemma 3.3, for any 0 < λ ≤
√

m
16/gσpσy and

δ ∈ (0, 1), with probability at least 1− δ over the draw of the training set S, we have

Ew∼q[LD(w)] ≤ Ew∼q[LS(w)] +
kd log(

√
4/3) +KL(q||p) + log(1/δ)

λ
. (27)

Proof. This bound is derived by applying Lemma 3.3. We begin by realizing the gradient of ℓ̂(Wx, y)

with respect to x. Using the chain rule, ∇xℓ̂(Wx, y) = W⊤∇Wxℓ̂(Wx, y). Hence, we obtain for the
gradient norm ∥∇xℓ̂(Wx, y)∥2 ≤ ∥∇Wxℓ̂(Wx, y)∥2 ·

∑k
y=1

∑d
j=1 w

2
y,j ≤ g2

∑k
y=1

∑d
j=1 w

2
y,j .

Plugging this result into Lemma 3.3, we obtain the following bound:

ED

[
∥σy∇ℓ(w, x, y)∥2

∫ λ
m

0

e−αℓ(w,x,y)

M(α)
dα
]
≤ σ2

yg
2

k∑
y=1

d∑
j=1

w2
y,j · ED

[ ∫ λ
m

0

e−αℓ(w,x,y)

M(α)
dα
]

= σ2
yg

2
k∑

y=1

d∑
j=1

w2
y,j

∫ λ
m

0

ED
[
e−αℓ(w,x,y)

]
M(α)

dα.

Since M(α) ≜ ED
[
e−αℓ(w,x,y)

]
, the ratio in the integral equals one and the integral

∫ λ
m

0
dα = λ

m .
Combining these results we obtain:

C(λ, p) ≤ log
(
Ew∼p e

σ2
yλ2g2

2m

∑
y,j w2

y,j

)
. (28)

Finally, whenever λgσpσy ≤
√
m/4 we follow the Gaussian integral and derive the bound

log
(
Ew∼p e

σ2
yλ2g2

2m

∑
y,j w2

y,j

)
= log

(√ m

m− 4σ2
yλ

2g2σ2
p

)kd
(29)

≤ kd · log
(√ m

m−m/4

)
= kd · log(

√
4/3). (30)

Finally, we obtain Equation (27) by plugging the above into Theorem 2.1.

Theorem B.2. Consider smooth loss functions that are on-average bounded, i.e., for every w the
following holds: ED ℓ(w, x, y) ≤ b and ED

[
∥∇xℓ(w, x, y)∥2

]
≤ g. Under the conditions of Lemma

3.3 for any 0 < λ ≤ m and δ ∈ (0, 1), with probability at least 1− δ over the draw of the training
set S, we obtain

Ew∼q[LD(w)] ≤ Ew∼q[LS(w)] +

λ2ebgσ2
y

2m +KL(q||p) + log(1/δ)]

λ
. (31)

Proof. This bound is derived by applying Lemma 3.3 and bounding
∫ 1

0
e−αℓ(w,x,y)

M(α) dα ≤ eb. We
derive this bound in three steps: First, from ℓ(w, x, y) ≥ 0 we obtain

e−αℓ(x,x,y) ≤ 1. (32)

Then, we lower bound M(α) ≥ M(1) for any 0 ≤ α ≤ λ/m: we note that 0 < λ ≤ m, therefore
we consider 0 ≤ α ≤ 1. Also, since ℓ(w, x, y) ≥ 0 the function e−αℓ(w,x,y) is monotone in α within
the unit interval, i.e., for 0 ≤ α1 ≤ α2 ≤ 1 there holds

e−α1ℓ(w,x,y) ≥ e−α2ℓ(w,x,y) (33)

and consequently M(α) ≥ M(1) for any α ≤ 1. Lastly, the assumption ED[−ℓ(w, x, y)] ≥ −b and
the monotonicity of the exponential function result in the lower bound

eED[−ℓ(w,x,y)] ≥ e−b. (34)
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From convexity of the exponential function, M(1) = ED e−ℓ(w,x,y) ≥ eED[−ℓ(w,x,y)], and the lower
bound M(1) ≥ e−b follows.

Combining these bounds we derive the upper bound∫ 1

0

e−αℓ(w,x,y)

M(α)
dα ≤

∫ 1

0

1

e−b
dα = eb, (35)

and the result follows.

Next, by replacing ED
[
∥σy∇ℓ(w, x, y)∥2

]
with gσ2

y , we obtain

C(λ, p) ≤ logEw∼p e
1
2λED

[
∥σy∇ℓ(w,x,y)∥2

∫ λ
m

0
e−αℓ(w,x,y)

M(α)
dα
]

≤ logEw∼p e
λ2ebgσ2

y
2m =

λ2ebgσ2
y

2m
.

(36)

Finally, we obtain Equation (31) by plugging Equation (36) into Theorem 2.1.

C Additional results

C.1 Connection between generalization and bound

To further demonstrate the use of the bound, we performed a new experiment. We study the effect of
important components in ResNet using our bound. For this, we train four variations of the ResNet18
model: 1) a standard model (ResNet); 2) a model without skip connections (ResNetNoSkip); 3)
a model without batch normalization layers (ResNetNoBN); and 4) a model without both skip
connections and batch normalization layers (ResNetNoSkipNoBN). We optimize all models on the
CIFAR10 data: We observe that ResNet and ResNetNoSkip achieve comparable performance in all

MODEL TEST LOSS TRAIN LOSS BOUND ON C(
√
m, p)

RESNET 0.722±0.01 0.541±0.06 0.185±0.006
RESNETNOSKIP 0.631±0.02 0.478±0.05 0.179±0.009
RESNETNOBN 0.603±0.05 0.564±0.08 0.172±0.007
RESNETNOSKIPNOBN 2.302±0.01 2.31±0.02 0.01±0.0004

metrics. Additionally, removing the batch normalization layers and including the skip connections
achieves comparable performance to ResNet and ResNetNoSkip. Similar to Zhang et al. [2019],
this finding suggests that even without batch normalization, models can converge using precise
initialization. Interestingly, by removing batch normalization and skip connection layers, the model
gets to a rate of λ = m and achieves a good generalization bound. However, this comes at the
expense of poor model fitting to the train set due to gradient vanishing. These results are consistent
with prior findings in which batch normalization improves optimization [Santurkar et al., 2018]. To
conclude, we were able to obtain a tight upper bound of the generalization gap with our proposed
bound. However, it is important to note that when using any generalization bound, one should care
about the training loss as well as the complexity term.

C.2 Gradient statistics

We further study the gradient norm statistics, we report the max and mean values of the gradient
norm (not squared) using the same networks described in Section. 4 in the main paper:

# LAYERS MNIST (MEAN) MNIST (MAX) CIFAR (MEAN) CIFAR (MAX)

1 0.00224 0.00267 0.0258 0.0314
2 0.00088 0.0012 0.011 0.015
3 0.00036 0.00056 0.0049 0.008

We observe that the maximum value of the gradient norm is not higher than twice the mean value.
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D Experimental setup

For all MNIST experiments we use MLPs of depth d ∈ {1, . . . , 5}. For CIFAR10 experiments we
use CNNs of depth d ∈ {2, . . . , 5}. For the CNN models, d denotes the number of convolutional
layers. We also added a max-pooling layer after each convolutional layer. We included two additional
fully connected layers in all CNN models to fix the target output dimension. In all models, we use
the ReLU activation function. We optimize the negative log-likelihood (NLL) loss function using
stochastic gradient descent (SGD) with a learning rate of 0.01 and a momentum value of 0.9 in all
settings for 50 epochs. We use mini-batches of size 128 and did not use any learning rate scheduler.
To span the possible weights, we sampled from a normal prior distribution with different variances.
For a fair comparison, we set the layers’ width to reach roughly the same number of parameters in
each model (except for the linear case). All reported results use δ = 0.01.
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