
A Mathematical Proofs1

Here we provide proofs for Theorem 1 in the main paper.2

Theorem. The gap between the expected return of the model and the environment is bounded as:3

∣∣∣J(π)− J P̂ (π)
∣∣∣ ≤ 2Rmax

(1− γ)2

(
(2− γ)ϵπ + (1− γ)

∞∑
t=1

γtϵmt

)
, (1)

where ϵπ := maxs DTV (πD(·|s)∥π(·|s)) denotes the policy distribution shift, ϵmt :=4

Es∼P̂t−1(s,a;π)

[
DTV (P̂ (·|s, a)∥P (·|s, a))

]
denotes the upper bound of one-step model prediction5

error at timestep t of the model rollout trajectory, DTV (p∥q) refers to the total variation between dis-6

tribution p and q, Rmax := maxs,a R(s, a), and P̂t−1(s, a;π) denotes the state-action distribution7

at t under P̂ and π.8

Proof.

∣∣∣J P̂ (π)− J(πD)
∣∣∣ = ∣∣∣∣∣

∞∑
t=0

γt
∑
s,a

(
P̂π
t (s, a)− PπD

t (s, a)
)
R(s, a)

∣∣∣∣∣
≤ Rmax

∞∑
t=0

γt
∑
s,a

∣∣∣P̂π
t (s, a)− PπD

t (s, a)
∣∣∣

≤ 2Rmax

∞∑
t=0

γtDTV

(
P̂π
t (s, a)∥P

πD
t (s, a)

)
. (2)

Applying Lemma 1, we have:9

DTV

(
P̂π
t (s, a)∥P

πD
t (s, a)

)
≤ DTV

(
P̂π
t (s)∥P

πD
t (s)

)
+ ϵπ. (3)

Similar to the proof of Lemma B.2 in [Janner et al., 2019], we have:10

∣∣∣P̂π
t (s)− PπD

t (s)
∣∣∣ = ∣∣∣∣∣∑

s′

P̂π (st = s | s′) P̂π
t−1 (s

′)− PπD (st = s | s′)PπD
t−1 (s

′)

∣∣∣∣∣
≤
∑
s′

∣∣∣P̂π (st = s | s′) P̂π
t−1 (s

′)− PπD (st = s | s′)PπD
t−1 (s

′)
∣∣∣

=
∑
s′

∣∣∣P̂π (s | s′) P̂π
t−1 (s

′)− PπD (s | s′) P̂π
t−1 (s

′) + PπD (s | s′) P̂π
t−1 (s

′)− PπD (s | s′)PπD
t−1 (s

′)
∣∣∣

≤
∑
s′

P̂π
t−1 (s

′)
∣∣∣P̂π (s | s′)− PπD (s | s′)

∣∣∣+ PπD (s | s′)
∣∣∣P̂π

t−1 (s
′)− PπD

t−1 (s
′)
∣∣∣

= Es′∼P̂π
t−1

[∣∣∣P̂π (s | s′)− PπD (s | s′)
∣∣∣]+∑

s′

PπD (s | s′)
∣∣∣P̂π

t−1 (s
′)− PπD

t−1 (s
′)
∣∣∣ .

(4)

Then, the term DTV

(
P̂π
t (s)∥P

πD
t (s)

)
can be bounded by:11

1

DTV

(
P̂π
t (s)∥P

πD
t (s)

)
=

1

2

∑
s

∣∣∣P̂π
t (s)− PπD

t (s)
∣∣∣

=
1

2
Es′∼P̂π

t−1

[∑
s

∣∣∣P̂π (s | s′)− PπD (s | s′)
∣∣∣]+ 1

2
DTV

(
P̂π
t−1 (s

′) ||PπD
t−1 (s

′)
)

=
1

2

t∑
t′=1

Es′∼P̂π
t′−1

[∑
s

∣∣∣P̂π(s|s′)− PπD (s|s′)
∣∣∣]

=
1

2

t∑
t′=1

Es′∼P̂π
t′−1

[∑
s

∣∣∣∣∣∑
a

P̂π(s, a|s′)− PπD (s, a|s′)

∣∣∣∣∣
]

≤ 1

2

t∑
t′=1

Es′∼P̂π
t′−1

[∑
s,a

∣∣∣P̂π(s, a|s′)− PπD (s, a|s′)
∣∣∣]

=

t∑
t′=1

Es′∼P̂π
t′−1

DTV

(
P̂π(s, a|s′)∥PπD (s, a|s′)

)
. (5)

Again applying Lemma 1, we have:12

DTV

(
P̂π(s, a|s′)∥PπD (s, a|s′)

)
≤ ϵπ + Ea∼πDTV

(
P̂ (s|s′, a)∥P (s|s′, a)

)
. (6)

Plugging Eq. (6) in Eq. (5) we have:13

DTV

(
P̂π
t (s)∥P

πD
t (s)

)
≤

t∑
t′=1

ϵπ + ϵmt′ = tϵπ +

t∑
t′=1

ϵmt′ . (7)

Plugging Eq. (7) in Eq. (3) we have:14

DTV

(
P̂π
t (s, a)∥P

πD
t (s, a)

)
≤ tϵπ +

t∑
t′=1

ϵmt′ + ϵπ = (t+ 1)ϵπ +

t∑
t′=1

ϵmt′ . (8)

Plugging Eq. (8) in Eq. (2) we have:15

∣∣∣J P̂ (π)− J(πD)
∣∣∣ ≤ 2Rmax

∞∑
t=0

γt

(
(t+ 1)ϵπ +

t∑
t′=1

ϵmt′

)

= 2Rmax

(
ϵπ

(1− γ)2
+

1

(1− γ)

∞∑
t=1

γtϵmt

)

=
2Rmax

(1− γ)2

(
ϵπ + (1− γ)

∞∑
t=1

γtϵmt

)
. (9)

Therefore, the result in Eq. (1) can be derived:16 ∣∣∣J(π)− J P̂ (π)
∣∣∣ ≤ |J(π)− J(πD)|+

∣∣∣J(πD)− J P̂ (π)
∣∣∣

≤ 2Rmaxϵπ
1− γ

+
2Rmax

(1− γ)2

(
ϵπ + (1− γ)

∞∑
t=1

γtϵmt

)

=
2Rmax

(1− γ)2

(
(2− γ)ϵπ + (1− γ)

∞∑
t=1

γtϵmt

)
.

17

2

Lemma 1. (TVD of joint distribution) Suppose that we have two distributions P1(x, y) =18

P1(x)P1(y|x) and P2(x, y) = P2(x)P2(y|x). We can bound the total variance difference of the joint19

as:20

DTV (P1(x, y)∥P2(x, y)) ≤ DTV (P1(x)∥P2(x)) + Ex∼P1
[DTV (P1(y|x)∥P2(y|x))].

Lemma 1 is proved in the MBPO paper, so we only provide the result here.21

B Experimental Details22

We describe some implementation details and hyperparameter settings below.23

B.1 Implementation and Hyperparameter Settings24

Our implementation is overall based on MBPO. The algorithm for policy learning, the actor-critic25

network architecture, the boostrapped model ensemble technique and other details are all the same26

with those in MBPO. The only modified part is the model learning process which is the focus of27

the main paper. In P2P-MPC, the candidate action sequences are generated in a parallel manner to28

accelerate this process, at the cost of some extra memory cost. The number of candidate sequences29

is set to 4 for Hopper, Ant and Humanoid, and 6 for HalfCheetah. In P2P-RL, we adopt the30

normalization technique used in TD3+BC for the state and RL loss, and the hyperparameter α is31

set to 2. The model is trained 50 times for InvertedDoublePendulum, Hopper and HalfCheetah, and32

20 times for rest of the tasks. To learn the ζ and ν network in DualDICE, we first train them for33

1e5 times at the 5-th epoch and then train them for 2 times every time before policy learning. The34

learning rate of these two networks are both set to 1e-4 and the batch size is set to 1024.35

B.2 Environment Settings36

All the environments remain the same with the original version of the tasks, except for the Inverted-37

DoublePendulum task where some additional noises are added to the states, which are set to Gaussian38

noises with mean 0 and standard deviation 10.39

C Analysis of the Model Learning Process of MPC-RL40

0 20k 40k
Steps

-8

-4

0

4

Lo
ss

Hopper

0 40k 80k 120k
Steps

-5

-3

-1

1

Lo
ss

Humanoid

RL loss BC loss

0 50k 100k 150k
Steps

6

4

2

0

2

Lo
ss

Ant

Figure 1: Quantitative analysis of the two kinds of losses in the model learning process of MPC-RL. “RL loss”
means the loss of the reinforcement learning objective, and “BC loss” means the loss of the behavior cloning
objective.

As shown in Section 4.1, the performance of P2P-RL is generally worse than P2P-MPC. An investiga-41

tion on the model learning process is shown in Figure 1, implying that the cause of this suboptimality42

may be the difficulty in balancing the loss of behavior cloning and RL.43

D Extended Experiment for the Case When the Goal is in an Uncertain44

Region45

Serving as an extended experiment for the maze experiment in Section 4.4, we investigate the46

case when the goal is in an uncertain region in the online setting. For the convenience of im-47

3

plementation, here the term "uncertainty" is equated with the epistemic uncertainty [Chua et al.,48

2018], which can be quantified as the amount of relevant real-world data. Therefore, a region49

with more data is considered to have lower uncertainty. Since in pure online settings the uncer-50

tainty of regions is hard to control during the training iterations, we first pretrain the model with51

an offline dataset and then switch to online training. The goal is allocated to the grey region52

in Figure 6 where the relevant offline samples are partially discarded. The percent of discarded53

samples is set to 25%, 50%, 75% and 100% respectively and the results are shown in Table 1.54

25% 50% 75% 100%
P2P-MPC 148.9± 35.9 75.4± 31.6 51.7± 29.8 43.2± 25.1
MBPO 116.2± 35.6 61.1± 34.8 47.5± 35.1 44.7± 30.2

Table 1: Results on the scenario where goal is in an uncertain region.

55

As the degree of uncertainty increases, the performances of both methods degrade rapidly, but P2P-56

MPC still outperforms MBPO in all these cases except for the 100% case, where P2P-MPC achieves57

slightly worse performance in average but better stability with lower standard deviation. To give a58

possible explanation of these results, it is worth noting that 1) P2P does not directly intervene the59

learning of policy or value function, but only improves the accuracy of the generated samples. As a60

result, the value function can still predict high value for uncertain regions and thus encourage the61

policy to explore them in the real environment; and 2) in contrast, even if the goal is in a region of62

high uncertainty and the model does not prevent the policy from exploring this region in the model,63

the value function can still predict low value of this region due to the lack of relevant data and thus64

mislead the learning of policy.65

E Pseudo Code66

The detailed descriptions of P2P-MPC and P2P-RL are respectively provided in Algorithm 1 and67

Algorithm 2.68

Algorithm 1 P2P-MPC

1: Initialize policy π, predictive model P̂ , model-error predictor R̂m, environment dataset De and
model dataset Dm.

2: for N epochs do
3: Train model P̂ on De via one-step prediction loss;
4: Train R̂m on De;
5: for E steps do
6: Take action in environment according to π, and store the new transition to De;
7: for M model rollouts do
8: Sample initial states s ∼ De uniformly for rollout trajectories;
9: for k rollout steps do

10: Take action a according to π and the current state s in the model;
11: Initialize sm0 = (s, a) and perform L parallelized rollouts for H steps;
12: Compute

∑H−1
t=0 R̂m(smt,j , a

m
t,j) for each rollout trajectory j, denoted as rmj , j ∈

{1, 2, ..., L}, and take (s′, r) = am0,argmaxj rmj
;

13: Store (s, a, r, s′) to Dm and then Let s = s′;
14: end for
15: end for
16: for G gradient updates do
17: Update π using data sampled from Dm;
18: end for
19: end for
20: end for

4

Algorithm 2 P2P-RL

1: Initialize policy π, predictive model P̂ , environment dataset De, model dataset Dm, ζ and ν for
using of DualDICE.

2: for N epochs do
3: Train the ζ and ν network according to the following objective derived by [Nachum et al.,

2019]: EDe
[(ν(smt , amt) − γν(smt+1, a

m
t+1))ζ(s

m
t , amt) − f∗(ζ(smt , amt)) − (1 − γ)ν(sm0 , am0)],

where f∗(x) := 2
3 |x|

2
3 and smt+1 is updated from (st+1, πD(st+1)) to (st+1, π(st+1)). Note that

here πD means the data-collecting policy and π the current policy;
4: Train P̂ by optimizing Esmt ,rmt ∼De,am∼P̂ (·|smt)[ζ(s

m
t , am)(log P̂ (am|smt)−Qm(smt , am))+

rmt], where the first term is the SAC [Haarnoja et al., 2018] loss and the second is the behavior
cloning loss. Note that Qm(sm, am) is the action-value function of P̂ and is trained by the same
objective as the one in SAC;

5: for E steps do
6: Take action at in environment according to π and the current state st, then obtain the

next state st+1 and the reward rt+1;
7: Reorder the transition: (st, at, rt+1, st+1, r̂t+1, ŝt+1) →

(
smt , amt , rmt+1, s

m
t+1

)
,

where smt = (st, at), a
m
t = (r̂t+1, ŝt+1 − st+1), r

m
t+1 = −∥ŝt+1 − st+1∥ − ∥r̂t+1 − rt+1∥ ,

and smt+1 = (st+1, at+1) if t+ 1 ≤ E else (sE , π(sE)); Store
(
smt , amt , rmt+1, s

m
t+1

)
into De;

8: for M model rollouts do
9: Sample initial states uniformly from De;

10: Perform k-step model rollouts starting from these states, using π and P̂ ; Add the
generated samples to Dm;

11: end for
12: for G gradient updates do
13: Update π using data sampled from Dm;
14: end for
15: end for
16: end for

5

References69

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: model-based70

policy optimization. In Proceedings of the 33rd International Conference on Neural Information71

Processing Systems, pages 12519–12530, 2019.72

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement73

learning in a handful of trials using probabilistic dynamics models. In Proceedings of the 32nd74

International Conference on Neural Information Processing Systems, pages 4759–4770, 2018.75

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: behavior-agnostic estimation of76

discounted stationary distribution corrections. In Proceedings of the 33rd International Conference77

on Neural Information Processing Systems, pages 2318–2328, 2019.78

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy79

maximum entropy deep reinforcement learning with a stochastic actor. In International conference80

on machine learning, pages 1861–1870. PMLR, 2018.81

6

	Mathematical Proofs
	Experimental Details
	Implementation and Hyperparameter Settings
	Environment Settings

	Analysis of the Model Learning Process of MPC-RL
	Extended Experiment for the Case When the Goal is in an Uncertain Region
	Pseudo Code

