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Abstract

Sliced mutual information (SMI) is defined as an average of mutual information
(MI) terms between one-dimensional random projections of the random variables.
It serves as a surrogate measure of dependence to classic MI that preserves many
of its properties but is more scalable to high dimensions. However, a quantitative
characterization of how SMI itself and estimation rates thereof depend on the
ambient dimension, which is crucial to the understanding of scalability, remain
obscure. This work provides a multifaceted account of the dependence of SMI on
dimension, under a broader framework termed k-SMI, which considers projections
to k-dimensional subspaces. Using a new result on the continuity of differential
entropy in the 2-Wasserstein metric, we derive sharp bounds on the error of Monte
Carlo (MC)-based estimates of k-SMI, with explicit dependence on k and the
ambient dimension, revealing their interplay with the number of samples. We then
combine the MC integrator with the neural estimation framework to provide an end-
to-end k-SMI estimator, for which optimal convergence rates are established. We
also explore asymptotics of the population k-SMI as dimension grows, providing
Gaussian approximation results with a residual that decays under appropriate
moment bounds. All our results trivially apply to SMI by setting k = 1. Our theory
is validated with numerical experiments and is applied to sliced InfoGAN, which
altogether provide a comprehensive quantitative account of the scalability question
of k-SMI, including SMI as a special case when k = 1.

1 Introduction

Mutual information (MI) is a fundamental measure of dependence between random variables [1, 2],
with a myriad of applications in information theory, statistics, and more recently machine learning
[3–14]. Its appeal stems from the favorable structural properties it possesses, such as meaningful units
(bits or nats), identification of independence, entropy decompositions, and convenient variational
forms. However, modern learning applications require estimating MI between high-dimensional
variables based on data, which is known to be notoriously hard with exponential in dimension sample
complexity [15, 16]. To alleviate this impasse, sliced MI (SMI) was recently introduced by a subset
of the authors as a surrogate dependence measure that preserves much of the classic structure while
being more scalable for computation and estimations in high dimensions [17].

Inspired by slicing techniques for statistical divergences [18–21], SMI is defined as an average of MI
terms between one-dimensional projections of the high-dimensional variables. Beyond showing that
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SMI inherits many properties of its classic counterpart, [17] demonstrated that it can be estimated
with (optimal) parametric error rates in all dimensions by combining a MI estimator between scalar
variables with a MC integrator. However, the bounds from [17] rely on high-level assumptions that
may be hard to verify in practice and hide dimension-dependent constants whose characterization is
crucial for understanding scalability in dimension. Furthermore, when projecting high-dimensional
variables it is natural to ask what information can be extracted from more than just the real line, say, a
subspace of dimension k � 1, but this extension was not considered in [17]. This work defines k-SMI
(which employs projections to k-dimensional subspaces), and provides a comprehensive quantitative
study of its dependence on dimension, encompassing the MC error, formal guarantees for neural
estimators, and asymptotics of the population k-SMI as dimension increases. All our results trivially
apply for the original SMI case (when k = 1), thereby closing the aforementioned gaps in analysis
from [17].

1.1 Contributions

The objective of this work is provide a thorough quantitative study of the dependence of SMI on
dimension. We do so under the slightly broader framework of k-SMI, which we define between
random variables X and Y with values in R

dx and R
dy as

SIk(X;Y ) :=

Z

St(k,dx)

Z

St(k,dy)
I(A|

X; B|
Y )d�k,dx(A)d�k,dy (B), (1)

where St(k, d) is the Stiefel manifold of d⇥ k matrices with orthonormal columns and �k,d is its uni-
form measure. k-SMI coincides with SMI when k = 1, but to further support it as a natural extension,
we show that structural properties of SMI derived in [17] still hold for any 1  k  min{dx, dy}.
We then move to study formal guarantees for k-SMI estimation, targeting explicit dependence on
(k, dx, dy). A key technical tool we employ is a new continuity result of differential entropy with
respect to (w.r.t.) the 2-Wasserstein distance W2, which we derive using the HWI inequality from
[22, 23]. Our continuity claim strengthens the one from [24] in two ways: (i) it replaces the (c1, c2)-
regularity condition therein with the weaker requirement of finite Fisher information, and (ii) it
sharpens the constant multiplying W2 to be optimal. As a corollary, we show that the differential
entropy of a projected variable, say h(A|

X), is Lipschitz continuous w.r.t. the Frobenius norm on
the St(k, d).

Lipschitzness is pivotal for obtaining dimension-dependent bounds on MC-based estimates of k-SMI.
We bound the MC error in terms of the variance of I(A|

X; BT
Y ) when (A,B) are uniform over their

respective Stiefel manifolds. Lipschitz continuity of differential entropy implies Lipschitzness of this
projected MI, which enables controlling its variance via a concentration argument over St(k, d). The
resulting bound scales as O

�p
k(1/dx + 1/dy)/m

�
, where m is the number of MC samples and the

constant is explicitly expressed via basic characteristics of the (X,Y ) distribution (its covariance and
Fisher information matrices). This result, which also applies to standard SMI, sharpens the bounds
from [17], characterizes the dependence on dimension, and holds under primitive assumptions on the
joint distribution. Furthermore, the bound reveals that higher dimension can shrink the error in some
cases—a surprising observation which is also verified numerically on synthetic examples.

In addition to MC integration, the k-SMI estimator employs a generic MI estimator between k-
dimensional variables. We instantiate this estimator via the neural estimation framework based on the
Donsker-Varadhan (DV) variational form [25] (see also [26–28]). The neural estimator is realized by
an `-neuron shallow ReLU network and the effective convergence rate of the resulting k-SMI estimate
is explored. We lift the convergence rates derived in [29] for neural estimators of f -divergences to
the k-SMI problem. The resulting rate scales as O

�
k
1/2(`�1/2 + m

�1/2 + kn
�1/2)

�
, where ` is

the number of neurons, m is the number of MC samples, and n is the number of (X,Y ) samples.
Equating `, m, and n results in the (optimal) parametric rate. Our result also shows that neural
estimation of k-SMI requires milder smoothness assumptions on the population distributions. Namely,
we relax the smoothness level b(dx + dy)/2c + 3 imposed in [29] to k + 3, i.e., adapting to the
projection dimension rather than the ambient one. This is a significant relaxation since we often have
dx, dy � k.

To further understand the effect of the ambient dimension, we explore how SIk(X;Y ) behaves as
dx, dy ! 1. To that end, we first provide a full characterization of SIk(X,Y ) between jointly Gaus-
sian variables, revealing that it scales as k2/(dxdy) times the squared Frobenius norm of the cross-
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covariance matrix. We then show that general k-SMI can be decomposed into a Gaussian part plus
a residual term that quantifies the average distance (over projections) from Gaussianity. The latter
is intimately related to the conditional central limit theorem (CLT) phenomenon [30–32], and we
use those ideas to identify approximate isotropy conditions under which the residual vanishes as
dx, dy ! 1. Lastly, we conduct an empirical study that validates our theory and explores applica-
tions to independence testing and sliced infoGAN. Specifically, we revisit the infoGAN generative
model [6] and replace the classic MI used therein with SMI. Training the model, we find that it
successfully learns disentangled representations despite the low-dimensional projections, suggesting
that SMI can replace classic MI even in applications with complex underlying structure.

2 Background and Preliminaries

2.1 Notation and Definitions

Notation. For d � 1, k·k is the Euclidean norm in R
d, h·, ·i is the inner product, while k·k1 is the `1

norm. We use k ·kop and k ·kF for the operator and Frobenius norms of matrices, respectively. Matrix
inequalities are understood in the sense of (partial) semi-definite ordering, i.e., we write A ⌫ B when
A� B is positive semi-definite. The Stiefel manifold of d⇥ k matrices with orthonormal columns is
denoted by St(k, d). For a d⇥ k matrix A, we use pA : Rd ! R

k for the orthogonal projection onto
the row space of A.

Let P(Rd) denote the space of Borel probability measures on R
d, and set P2(Rd) := {µ 2 P(Rd) :R

kxk2dµ(x) < 1} as the subset of distributions with finite 2nd absolute moment. For µ, ⌫ 2 P(Rd),
we use µ⌦ ⌫ to denote a product measure, while spt(µ) designates the support of µ. We use Leb
for the Lebesgue measure on R

d, and denote the subset of probability measures that are absolutely
continuous w.r.t. Leb by Pac(Rd). For a measurable map f , the pushforward of µ under f is
denoted by f]µ = µ � f

�1, i.e., if X ⇠ µ then f(X) ⇠ f]µ. For a, b 2 R, we use the notation
a ^ b = min{a, b} and a _ b = max{a, b}. We write a .x b when a  Cxb for a constant Cx that
depends only on x (a . b means the constant is absolute).

For a multi-index ↵ = (↵1, . . . ,↵d) 2 Z
d
�0, the partial derivative operator of order k↵k1 is denoted

by D
↵ = @↵1

@↵1x1
. . .

@↵d

@↵dxd
. For an open set U ✓ R

d and integer s � 0, the class of functions
whose partial derivatives up to order s all exist and are continuous on U is denoted by Cs(U), and
we define the subclass Cs

b(U) := {f 2 Cs(U) : max↵:k↵k1s kD↵
fk1,U  b}. The restriction

of f : Rd ! R to X ✓ R
d is denoted by f |X . For compact X , slightly abusing notation, we set

kXk := supx2X kxk.

Divergences and information measures. Let µ, ⌫ 2 P(Rd) satisfy µ ⌧ ⌫, i.e., µ is absolutely
continuous w.r.t. ⌫. The relative entropy and the relative Fisher information are defined, respectively,
as D(µk⌫) :=

R
Rd log(dµ/d⌫)dµ and J(µk⌫) :=

R
Rd

��r log(dµ/d⌫)
��2dµ. The 2-Wasserstein dis-

tance between µ, ⌫ 2 P2(Rd) is W2(µ, ⌫) := inf⇡2⇧(µ,⌫)

� R
Rd⇥Rd kx � yk2 d⇡(x, y)

�1/2, where
⇧(µ, ⌫) is the set of couplings of µ and ⌫. All three measures are divergences, i.e., non-negative
and nullify if and only if (iff) µ = ⌫. In fact, W2 is a metric on P2(Rd), which metrizes weak
convergence plus convergence of 2nd moments.

MI and differential entropy are defined from the relative entropy as follows. Consider a pair of random
variables (X,Y ) ⇠ µXY 2 P(Rdx ⇥ R

dy ) and denote the corresponding marginal distributions by
µX and µY . The MI between X and Y is given by I(X;Y ) := D(µXY kµX ⌦ µY ) and serves as a
measure of dependence between those random variables. The differential entropy of X is defined
as h(X) = h(µX) := �D(µXkLeb). MI between (jointly) continuous variables and differential
entropy are related via I(X;Y ) = h(X) + h(Y )� h(X,Y ); decompositions in terms of conditional
entropies are also available [1]. The Fisher information of X ⇠ µ is J(µ) := J(µkLeb). Denoting
the density of µ by fµ, the Fisher information matrix of µ is JF(µ) := E [(r log fµ)(r log fµ)|],
and we have tr

�
JF(µ)

�
= J(µ).
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2.2 Lipschitz Continuity of Projected Differential Entropy

A key technical tool we use is a new continuity result of differential entropy w.r.t. the 2-Wasserstein
distance. It strengthens an earlier version of this result from [24], and may be of independent interest.
Lemma 1 (Wasserstein continuity). Let µ, ⌫ 2 P2(Rd) satisfy µ ⌧ Leb and h(µ), J(⌫) < 1. Then

h(µ)� h(⌫) 
p
J(⌫)W2(µ, ⌫),

and the constant above is optimal in the sense that sup µ 6=⌫:
h(µ),J(⌫)<1

h(µ)�h(⌫)p
J(⌫)W2(µ,⌫)

= 1.

The proof of the lemma, given in Appendix A.1, follows by invoking the HWI inequality for
the difference of relative entropies [22, 23] with an isotropic Gaussian reference measure �� =
N (0,�2Id), re-expressing the relative entropy difference in terms of differential entropies, and taking
the limit as � ! 0.
Remark 1 (Comparison to [24]). Continuity of differential entropy w.r.t. the W2 was previously

derived in [24, Proposition 1], but via a different argument, under stronger conditions, and without

an optimal constant. The inequality from [24] assumed (c1, c2)-regularity of the density of ⌫ (i.e., that

kr log f⌫(x)k  c1kxk+ c2, for all x 2 R
d
), which is stronger than J(⌫) < 1 when ⌫ 2 P2(Rd).

A rather direct implication of Lemma 1 is the following Lipschitz continuity of projected entropy
(also proven in Appendix A.1), which plays a key role in the subsequent analysis of k-SMI estimation.
Proposition 1 (Lipschitzness of projected entropy). Let µ 2 P2(Rd) have covariance matrix ⌃µ and

J(µ) < 1. For any A,B 2 St(k, d), we have

��h(pA] µ)�h(pB] µ)
��
p
kkJF(µ)kopk⌃µkopkA�BkF.

3 k–Sliced Mutual Information

SMI was defined in [17] as an average of MI terms between one-dimensional projections of the
considered random variables. As higher dimensional projections preserve more information about
the original (X,Y ), we extend this definition to k-dimensional projections.
Definition 1 (k-sliced mutual information). For 1  k  dx ^ dy, the k-SMI between (X,Y ) ⇠
µXY 2 P(Rdx ⇥ R

dy ) is defined in (1), where �k,d is the uniform distribution on St(d, k).

k-SMI can be equivalently expressed in term of conditional (classic) MI as SIk(X;Y ) =
I(A|

X; B|
Y |A,B), where (A,B) ⇠ �k,dx ⌦ �k,dy , i.e., (A,B) are independent and uniform over

the respective Stiefel manifolds. k-SMI reduces to the SMI from [17] when k = 1. Below we show
that SIk preserves the structural properties of SMI, as derived in [17, Section 3].
Remark 2 (Related definitions). k-SMI entropy decompositions and chain rule require defining

k-sliced entropy and conditional k-SMI. For (X,Y, Z) ⇠ µXY Z 2 P(Rdx ⇥ R
dy ⇥ R

dz ) and

(A,B,C) ⇠ �k,dx ⌦ �k,dy ⌦ �k,dz , the k-sliced entropy of X is shk(X) := h(A|
X|A), while the

conditional version given Y is given by shk(X|Y ) := h(A|
X|A,B,B|

Y ). The condition k-SMI

between X and Y given Z is SIk(X;Y |Z) := I(A|
X; B|

Y |A,B,C,C|
Z).

3.1 Structural Properties

We verify that k-SMI preserves structural properties previously established in [17] for SMI.
Proposition 2 (k-SMI properties). For any 1  k  dx ^ dy , the following properties hold:

1. Identification of independence: SIk(X;Y ) � 0 with equality iff X and Y are independent.

2. Bounds: For integers k1 <k2: SIk1(X;Y ) SIk2(X;Y ) sup
A2St(k2,dx)
B2St(k2,dy)

I(A|
X; B|

Y ) I(X;Y ).

3. Relative entropy and variational form: Let (X̃, Ỹ )⇠ µX ⌦µY and (A,B)⇠ �k,dx ⌦�k,dy , then

SIk(X;Y ) = DKL

�
(pA, pB)]µXY

��(pA, pB)]µX ⌦ µY

��A,B
�

= sup
f : St(k,dx)⇥St(k,dy)⇥R2k!R

E
⇥
f(A,B,A|

X,B|
Y )
⇤
� log

⇣
E

h
e
f(A,B,A|X̃,B|Ỹ )

i⌘
,

where the supremum is over all measurable functions for which both expectations are finite.

4



4. Entropy decomposition: SIk(X;Y ) = shk(X)� shk(X|Y ) = shk(Y )� shk(Y |X) = shk(X)+
shk(Y )� shk(X,Y ), provided that all the relevant (joint / marginal / conditional) densities exist.

5. Chain rule: For any X1, . . . , Xn, Y, Z, we have SIk(X1, . . . , Xn;Y ) = SIk(X1;Y ) +Pn
i=2 SIk(Xi;Y |X1, . . . , Xi�1). In particular, SIk(X,Y ;Z) = SIk(X;Z) + SIk(Y ;Z|X).

6. Tensorization: For mutually independent {(Xi,Yi)}ni=1, SIk
�
{Xi}ni=1;{Yi}ni=1)=

nP
i=1

SIk(Xi;Yi).

The proposition is proven in Appendix A.2 via a direct extension of the k = 1 argument from [17].

4 Estimation and Asymptotics of k-SMI in High Dimensions

As shown in [17], SMI can be estimated from high-dimensional data by combining a MI estimator
between scalar random variables and a MC integration step. However, the bounds from [17] do
not explicitly capture dependence on the ambient dimension, which is crucial for understanding
scalability of the approach. We now extend the estimator from [17] to k-SMI and provide formal
guarantees with explicit dependence on k, dx, and dy , thus closing the said gap.

To estimate k-SMI, let {(Xi, Yi)}ni=1 be i.i.d. from µXY 2 P(Rdx ⇥ R
dy ) and proceed as follows:

1. Draw {(Aj ,Bj)}mj=1 i.i.d. from �k,dx⌦�k,dy (i.e., each pair is uniform on St(k, dx)⇥St(k, dy)).1

2. Compute
�
(A|

jXi,B
|
jYi)

 m,n

j,i=1
, which, for fixed (Aj ,Bj), are samples from (pA, pB)]µXY .

3. For each j = 1, . . . ,m, a MI estimator between k-dimensional random vectors is applied to the n
samples corresponding to (Aj ,Bj) to obtain an estimate Î

�
(A|

jX)n, (B|
jY )n

�
of I(A|

jX; B|
jY ),

where (A|
jX)n := (A|

jX1, . . . ,A
|
jXn) and (B|

jY )n is defined similarly.
4. Take a MC average of the above estimates, resulting in the k-SMI estimator:

bSI
m,n

k :=
1

m

mX

j=1

Î
�
(A|

jX)n, (B|
jY )n

�
. (2)

We provide formal guarantees for the quality of the bSI
m,n

k estimator given a generic k-dimensional MI
estimator Î(·, ·) in Step 3. Afterwards, we instantiate the latter as a neural MI estimator and provide
explicit convergence rates. To get further insight into the dependence on dimension, we study asymp-
totics of Gaussian k-SMI as dx, dy ! 1 and corresponding Gaussian approximation arguments.

4.1 Error Bounds with Explicit Dimension Dependence

Our analysis decomposes the overall error of bSI
m,n

k into the MC error plus the error of the k-
dimensional MI estimator Î(·, ·). We first consider an arbitrary estimator Î(·, ·) whose error is
(implicitly) upper bounded by �k(n) and focus on analyzing the MC error, targeting explicit de-
pendence on k, dx, and dy. As in [17], the statement relies on the following assumption on the
k-dimensional estimator Î(·; ·).
Assumption 1. (X,Y ) ⇠ µXY 2 P(Rdx ⇥ R

dy ) is such that I(A|
X; B|

Y ) can be estimated by

Î
�
(A|

X)n, (B|
Y )n

�
with error at most �k(n), uniformly over (A,B) 2 St(k, dx)⇥ St(k, dy).

Theorem 1 (k-SMI estimation error). Let µXY 2 P2(Rdx⇥R
dy ) satisfy Assumption 1, have marginal

covariance matrices ⌃X and ⌃Y , and J(µXY )<1. Then the estimator from (2) has error bounded by

E

h���SIk(X;Y )� bSI
m,n

k

���
i
 C(µXY )

s
k(dx + dy)

dxdy
m

� 1
2 + �k(n), (3)

1A simple approach for sampling the uniform distribution on St(k, d) is to draw kd random samples from
N (0, 1), arrange them into an d⇥ k matrix ⇤, and compute ⇤(⇤|⇤)�1/2 (cf. [33, Theorem 2.2.1]). A slightly
more efficient approach is to first apply a QR decomposition to ⇤ and then follow the aforementioned sampling
method only to the Q matrix. Note that for k = O(1), both computation times are linear in d (QR decomposition
via the Schwarz-Rutishauser algorithm is O(dk2)) [34].
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where C(µXY ) = 21
q
kJF(µXY )kop

�
k⌃Xkop _ k⌃Y kop

�
.

The proof of Theorem 1 (in Appendix A.3) bounds the MC error by
�
Var
�
iXY (A,B)

�
/m
� 1

2 , where
iXY (A,B) := I(A|

X; B|
Y ) and (A,B) ⇠ �k,dx ⌦ �k,dy . We then use the continuity result from

Proposition 1 along with the entropy decomposition of k-SMI (Proposition 2, Claim 4) to show that
iXY is Lipschitz continuous (w.r.t. the Frobenius norm) on St(k, dx) ⇥ St(k, dy). Concentration
of Lipschitz functions on the Stiefel manifold and the Efron-Stein inequality then imply the above
bound. This result clarifies the dependence of the MC error on k, dx, and dy, and reveals scaling
rates of the parameters with m for which (high-dimensional) convergence holds true.
Remark 3 (Comparison to [17]). Theorem 1 from [17] treats the k = 1 case under stronger high-level

assumptions and without identifying the dependence on dimension. Namely, assuming the uniform

bound kiXY kL1  M , they control the variance by M
2
/4 to obtain the m

�1/2
rate, although M

generally depends on (dx, dy). Herein, we rely on the finer observation that iXY is Lipschitz and use

concentration results to get a dimension-dependent bound in terms of basic characteristics of (X,Y ).

Remark 4 (Blessing of dimensionality). The constant in the MC error may decay as dimension

grows. For instance, if X and Y are both d-dimensional with identity covariance matrices, then

k⌃Xkop, k⌃Y kop are Od(1). For such (X,Y ), the MC bound decays to 0 as d ! 1, assuming that

kJF(µXY )kop grows at most sublinearly with d. Also note that C(µXY ) has the same invariances as

the k-SMI: it is invariant to translations and scalings of the form (X,Y ) 7! (sX, sY ) for s 6= 0.

4.2 Neural Estimation

We now instantiate the k-dimensional MI estimator via the neural estimation framework of [29, 35],
and obtain an explicit bound on �k(n) in terms of m, n, k, and the size of the neural network.

Neural estimation of MI relies on the DV variational form

I(U ;V ) = sup
f :Rdu⇥Rdv!R

E[f(U, V )]� log
⇣
e
E[f(Ũ,Ṽ )]

⌘
,

where (U, V ) ⇠ µUV , (Ũ , Ṽ ) ⇠ µU ⌦µV , and f is a measurable function for which the expectations
above are finite. Define the class of `-neuron ReLU network as

G`
du,dv

(a) :=

8
><

>:
g : Rdu+dv ! R :

g(z) =
X`

i=1
�i� (hwi, zi+ bi) + hw0, zi+ b0,

max
1i`

kwik1 _ |bi|  1, max
1i`

|�i| 
a

2`
, |b0|, kw0k1  a

9
>=

>;
,

where �(z) = z _ 0 is the ReLU activation; set the shorthand G`
du,dv

= G`
du,dv

(log log ` _ 1). Given
i.i.d. data (U1, V1), . . . , (Un, Vn) from µUV , the neural estimator parameterizes the DV potential f
by the class G`

du,dv
and approximates expectations by sample means,2 resulting in the estimate

Î`du,dv
(Un

, V
n) := sup

g2G`
du,dv

1

n

nX

i=1

g(Ui, Vi)� log

 
1

n

nX

i=1

e
g(Ui,V�(i))

!
.

For k-SMI neural estimation, we set

bSI
`,m,n

k,NE :=
1

m

mX

j=1

Î`k,k
�
(A|

jX)n, (B|
jY )n

�
,

i.e., we use Î`k,k as the k-dimensional MI estimator in (2). This estimator is readily implemented
by parallelizing m `-neuron ReLU nets with inputs in R

2k and scalar outputs. We provide explicit
convergence rates for it over an appropriate distribution class, drawing upon the results of [29]
for neural estimation of f -divergences (see also [35]). For compact X ⇢ R

dx and Y ⇢ R
dy , let

Pac(X ⇥ Y) := {µXY 2 Pac(Rdx ⇥ R
dy ) : spt(µXY ) ✓ X ⇥ Y}, and denote the density of µXY

by fXY . The distribution class of interest is

Fk
dx,dy

(M, b) :=

⇢
µXY 2 Pac(X ⇥ Y) :

9 r 2 Ck+3
b (U) for some open set U � X ⇥ Y

s.t. log fXY = r|X⇥Y , I(X;Y )  M

�
,

2Negative samples, i.e., from µX ⌦ µY , can be obtained from the positive one via
(U1, V�(1)), . . . , (Un, V�(n)), where � 2 Sn is a permutation such that �(i) 6= i, for all i = 1, . . . , n.

6



which, in particular, contains distributions whose densities are bounded from above and below on
X ⇥ Y with a smooth extension to an open set covering X ⇥ Y . This includes uniform distributions,
truncated Gaussians, truncated Cauchy distributions, etc.

We next provide convergence rates for the k-SMI estimator from (2), uniformly over Fk
dx,dy

(M, b).

Theorem 2 (Neural estimation error). For any M, b � 0, we have

sup
µX,Y 2Fk

dx,dy
(M,b)

E

h���SIk(X;Y )� bSI
`,m,n

k,NE

���
i
.M,b,k,dx,dy,kX⇥Yk k

1
2
�
m

� 1
2 + `

� 1
2 + kn

� 1
2
�
.

The dependence on dx, dy above is only through the MC bound (3) (explicit) and kX ⇥ Yk (implicit).

Theorem 2 is proven in Appendix A.4 by combining the MC bound from Theorem 1 with the neural
estimation error bound from [29, Proposition 2]. To apply that bound for each I(A|

X; B|
Y ), where

(A,B) 2 St(k, dx)⇥ St(k, dy), we show that the existence of an extension r of log fXY with k + 3
continuous and uniformly bounded derivatives implies that the density of (A|

X,B|
Y ) also has such

an extension.
Remark 5 (Parametric rate and optimality). Taking ` ⇣ m ⇣ n, the resulting rate in Theorem 2

is parametric, and hence minimax optimal. This result implicitly assumes that M is known when

picking the neural net parameters. This assumption can be relaxed to mere existence of (an unknown)

M , resulting in an extra polylog(`) factor multiplying the n
�1/2

term.

Remark 6 (Comparison to [29]). Neural estimation of classic MI under the framework of [29]

requires the density to have Hölder smoothness s � b(dx + dy)/2c+ 3. For SIk(X;Y ), smoothness

of k+3 is sufficient (even though the ambient dimension is the same), which mean it can be estimated

over a larger class of distributions. This is another virtue of slicing in addition to fast convergence

rates. For SMI (i.e., k = 1) as in [17], a constant smoothness level suffices irrespective of (dx, dy).

4.3 Characterization of and Approximation by Gaussian k-SMI

To gain further insight into the dependence of k-SMI on dimension, we fully characterize it in the
Gaussian case. Afterwards, we show that general k-SMI decomposes into a Gaussian part plus a
residual, and discuss conditions for the latter to decay as d ! 1. As before, ⌃X is the covariance
matrix of X (similarly, for Y ), while CXY := E

⇥
(X � E[X])(Y � E[Y ])|

⇤
is the cross-covariance.

Theorem 3 (Gaussian k-SMI). Let (X,Y ) ⇠ �XY = N (0,⌃XY ) be jointly Gaussian random

variables. Suppose that k⌃Xkopk⌃�1
X kop, k⌃Y kopk⌃�1

Y kop   and k⌃�1/2
X CXY ⌃

�1
Y kop  ⇢ for

some  � 1 and ⇢ < 1. Then, for any fixed k, we have

SIk(X;Y ) =
k
2kCXY k2F

2tr(⌃X)tr(⌃Y )

�
1 + o(1)

�
,

as dx, dy ! 1, where o(1) denotes a quantity that converges to zero in the limit.

Theorem 3 is proven in Appendix A.5. It states that if ⌃X and ⌃Y have bounded condition numbers
and the correlation, as quantified by k⌃�1/2

X CXY ⌃
�1
Y kop, is less than 1, then the Gaussian k-SMI

is asymptotically equivalent to the squared Frobenius norm CXY , normalized by the traces of
the marginal covariances. Since kCXY k2F  (dx ^ dy)⇢2 k⌃Xkopk⌃Y kop and tr(⌃X)tr(⌃Y ) �
dxdyk⌃�1

X kopk⌃�1
Y kop, we see that the SIk(X;Y ) typically decreases with dimension as d�1

x ^ d
�1
y .

This rate is inline with the shrinkage with dimension of the MC bound from (3), which renders that
bound meaningful even when k-SMI is itself decaying, e.g., under the framework of Theorem 3.

k-SMI decomposition and Gaussian approximation. Given the above result and the recent interest
in Gaussian approximations of sliced Wasserstein distances [36, 37], we present a decomposition of
k-SMI into a Gaussian part plus a residual. For (X,Y ) ⇠ µXY 2 P(Rdx ⇥ R

dy ), let (X⇤
, Y

⇤) ⇠
�XY := N (0,⌃XY ) be jointly Gaussian with the same covariance as (X,Y ). The k-SMI satisfies

SIk(X;Y ) = SIk(X
⇤;Y ⇤) + E

⇥
�XY (A,B)

⇤
, (4)

where, for each (A,B) 2 St(k, dx)⇥ St(k, dy)

�XY (A,B) := D
�
(pA, pB)]µXY

��(pA, pB)]�XY

�
� D

�
(pA, pB)]µX ⌦µY

��(pA, pB)]�X ⌦�Y

�
.
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This decomposition is proven in Appendix A.7. Theorem 3 fully accounts for the first summand,
which begs the questions of whether it is the leading term in the decomposition, and under what
conditions? This question is intimately related to the conditional CLT of low-dimensional projections
under relative entropy [32]. This is a challenging and active research topic [30–32], for which sharp
convergence rates remain unknown. As a first step towards a complete answer, in Appendix B we
bound this residual term and identify mild isotropy conditions on the marginal distributions of X and
Y that are sufficient for the residual term to vanish as dx, dy ! 1.

5 Experiments

Population k-SMI MC Standard Deviation

Figure 1: Decay with dimension the population k-SMI
(left) and the associated MC standard deviation (right).

MC error and Gaussian k-SMI rates.

Under the Gaussian setting described next,
we illustrate the dependence on k, dx, dy

of (i) the population k-SMI expression in
Theorem 3, and (ii) the associated MC
estimation error from Theorem 1. Let
Z1, Z2 ⇠ N (0, Id) and V ⇠ N (0, I2) be
independent, and set X = P1V + Z1 and
Y = P2V + Z2, where P1,P2 2 R

d⇥2

are projection matrices (with i.i.d. normal
entries). We draw m = 103 pairs of pro-
jection matrices {(Aj ,Bj)}mj=1, and use
the classic k-NN MI estimator of [38] with
n = 16⇥103 samples of (X,Y ) to approx-
imate the MI along each projection pair,
i.e., for each j = 1, . . . , 103, we compute
I
�
(A|

jX)n, (B|
jY )n

�
. Note that the mean of I

�
(A|

jX)n, (B|
jY )n

�
is the population k-SMI (which,

in this Gaussian example, is given by Theorem 3), while its standard deviation is the constant in front
of the m

�1/2 term in (3) of Theorem 1. Figure 1 plots the said mean and standard deviation of the
projected MI terms I

�
(A|

jX)n, (B|
jY )n

�
. The rates of decay in both cases follow those predicted

by Theorems 3 and 1, respectively. This implies that m need not be rapidly scaled up, even as the
population k-SMI shrinks with increasing dimension.

Independence testing. It was shown in [17] that SMI can be used for independence testing between
high-dimensional variables, when classic MI is too costly to estimate. We revisit this experiment with
k-SMI to demonstrate similar scalability and understand the effect of k. The test estimates k-SMI
based on n samples from µXY and then thresholds the value to declare dependence/independence.

(a) Y encodes single X feature (sinusoidal) (b) Rank 2 common signal

(c) Rank 3 common signal (d) Rank 4 common signal

Figure 2: Independence testing with k-SMI: AUC ROC versus sample size n for different k and d.
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k = 1 k = 2 k = 5

Figure 3: Neural estimation rates: Dashed line shows the ground truth, circle line is the value of the
parallel neural estimator from Section 4.2, and the cross line is the SMI neural estimator from [17].
The parallel neural estimator converges at a faster rate for all considered k and d.

Two types of models for (X,Y ) are considered: (i) X,Z ⇠ N (0, Id) are independent and Y =
1p
2

�
1p
d
sin(1|

X)1+ Z
�

(i.e., X and Y share one sinusoidal feature), and (ii) the rank 2

common signal model from the previous paragraph, as well as its extension to ranks 3 and 4. Figure 2
at the bottom of the previous page shows the area under the curve (AUC) of the receiver operating
characteristic (ROC) as a function of n for each of those models. Figure 2(a) shows the results
for Model (i), while Figures 2(b)-(c) corresponds to Model (ii) with ranks 2, 3, and 4, respectively.
The estimator bSI

m,n

k from (2) is realized with m = 1000 and Î(·, ·) as the Kozachenko–Leonenko
estimator [38]; the AUC ROC curves are computed from 100 random trials. For Figures 4(a) and 4(b),
we vary the ambient dimension as d = 5, 10, 20, while the projection dimension is k = 1, 2, 4, d;
note that k = 1 corresponds to the SMI from [17] and k = d to classic MI. In Figures 4(c) and
4(d) we consider, respectively, a common signal of rank 3 and 4. The ambient dimension is varied
as d = 10, 20, 50, while the projection dimension is k = 1, 2, 3, d. Evidently, k-SMI-based tests
perform well even when d is large, while tests using classic MI fail. 1-SMI has a clear advantage in
the model from Figure 4(a), where the common signal is 1-dimensional, but this is no longer the case
for the models from Figures 4(b)-(d), where the shared structure is of higher dimension. Indeed, in
Figure 4(b) we see that 2-SMI generally presents the best performance as it can better capture the
underlying structure. For Figures 4(c) and 4(d), 3-SMI slightly outperforms 2-SMI for larger sample
sizes, particularly in higher dimension. This highlights the potential gain of using higher k values (to
retain more information about the original signal, albeit at the cost of higher sample complexity) and
the importance of adapting them to the intrinsic dimensionality of the model.

Neural estimation. Figure 3 (on the next page) illustrates the convergence of the k-SMI neural
estimator3 from Section 4.2 as n = m increase together, for X = Y ⇠ N (0, Id). For comparison, we
include the original neural estimator of [17], which uses a single neural net to approximate a shared
DV potential.4 While both neural estimators eventually converge to the ground truth, our parallel
implementation converges much faster. Again note the clear decay of the true k-SMI as d increases.

Sliced InfoGAN. We demonstrate a simple application of k-SMI to modern machine learning.
Recall the InfoGAN [6]—a GAN variant that learns disentangled latent factors by maximizing a
neural estimator of the MI between those factors and the generated samples. Figure 4(left) shows
InfoGAN results for MNIST,5 where 3 latent codes (C1, C2, C3) were used for disentanglement,
with C1 being a 10-state discrete variable and (C2, C3) being continuous variables with values in
[�2, 2]. The shown images are generated by the trained InfoGAN, where each row of corresponds to

3
m parallel 3-layer ReLU NNs were used, each with 30 · k hidden units in each layer.

4A 3-layer ReLU NN was used with 20 · d hidden units in each layer.
5Used experiment and code from https://github.com/Natsu6767/InfoGAN-PyTorch.
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Original InfoGAN 1-Sliced InfoGAN 5-Sliced InfoGAN

Figure 4: MNIST images generated via InfoGAN using neural estimators of MI (left), 1-SMI
(middle), and 5-SMI (right). The latent codes C1 (encodes digits) is varied across rows, while
columns correspond to (random) C2, C3 values. In all three cases, the latent codes are successfully
disentangled.

a different values the discrete C1, while columns corresponds to random C2, C3 values. Despite being
completely unsupervised, C1 has been successfully disentangled to encode the digits 0-9. Figure
4(middle) shows the resulting generated images when the neural estimator for MI is replaced with a
neural 1-SMI estimator with m = 103, and Figure 4(right) for 5-SMI. Evidently, 1-SMI and 5-SMI
successfully disentangle the latent factors, despite seeing only 103 1- (respectively 5-) dimensional
projections of this very high-dimensional data.

6 Summary and Concluding Remarks

This paper introduced k-SMI as a measure of statistical dependence defined by averaging MI terms
between k-dimensional projections of the considered random variables. Our objective was to quantify
and provide a rigorous justification for the perceived scalability of sliced information measures. We
have done so by studying MC-based estimators of k-SMI, neural estimation methods, and asymptotics
of SIk(X;Y ) under the Gaussian setting. Throughout, results with explicit dependence on k, dx, dy

were provided, revealing different gains associated with slicing, from the anticipated scalability to
relaxed smoothness assumptions needed for neural estimation. Numerical experiments supporting our
theory were provided, as well as a more advanced application to sliced infoGAN, showing that k-SMI
can successfully replace classic MI even in applications with more intricate underlying structure.

Future research directions, both theoretical and applied, are abundant. In particular, we seek to
derive sharp rates of decay of the residual term in (4), thereby establishing the Gaussian k-SMI as
the leading term in that decomposition. Extensions of our results to the case when the projection
dimensions for X and Y are different, i.e., k1 6= k2, may allow further flexibility and are also of
interest. We also plan to explore non-linear dimensionality reduction maps, as in the generalized
sliced Wasserstein distance setting [39], as well as non-uniform distributions over parameterizations
of the projection functions (cf. [40]). The max-SMI, where instead of averaging over (A,B) we
maximize over them, is another interesting avenue. On the application side, there are various machine
learning models that utilize MI [6–8, 10]; revisiting those with k-SMI is an appealing endeavor due to
the expected gains from slicing and the formal guarantees our theory can provide for those systems.
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