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Abstract

Incremental implicitly-refined classification task aims at assigning hierarchical la-
bels to each sample encountered at different phases. Existing methods tend to
fail in generating hierarchy-invariant descriptors when the novel classes are in-
herited from the old ones. To address the issue, this paper, which explores the
inheritance relations in the process of multi-level semantic increment, proposes
an Uncertainty-Aware Hierarchical Refinement (UAHR) scheme. Specifically,
our proposed scheme consists of a global representation extension strategy that
enhances the discrimination of incremental representation by widening the corre-
sponding margin distance, and a hierarchical distribution alignment strategy that
refines the distillation process by explicitly determining the inheritance relation-
ship of the incremental class. Particularly, the shifting subclasses are corrected
under the guidance of hierarchical uncertainty, ensuring the consistency of the
homogeneous features. Extensive experiments on widely used benchmarks (i.e.,
IIRC-CIFAR, IIRC-ImageNet-lite, IIRC-ImageNet-Subset, and IIRC-ImageNet-
full) demonstrate the superiority of our proposed method over the state-of-the-art
approaches.

1 Introduction

In recent years, deep learning has made huge breakthroughs in the field of computer vision, matching
or even surpassing human performance on some image recognition tasks [3]. However, learning
multiple tasks [25] in sequential data (i.e., continual learning [20, 22]) remains a major challenge,
which requires models to have the ability to aggregate different learning objectives into a coherent
whole over time.

When a new task comes with the increase of identified classes (i.e., class-incremental learning),
joint training with all old and new data is too time-consuming and labor-intensive. Furthermore,
most data from past tasks are unavailable due to the data privacy. To adapt rapidly to the new
scenarios, previous methods [26] try to adopt a simple alternative that directly fine-tune the network
with new data. However, this may severely degrade the performance of the old class due to the bias
of the feature extractor and classifier towards the new class [15], which is also known as catastrophic
forgetting.

To address the issue, existing methods [16] maintain the performance of the old class by preserving
the representative samples (i.e., exemplar) and aligning the output distribution (i.e., knowledge dis-
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Figure 1: The setting of IIRC. Compared with the standard incremental process, superclasses and
subclasses under the IIRC setting are mixed in the incremental process, and the labels of subclasses
images are refined progressively, even for the same image.

tillation). This joint optimization with incremental samples strikes a balance between stability and
plasticity, resulting in better predictions that fall into the label space of the old or new class.

However, is incremental learning always a binary classification option that distinguishes be-
tween the old and new class? In existing incremental learning settings (e.g., ImageNet in Fig.
1(a)), each instance is arranged in a certain incremental stage in an exclusive manner. However, in
real life, people’s semantic understanding of the same instance may be gradually enriched as the
learning process proceeds. As shown in Fig. 1(b), the semantics of the same image is refined from
Garment to miniskirt in the IIRC-ImageNet setting. This paper focuses on the incremental abil-
ity to progressively learn and maintain multi-level semantic information, which is also known as
Incremental Implicitly-Refined Classification (i.e. IIRC) [1].

How to discern the semantic inheritance relationship in a hierarchical incremental scenery?
We find that the incremental performance for multi-level recognition decreases dramatically when
applying classical class-incremental learning methods directly to the IIRC setting. Our analysis
is mainly attributed to the following reasons. As shown in Fig. 2, on the one hand, although the
probability distributions of classes with inheritance relationships show an obvious consistency in the
initial phase, the incremental subclass inherited from a certain old class gradually outgroups under
the supervision of new labels. It destroys the integrity of the representation of the whole old class,
thus losing the semantic relevance of the hierarchical labels. On the other hand, some incremental
classes inherit from none of the existing classes, leading to feature confusion due to the lack of old
supervision.

To this end, we propose an Uncertainty-Aware Hierarchical Refinement (UAHR) scheme, which
exploits the correlation of hierarchical distributions to guide the optimization of incremental rep-
resentation. Concretely, a global representation extension strategy is proposed to widen the dis-
tribution distance among all new classes in the embedding space, enhancing their discriminative
properties. Furthermore, a hierarchical distribution alignment strategy is further proposed to correct
the optimization of the shifting subclasses by aligning with the distribution of the whole superclass,
ensuring the consistency of the hierarchical uncertainty. In this way, we use RBF mapping to ex-
plicitly measure the distance in the feature space between the training samples and the class centers,
quantifying the feature correlation. In the incremental phase, we calculate the entropy distribution
of new classes in the old embedding space for the estimate of hierarchical uncertainty. The resulting
differences and similarities are utilized to identify the multi-level semantic relationships, refining
the subsequent distillation objectives. Comprehensive experimental results on IIRC-CIFAR, IIRC-
ImageNet-lite, and IIRC-ImageNet-full datasets demonstrate the superiority of our method.

2 Related Work

2.1 Class-Incremental Learning

Existing class incremental learning methods can be mainly divided into four types. Regularization-
based methods preserve high-weight parameters by estimating the importance of individual model
parameters [2, 12, 24], while allowing unimportant parameters to be updated flexibly to ensure the
learning ability for new classes. However, in the study of [20], it is shown that such methods have
poor generalization performance in class incremental learning.
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(A) Initial phase (B) Incremental phase
Figure 2: Motivation of our method. The class with inheritance relationships has consistency in the
initial distribution. As incremental learning proceeds, the subclasses shift away from the distribution
of the corresponding superclasses and mix with new classes without subclasses.

Distillation-based methods encourage the model to learn new tasks, while the model representation
obtained by the current training data is forced to mimic the representation of the old model. The
new model in [14] completes knowledge distillation by matching the output of the sigmoid function
with the old model. LUCIR [10] mitigates forgetting by distilling the output of the softmax function
with the temperature scale and L2 regularization. LwM [7] reduces forgetting by matching gradient
attention maps from the highest-scoring labels. PODNet [8] performs knowledge distillation be-
tween old and new models by retaining intermediate features pooled along width and height, and
controls the balance between previous knowledge and new information, resulting in a more adaptive
incremental representation.

Rehearsal-based methods work by storing a limited number of representative examples or adopting
a generative model for old class samples when training new tasks. Incremental Classifier Represen-
tation Learning (iCaRL) [16] retains a small number of samples for each class to approximate class
centroids and make predictions based on the nearest class average classifier. [18] generates pre-
viously observed class samples by using generative adversarial networks (GANS) [9]. Structure-
based methods [27] keep the learned parameters related to the previous classes unchanged, and
assign new parameters in different forms, such as unused parameters, extra networks, etc., to learn
new knowledge. DER [23] concatenates the extracted features by adding a new feature extractor in
the incremental phase. A sparsity error is adopted to encourage the model to compress parameters as
much as possible. Different from the existing incremental methods focusing on the invariant seman-
tic concepts, our method is designed for the progressive understanding of the incremental semantic
information, facilitating better feature update and retention.

3 Our Method

3.1 Problem Description and Analysis

In real life, the human brain gradually enriches the semantic understanding of an object as the
learning process advances. For example, we only know that rats are small animals in the young
phase, but we understand that rats are rodents as we grow up. To simulate this process, we follow
the incremental implicitly-refined classification task (IIRC), which is arranged into N phases in
the order of data stream with hierarchical labels, denoted as {T1, · · · , TN}. Different from the
traditional incremental learning settings, the samples of incremental phases in IIRC may have one or
two labels (i.e., hierarchical labels). Specifically, the hierarchical labels refer to that the one label of a
sample is a subclass (i.e., hamster), and the other one is a superclass (i.e., small animal). The number
of samples with superclass labels is always larger than that with subclass labels, which increases with
the number of subclasses. During training, we always follow an incomplete information setup, i.e.,
samples with multiple labels are only provided with the label in the current phase. We only use a
subset of all superclasses in the first phase to train the model. Subsequent phases contain a mixture
of superclasses and subclasses.
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Figure 3: Our proposed Uncertainty-Aware Hierarchical Refinement scheme for IIRC.

We face two challenging problems in this setting: (1) How to judge the relationship among labels
across phases, especially the superclass-subclass relationship? Moreover, how to guide the optimiza-
tion of the novel class by means of the distribution relationship with superclass exactly? (2) How
do we reduce the feature confusion among these novel classes in the incremental phase? Therefore,
We propose two strategies. (1) Global Representation Extension. We use the RBF kernel to calcu-
late the uncertainty among all class centers, which is minimized for training during the incremental
phase. (2) Hierarchical Distribution Alignment. We firstly calculate the output entropy of the new
class samples with the old model, estimating the uncertainty of the classes across phases. Then we
use the obtained uncertainty to discriminate the superclass-subclass relationships and other relation-
ships. Finally, we update the old model’s output to guide the new model’s optimization direction.
Thus, we can keep the distribution invariance between the subclass and the superclass.

3.2 Global Representation Extension

Optimization with only the data of new classes during the incremental phase causes great bias in
the representation and classifier learning. To maintain the stability of the feature space, we use
the representation distance as a measure of uncertainty. New class representation is optimized by
comparing the output entropy with the target labels. At the same time, the stability of the old class
representation is ensured by maintaining the same output between the old and new models with the
new samples. Specifically, we use the RBF distance [19] to calculate the representation extension
loss. We use the RBF kernel to map representation to infinite dimensional space for comparison,
which is shown as follows,

Ldiv =

nb∑
c=0

K(hθ(x)c, hθ(x)jnear
) =

nb∑
c=0

exp

[
− 1

nd
∥hθ(x)c − hθ(x)j∥22

2σ2

]
, (1)

where K(·) denotes the Radial Basis Function kernel (RBF kernel [11]), nb denotes the number of
classes contained in the current batch, hθ(·) denotes the backbone of our net, we can get the output
features of the picture from it, nd denotes the output dimension after global pooling, and hθ(·)c
denotes the average feature value of a particular class c. The symbol j represents the class number
with the smallest distance to class c in the feature space, which is not equal to c. The optimization of
this loss forces the extension of the distance among the class centers, obtaining better discrimination
in the class distribution. Subsequently, we use a linear layer to get the entropy of the samples,
then judge the class of these samples. We adopt the BCEWithLogitsLoss to optimize the learning,
which is shown as follows,

Lcls = − 1

N

N∑
i=1

[yi log(sigmoid(fθ(hθ(xi)))) + (1− yi) log(1− sigmoid(fθ(hθ(xi))))], (2)

where yi denotes the ground truth label of the sample i, N denotes the batch size of training, xi

denotes the ith sample, and fθ(·) denotes the classifier of the current model. It should be noted that
the labels here as well as the final output of the model contain only the classes of the current phase.
The optimization of the loss allows the model to eventually judge the label of a sample by whether
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Algorithm 1 Acquisition of Hierarchical Semantic Relationship
Input:The outputs of the samples of class c on old model output, the number of samples height,
the number of classes for each phase Stage, the global pooled features of the sample of class c on
old model feat, and the number of the current phase idx.

1: Declare an initial label matrix Mori of size (height, idx).
2: for each j ∈ [0, height] do
3: for each k ∈ [0, idx] do
4: Smax, Lmax = max(output[j, Stage[k]:Stage[k + 1]])
5: Mori[j, k] = Lmax

6: end for
7: end for
8: Declare a phase label statistics matrix Mpha of size (2, idx).
9: for each j ∈ [0, idx] do

10: Lpha, Cpha = countmax(Mori[:, j])
11: if Lpha < height / 2 then
12: Lpha = -1
13: end if
14: Mpha[0, j] = Lpha

15: Mpha[1, j] = Cpha

16: end for
17: For all labels in the current Mpha that are not -1, an equal number of corresponding sample

features are randomly extracted from feat, and the standard deviation is calculated for each,
forming Stdpha.

18: Calculate the standard deviation std for the current feat, declared as Stdc.
19: Super = argmin(|Stdpha - Stdc|)
Output:the superclass of current class C : Super.

its output is greater than 0. And the closer the corresponding representation is to the class center,
the larger the output value. Finally, we use the output value of the new sample on the old model as
the supervised signal of the distillation process. Thus, the current model learns new classes while
maintaining the knowledge of the old model, which is shown below:

Ldis = BCEWithLogitsLoss(fθ(hθ(x))[:, : nold], f
∗
θ (h

∗
θ(x)/α)), (3)

where hθ(·) denotes the backbone of the current model, fθ(·) denotes the classifier of the current
model, h∗

θ(·) denotes the backbone of the old model, f∗
θ (·) denotes the classifier head of the old

model, α is a scale hyperparameter of distillation, and nold denotes the number of classes that have
been learned. x is a training sample from the current phase. The optimization of this loss facilitates
the stability of the old class feature distribution.

3.3 Hierarchical Distribution Alignment

In the incremental phase, focusing on the label relationships is the key to solving the IIRC prob-
lem. Firstly, the new subclass samples can be mapped into the embedding space by the old model
with fixed parameters, which is close to the corresponding superclass distribution. Then the label
relationships can be inferred from the hierarchical uncertainty, which is calculated by counting the
entropy of new samples on the old model across phases. At the same time, we flexibly adjust the
distribution border to correct the shift of subclass samples and mitigate the confusion caused by the
brother class.

Specifically, as shown in Fig. 3, we take the new class C as an example. Firstly, we obtain all mapped
features and corresponding output entropy of each old class on the old model with the new samples
of class C. Then, according to the obtained output entropy, the ratio of each old class distribution
is calculated. This ratio is the hierarchical uncertainty of the current added class C samples to each
old class label. The obtained hierarchical uncertainty is binarized to determine the corresponding
old class with a similar distribution (possibly superclass-subclass or brother class relationship) to
the current specific class C. Finally, We calculate the standard deviation of each similar old class
with the same operation. Direct superclass-subclass relationships have closer standard deviation
values on the feature distributions. So the similar old class with the closest std value is judged as
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GRE HDA IIRC-CIFAR
phase 0 phase 5 phase 10 phase 15 phase 21
78.35 26.48 21.27 18.81 17.78√
77.04 26.75 21.46 19.38 18.32√
77.06 29.31 24.73 22.42 18.38√ √
77.53 30.11 25.31 23.56 19.05

Table 1: Ablation study of our method on IIRC-CIFAR.

the superclass of the current class C, and the rest of the classes are brother classes. The detailed
procedure is shown in Algorithm 1.

After obtaining the label relationships, we use the selective distribution alignment distillation mech-
anism to guide the representation learning of models. According to the labeling relationship, we can
achieve the alignment of the distribution and mitigate the confusion caused by the brother class. On
one hand, when the features of the novel sample have a superclass shift, its output entropy value of
the corresponding superclass on the old model is improved by a margin distance. Thus, the shifting
samples are guided within the corresponding superclass distribution. On the other hand, the output
entropy value of a novel sample that lacks a superclass but falls within the old class distribution is
subtracted by a margin distance. Specifically, according to the label relationships, when the current
new class C is not related to an old class, the highest output entropy by the sample of class C on the
old model is subtracted by a margin value. Moreover, when the current new class C is a subclass of
an old class, the output entropy value of the class C sample on the old model, which corresponds to
the superclass, is added with one margin value. At the same time, the highest output entropy value of
the non-superclass is subtracted by a margin value. Our selective distribution alignment distillation
loss can be obtained by:

Ldis = BCEWithLogitsLoss(fθ(hθ(x))[:, : nold], y
new), (4)

where ynew is the new output of the old model, after performing our hierarchical distribution align-
ment strategy. In the end, our complete loss is:

Lall = Lcls + Ldis + Ldiv ∗ γ, (5)

where γ denotes hyper-parameters for balancing the losses. Moreover, in our experiments, γ is set
as 10.0. A detailed description of the hyperparameter selection is shown in supplementary material
B.2.

4 Experiments

4.1 Dataset and Settings

According to the semantic relevance among labels, CIFAR100 [13] and ImageNet [6] datasets are re-
arranged to form the two-level hierarchy datasets [1]. Each label starts as a leaf node (i.e., subclass),
and similar labels are assigned a common parent node (i.e., superclass). The integrated datasets
are called IIRC-CIFAR and IIRC-ImageNet-full. IIRC-CIFAR. Ten superclasses are set up, each
with about 4 to 8 subclasses. In incremental phases, each new phase introduces five classes. IIRC-
CIFAR involves 22 phases with ten preset class orders called phase configuration for multiple tests.
IIRC-ImageNet-full. In IIRC-ImageNet-full, sixty-three superclasses are set up, and the number of
subclasses that belong to one superclass varies greatly, from 3 to 118. There are a total of 35 phases,
with 30 classes per phase. Five preset class orders are fixed for multiple tests. IIRC-ImageNet-lite
is a shorter, lighter version with just ten phases (with five task configurations), which is referred
as IIRC-ImageNet together with IIRC-ImageNet-full. IIRC-ImageNet-Subset [21], as a simplified
version of the IIRC-ImageNet-full, involves ten superclasses and 100 subclasses.

The superclasses of each dataset are combined by extracting 40% samples from each subclass, while
the corresponding subclasses are saved with 80% samples. That means that the superclasses and sub-
classes share 20% samples. When the superclass contains more than eight subclasses, the samples
of the subclasses are extracted in the proportion of 8

number of subclasses ∗ 40%. The training process
follows the incomplete information setting, i.e., if a sample has more than one label, only the label
of the current phase is provided. The validation set also follows the incomplete information setting.
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Method IIRC-CIFAR
phase 5 phase 10 phase 15 phase 21

Common Uncertainty 25.70 20.89 19.55 15.32
Ours 30.11 25.31 23.56 19.05

Table 2: Comparison to common uncertainty method on IIRC-CIFAR.

After a certain number of training phases, the overall performance is evaluated on a validation set
and a test set under the complete information setting, which contains all seen class labels.

Metrics. The evaluation metric uses the precision-weighted Jaccard similarity (PW-JS) to measure
the performance of the model on phase k after training on phase j, as follows:

Rjk =
1

nk

nk∑
i=1

|Yki ∩ Ŷki|
|Yki ∪ Ŷki|

× |Yki ∩ Ŷki|
|Ŷki|

, (6)

In the formula j ≥ k, Ŷki is the prediction value of the model for ith samples of kth phase, Yki is
the ground truth, and nk is the number of samples in this phase. Moreover, for the evaluation of the
overall performance, we use the average precision-weighted Jaccard similarity of the model after
training on phase j for all seen classes, as follows:

Rj =
1

n

n∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

× |Yi ∩ Ŷi|
|Ŷi|

. (7)

4.2 Ablation Study

To prove the effectiveness of our method, we conduct a set of ablation experiments on the IIRC-
CIFAR dataset. One of the essential components in our scheme is the global representation exten-
sion strategy, referred to as the GRE component. The other is the hierarchical distribution alignment
strategy, referred to as the HDA component. To verify the functionality of the GRE and HDA com-
ponents, we conducted experiments in the case of phase configuration 0 of IIRC-CIFAR. As shown
in Table 1, the HDA component alone achieves an improvement of 0.6% in the last phase, while the
GRE component alone achieves 0.54% in the last phase. Furthermore, with both components added,
a 1.27% increase over baseline is achieved. It proves that both components play a positive role in
evaluating the overall incremental performance.

In Fig. 6 (C), we show the incremental performance at each phase, which is evaluated over the test
samples at a specific phase j, after training on that phase(Rjj using Equation 6). Such cure graphs
evaluate the learning ability for new classes. We can see that the HDA component significantly
improves the average performance while the GRE component further enhances the learning ability
on top of the HDA component.

4.3 Analysis

The impact of global representation extension. To explore the impact of the global representation
extension strategy, we visualize the t-SNE features of the baseline and our method. We select data
from phase 0 and phase 4 of IIRC-CIFAR with phase configuration 0. In the upper part of Fig. 4,
we can observe an overlap among the representation distributions of the new classes in the baseline
method. Our method weakens the overlap and expands the distribution distance among the novel
class. Fig. 4 proves that the usage of representation distance for the uncertainty estimate is adequate.
Reducing this uncertainty leads to the distance extension between the individual class centers.

The impact of the hierarchical uncertainty. To explore the effect of hierarchical uncertainty, we
first compare different uncertainty methods. A detailed version of Table 2 is presented in A.3 of the
supplementary materials. As shown in Table. 2, the "Common Uncertainty" denotes an entropy-
based uncertainty method widely used in the OOD [5]. We use it to construct label relationships. It
can be seen from the Table. 2 that our method achieves better experimental results, proving that the
entropy output and the standard deviation of the features exhibit the most significant impact on the
cross-hierarchical uncertainty estimation among the statistical properties of the superclass and the
corresponding subclass.
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Figure 4: The impact of our method on the representations. (1) The upper row shows the effect of
extending the distribution distance between the incremental classes. (2) The lower row shows the
effect of the hierarchical distribution alignment.

(A)Ground Truth (B)Fine Tune (C)iCaRL-CNN (D)Ours
Figure 5: Confusion matrix for different methods.

To explore the effect of the hierarchical distribution alignment strategy, we visualize the t-SNE
features for the baseline and our method on the IIRC-CIFAR dataset with phase configuration 0 by
selecting data from phase 0 and phase 11. In the bottom half of Fig. 4, we can see a significant shift
between the distributions of subclasses and corresponding superclasses in the baseline. While our
method extensively corrects this shift and promotes the distribution of the novel subclasses falling
in the corresponding superclasses. It demonstrates that adjusting the optimization direction of the
feature distribution according to the labeling relationship helps the new model to learn better the
representation relationship between the old and new classes and deepen it gradually.

4.4 Comparison with SOTA

To comprehensively measure the performance of our method under IIRC setting, we reproduces
the classical methods (i.e., ER [17], AGEM [4], LUCIR [10], iCaRL-CNN [16], iCaRL-norm [16],
Podnet [8], HCV [21]) and compare with them.

Average PW-JS. It can be seen in Fig. 6 (A) that our method achieves the best until the end among
all methods with incomplete information in IIRC-CIFAR. As shown in Fig. 6 (D), our method also
maintains the highest scores in larger IIRC-Imagenet-lite, demonstrating the effectiveness of our
method. As shown in Fig. 6 (E), our method achieves the SOTA result on the IIRC-ImageNet-
Subset dataset. It can be shown in Fig. 6(F) that our method finally achieves the highest score on
IIRC-ImageNet-full. More details are shown in A.5 of the supplementary materials.

Performance on new classes. The PW-JS values indicating the performance of the newly incremen-
tal phase are shown in Fig. 6(B). It can be seen that the ER algorithm and the AGM algorithm are
superior in learning new classes. Combine with the performance in overall phases, they obtain an
advantage in the new classes at the expense of the performance in old classes. Among all beneficial
algorithms for suppressing catastrophic forgetting, our method achieves the best and outperforms
existing methods in learning new classes.

We conduct an additional experimental set on the confusion matrix, where we extract the data from
the IIRC-CIFAR with phases 0, 1, 2, 7, 12, and 17. They are combined and presented in Fig. 5.
In the IIRC task, the diagonal values in the confusion matrix represent the prediction of subclass
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(A) (B)

(C) (D)

(E) (F)

Figure 6: Curve graphs of the comparison experiments. (A) The overall performance comparison
on the IIRC-CIFAR dataset. (B) The performance of the incremental phase on the IIRC-CIFAR
dataset. (C) It shows the performance of two components of our method on the evaluation of new
class learning ability. (D) The performance comparison on the IIRC-ImageNet-lite dataset.(E)The
performance comparison on the IIRC-ImageNet-Subset dataset. (F)The performance comparison on
the IIRC-ImageNet-Full dataset. ∗ indicates our re-implementation.

labels, while the bottom-left corner represents one of the superclasses. A more precise confusion
matrix in the lower left corner represents better label relationship maintenance between subclass
and superclass. As shown in Fig. 5, our method performs best in both the diagonal and lower left
positions, proving the superiority of our method in maintaining label relationships.

5 Conclusion

This paper proposes a novel Uncertainty-Aware Hierarchical Refinement scheme for the IIRC task.
A global representation extension strategy is presented to enhance the discrimination of incremen-
tal classes, and the tricky distillation process is refined with a hierarchical distribution alignment
strategy. Consequently, our method involves a multi-level semantic scenery in incremental learning.
Experimental results show the superiority of our method in both stability and plasticity.
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