Supplementary Material for Paper 6775 (On Batch Teaching with Sample Complexity Bounded by VCD)

Anonymous Author(s)
Affiliation
Address
email

Abstract

This paper contains proof details omitted from the main paper as well as a more detailed discussion of the ambiguity of STD $_{\text {min }}$-teaching.

A Proof of Theorem 9

Theorem 9 Let T^{n} be an antichain teacher for \mathcal{P}_{n} and suppose $\operatorname{ord}\left(T^{n}\right) \leq \operatorname{ord}(T)$ for all antichain teachers T for \mathcal{P}_{n}. Then, for all but finitely many n, we have $0.22 \cdot n<\operatorname{ord}\left(T^{n}\right)<0.23 \cdot n$.

To establish this result, we first introduce some notation and some background on bipartite matching.
Definition 21 Let \mathcal{C} be any concept class. The antichain number of \mathcal{C}, denoted by $\operatorname{ACN}(\mathcal{C})$, is the smallest possible order of a teacher for \mathcal{C} with the antichain property.

Theorem 9 can then be restated as follows:

$$
\text { For all but finitely many } n \text {, we have } 0.22 \cdot n<\operatorname{ACN}\left(\mathcal{P}_{n}\right)<0.23 \cdot n \text {. }
$$

It is well known that a bipartite graph all of whose vertices have the same degree contains a perfect matching. The simple proof is based on a double counting argument. The same kind of argument can be used to show the following (most likely also well known) result:

Lemma 22 Let $G=\left(V_{1}, V_{2}, E\right)$ be a bipartite graph with vertex sets V_{1} and V_{2}. Suppose that every vertex in V_{1} has degree d_{1} while every vertex in V_{2} has degree $d_{2} \leq d_{1}$. Then G contains a matching of size $\left|V_{1}\right|$.

Proof. For $U \subseteq V_{1}, \Gamma(U)$ denotes the neighborhood of U, i.e., $\Gamma(U)=\left\{v \in V_{1} \mid v\right.$ is adjacent to some vertex in $U\}$. It suffices to show that Hall's condition,

$$
\forall U \subseteq V_{1}:|\Gamma(U)| \geq|U|
$$

is satisfied. Fix a set $U \subseteq V_{1}$. The number of edges having one endpoint in U equals $d_{1} \cdot|U|$. The number of edges having one endpoint in $\Gamma(U)$ is at most $d_{2} \cdot|\Gamma(U)|$. An edge with an endpoint in U must have its other endpoint in $\Gamma(U)$. Hence $d_{1} \cdot|U| \leq d_{2} \cdot|\Gamma(U)|$. Since $d_{2} \leq d_{1}$, we may conclude that $|U| \leq|\Gamma(U)|$.

Corollary 23 Let d, n be integers such that $1 \leq d \leq(n+1) / 2$. Let X be a set of size n. Let $G=\left(V_{1}, V_{2}, E\right)$ be the bipartite graph such that

- $V_{1}\left(\right.$ resp. $\left.V_{2}\right)$ consists of all subsets of X with $d-1$ (resp. d) elements,
- a set $U \in V_{1}$ is adjacent to a set $U^{\prime} \in V_{2}$ iff $U \subseteq U^{\prime}$.

Then G contains a a matching of size $\left|V_{1}\right|$.
Proof. Each vertex in V_{1} has degree $n-d+1$ whereas each vertex in V_{2} has degree d. Since $d \leq(n+1) / 2$, by assumption, it follows that $d \leq n-d+1$. Now apply Lemma 22 .

Let X be a set of size n. A sample set over X is said to be conflict-free if it does not contain both $(x, 0)$ and $(x, 1)$ for some $x \in X$. Let $\mathcal{F}_{\leq d, n}$ be the family of all conflict-free sample sets over X with d or fewer elements. The conflict-free sample sets with exactly d elements form an antichain denoted by $\mathcal{F}_{=d, n}$ in the sequel - in $\mathcal{F}_{\leq d}$. Obviously
$\mathcal{F}_{=d, n}=\left\{\left(x_{1}, b_{1}\right), \ldots,\left(x_{d}, b_{d}\right): x_{1}, \ldots, x_{d}\right.$ are d distinct elements of X and $\left.b_{1}, \ldots, b_{d} \in\{0,1\}\right\}$
and therefore the antichain $\mathcal{F}_{=d, n}$ is of size $\binom{n}{d} \cdot 2^{d}$.
The following result is a relative of Sperner's Theorem:
Lemma $24 \mathcal{F}_{=d, n}$ is a maximum antichain in $\mathcal{F}_{\leq d, n}$.
Proof. An antichain \mathcal{A}^{\prime} with conflict-free sets $A_{1}^{\prime}, \ldots, A_{s^{\prime}}^{\prime}$ (without repetition) is called an extension of another antichain \mathcal{A} with conflict-free sets A_{1}, \ldots, A_{s} (again without repetition) if $s^{\prime}=s$ and $A_{i} \subseteq A_{i}^{\prime}$ for $i=1, \ldots, s$ (after renumbering the sets in \mathcal{A}^{\prime} if necessary). We show, by induction on d, that every antichain \mathcal{A} with sets taken from $\mathcal{F}_{\leq d, n}$ has an extension \mathcal{A}^{\prime} with sets taken from $\mathcal{F}_{=d, n}$. For $d=1$, this is obviously true. Let $d \geq 2$ and assume inductively that it holds for $d-1$. Fix an antichain \mathcal{A} with sets taken from $\mathcal{F}_{<d}, n$. Let \mathcal{A}_{1} be the antichain consisting of the sets of size at most $d-1$ in \mathcal{A} and let $\mathcal{A}_{2}=\mathcal{A} \backslash \overline{\mathcal{A}^{\prime}}$. By our inductive assumption, there is an extension \mathcal{A}_{1}^{\prime} of \mathcal{A}_{1} whose sets are taken from $\mathcal{F}_{\leq d-1, n}$. The inductive proof can now be accomplished by proving the following assertions:

Claim 1: $\mathcal{A}_{1}^{\prime} \cup \mathcal{A}_{2}$ is an antichain in $\mathcal{F}_{\leq d, n}$ whose sets are of size $d-1$ or d.
Claim 2: Any antichain \mathcal{B} with sets of size $d-1$ or d has an extension \mathcal{B}^{\prime} with sets taken from $\mathcal{F}_{\leq d, n}$.

Claim 1 becomes obvious from the following observations:

- No set in \mathcal{A}_{2} (with d elements) can be a subset of some set in \mathcal{A}_{1}^{\prime} (with $d-1$ elements).
- Since no set in \mathcal{A}_{1} is a subset of some set in \mathcal{A}_{2} (by the antichain property of \mathcal{A}), no set in the extension \mathcal{A}_{1}^{\prime} is a subset of some set in \mathcal{A}_{2}.

As for proving Claim 2, fix some antichain \mathcal{B}. Let $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be the decomposition of \mathcal{B} into sets of size $d-1$ and sets of size d, respectively. A set of \mathcal{B}_{1} is of the form $B=\left\{\left(x_{1}, b_{1}\right), \ldots,\left(x_{d-1}, b_{d-1}\right)\right\}$. Let M be the matching of size $\left|V_{1}\right|$, whose existence is guaranteed by Corollary 23 . Pick x_{d} such that $\left\{x_{1}, \ldots, x_{d-1}, x_{d}\right\}$ is the M-partner of $\left\{x_{1}, \ldots, x_{d-1}\right\}$. Then the set

$$
B^{\prime}=\left\{\left(x_{1}, b_{1}\right), \ldots,\left(x_{d-1}, b_{d-1}\right),\left(x_{d}, 0\right)\right\}
$$

is called the M-partner of B. Note here that different sets from \mathcal{B}_{1} have different M-partners. Let \mathcal{B}_{1}^{\prime} be the antichain obtained from \mathcal{B}_{1} by replacing each set B in \mathcal{B}_{1} by its M-partner and let $\mathcal{B}^{\prime}=\mathcal{B}_{1}^{\prime} \cup \mathcal{B}_{2}$. By construction, all sets in \mathcal{B}^{\prime} are of size d. In order to show that \mathcal{B}^{\prime} is an antichain that extends \mathcal{B}, it suffices to show that no M-partner of a set $B \in \mathcal{B}_{1}$ can be equal to one of the sets in \mathcal{B}_{2}. But this is obvious because B is a subset of its M-partner, but not a subset of any set in \mathcal{B}_{2} (by the antichain property of \mathcal{B}). Claim 2 follows from this discussion, which also completes the proof of the lemma.

Corollary 25 Let $d_{0}=d_{0}(n)$ be the smallest d such that $2^{d} \cdot\binom{n}{d} \geq 2^{n}$. Let $G=\left(V_{1}, V_{2}, E\right)$ be the bipartite graph given by (i) $V_{1}=\mathcal{F}_{=n, n}$ and $V_{2}=\mathcal{F}_{=d_{0}, n}$, and (ii) a set $U^{\prime} \in V_{1}$ is adjacent to a set $U \in V_{2}$ iff $U \subseteq U^{\prime}$. Then G contains a matching of size $\left|V_{1}\right|$.

Proof. Each vertex in V_{1} has degree $\binom{n}{d_{0}}$ whereas each vertex in V_{2} has degree $2^{n-d_{0}}$. The definition of d_{0} implies that $2^{n-d_{0}} \leq\binom{ n}{d_{0}}$. Now apply Lemma 22 .

Note that $\operatorname{ACN}(\mathcal{C})$ is upper-bounded by the smallest number d such that the following graph $G=$ $\left(V_{1}, V_{2}, E\right)$ contains a matching M that matches every vertex in V_{1} : (i) $V_{1}=\mathcal{C}$ and $V_{2}=\mathcal{F}=d, n$, (ii) a concept $C \in \mathcal{C}$ is adjacent to a sample $S \in \mathcal{F}_{=d, n}$ iff it is consistent with S.

We now obtain a non-trivial reformulation of ACN:
Theorem 26 Let $|X|=n$ and let $d_{0}=d_{0}(n)$ be the smallest d such that $2^{d} \cdot\binom{n}{d} \geq 2^{n}$. Then $\operatorname{ACN}\left(\mathcal{P}_{n}\right)=d_{0}(n)$.

Proof. Note that \mathcal{P}_{n} can be identified with $\mathcal{F}_{=n, n}$: each map $C: X \rightarrow\{0,1\}$ is identified with the full sample $\{(x, C(x)) \mid x \in X\}$. An application of Corollary 25 yields $\operatorname{ACN}\left(\mathcal{P}_{n}\right) \leq d_{0}(n)$.
Set $d=\operatorname{ACN}\left(\mathcal{P}_{n}\right)$. Then the maximum antichain in $\mathcal{F}_{\leq d, n}$ is of size at least $\left|\mathcal{P}_{n}\right|=2^{n}$. Using Lemma 24 and the fact that $\left|\mathcal{F}_{=d, n}\right|=\binom{n}{d} \cdot 2^{d}$, this translates into $2^{d} \cdot\binom{n}{d} \geq 2^{n}$. The definition of $d_{0}(n)$ now implies that $d \geq d_{0}(n)$.
We now show that $d_{0}(n)$ is a function linear in n.
Lemma 27 Let $d_{0}=d_{0}(n)$ be the smallest d such that $2^{d} \cdot\binom{n}{d} \geq 2^{n}$. Then $0.22 \cdot n<d_{0}(n)<0.23 \cdot n$ for all but finitely many n.

Proof. For $d=n / 2$, we have $\binom{n}{n / 2} \asymp \sqrt{\frac{2}{\pi n}} 2^{n}$, which is asymptotically larger than $2^{n / 2}$. We may therefore assume that $d \leq n / 2$. For such d, the term $\binom{n}{d}$ decreases when d decreases, while 2^{n-d} increases. Hence it suffices to show that $2^{d} \cdot\binom{n}{d} \geq 2^{n}$ is fulfilled for large enough n when $d=0.23 \cdot n$, while it is not fulfilled for large enough n when $d=0.22 \cdot n$.
To this end, let $d=p n$ with $0<p \leq 1 / 2$, and rewrite $2^{d} \cdot\binom{n}{d} \geq 2^{n}$ as

$$
\frac{1}{n} \log \binom{n}{p n} \geq 1-p
$$

It is well known that the left-hand side converges to $H(p)$, where $H(\cdot)$ denotes the binary entropy. The lemma now follows from $H(0.22)<0.78=1-0.22$ and $H(0.23)>0.77=1-0.23$.

This allows us to conclude that, asymptotically, the value of $\operatorname{ACN}\left(\mathcal{P}_{n}\right)$ lies between $0.22 \cdot n$ and $0.23 \cdot n$, as claimed by Theorem 9 .

B Other Proof Details for Section 3

Proposition 8 Let \mathcal{C} be any concept class, $Z \in\{\mathrm{RTD}, \mathrm{NCTD}\}$, and T any Z-teacher for \mathcal{C}. Then there is a Z-teacher T^{\prime} for \mathcal{C} with $\operatorname{ord}\left(T^{\prime}\right)=\operatorname{ord}(T)$ such that T^{\prime} has the antichain property.
Proof. First, let T be any NCTD-teacher for \mathcal{C}. For $C \in \mathcal{C}$, obtain $T^{\prime}(C)$ from $T(C)$ as follows. If each sample set in $T(C)$ has size ord (T), then $T^{\prime}(C)=T(C)$. Otherwise, $T^{\prime}(C)$ results from $T(C)$ by adding examples that are consistent with C to every sample set $T_{C} \in T(C)$, until the size of T_{C} equals ord (T). Then T^{\prime} inherits the non-clashing property on \mathcal{C} from T. Clearly, a non-clashing teacher mapping that produces only sample sets of a constant size must also fulfill the antichain property. So T^{\prime} is an NCTD-teacher for \mathcal{C} with the antichain property, and $\operatorname{ord}\left(T^{\prime}\right)=\operatorname{ord}(T)$.
Second, suppose T is an RTD-teacher. The construction of T^{\prime} is identical to that in the first case. It remains to verify that the resulting antichain teacher T^{\prime} with $\operatorname{ord}\left(T^{\prime}\right)=\operatorname{ord}(T)$ is also an RTDteacher for \mathcal{C}. Using the notation from Definition 2, we know that, for $C \in \mathcal{C}_{i}^{\text {min }}$, the set $T(C)$ is a teaching set for C wrt \mathcal{C}_{i}. Since adding examples (consistently with C) to $T(C)$ does not change this fact, we obtain that, for $C \in \mathcal{C}_{i}^{\text {min }}$, the set $T^{\prime}(C)$ is a teaching set for C wrt \mathcal{C}_{i}. Hence T^{\prime} is an RTD-teacher for \mathcal{C}.

Proposition 11 STD is not domain-monotonic. In particular, for every $n>3$, there is a concept class \mathcal{C} over a domain $X=X^{\prime} \cup X^{\prime \prime}$ such that $\operatorname{STD}(\mathcal{C})=n-1$, while $\operatorname{STD}\left(\mathcal{C} \downarrow_{X^{\prime}}\right)=2$.
Proof. Let $n>3$, and let $X^{\prime}=\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\}$ and $X^{\prime \prime}=\left\{x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right\}$. For every $J \subseteq[n]$ of size 1 or 2 , let C_{J} be the concept that assigns label 1 (resp. label 0) to x_{j}^{\prime} and $x_{j}^{\prime \prime}$ if $j \in J$ (resp. if $j \notin J$). Let C_{\emptyset} be the concept that assigns label 0 to $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ and label 1 to $x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}$. Consider now the
following concept class \mathcal{C} over the domain $X=X^{\prime} \cup X^{\prime \prime}: \mathcal{C}=\left\{C_{J}|J \subseteq[n], 0 \leq|J| \leq 2\}\right.$. See Table 3 for an illustration of the case $n=5$.

Note that $\mathcal{C} \downarrow_{X^{\prime}}$ is the class of all subsets of X whose size is at most 2 . It is well known [Zilles et al. 2011] that $\operatorname{STD}\left(\mathcal{C} \downarrow_{X^{\prime}}\right)=2$.
It remains to prove that $\operatorname{STD}(\mathcal{C})=n-1$. To this end, we first determine the minimum teaching sets for every concept in \mathcal{C} :
(i) The minimum teaching sets for C_{\emptyset} are the sets of the form $\left\{\left(x_{j}^{\prime}, 0\right),\left(x_{j}^{\prime \prime}, 1\right)\right\}$ for $j=1, \ldots, n$.
(ii) For $1 \leq i<j \leq n$, the minimum teaching sets for $C_{\{i, j\}}$ are the sets of the form $\left\{\left(u_{i}, 1\right),\left(u_{j}, 1\right)\right\}$ where $u_{i} \in\left\{x_{i}^{\prime}, x_{i}^{\prime \prime}\right\}, u_{j} \in\left\{x_{j}^{\prime}, x_{j}^{\prime \prime}\right\}$ and $\left\{u_{i}, u_{j}\right\} \cap\left\{x_{i}^{\prime}, x_{j}^{\prime}\right\} \neq \emptyset$.
(iii) For $1 \leq i \leq n$, the minimum teaching sets for $C_{\{i\}}$ are the sets of the form $\left\{\left(u_{j}, 0\right) \mid j \in\right.$ $[n] \backslash\{i\}\}$ where $u_{j} \in\left\{x_{j}^{\prime}, x_{j}^{\prime \prime}\right\}$ and, for at least one index $j^{\prime} \in[n] \backslash\{i\}$, we have $u_{j^{\prime}}=x_{j^{\prime}}^{\prime \prime}$.
For each $C \in \mathcal{C}$, let $\operatorname{TS}(C)$ be the collection of minimum teaching sets for C. The largest of these minimum teaching sets, namely the ones for concepts of the form $C_{\{i\}}$, are of size $n-1$. Hence $\mathrm{TD}(\mathcal{C})=n-1$. Next, we will verify the following property for every concept $C \in \mathcal{C}$:
${ }^{(*)}$ If S is a minimum teaching set for C wrt \mathcal{C}, then every proper subset of S is contained in a minimum teaching set for some concept C^{\prime} wrt \mathcal{C}, where $C^{\prime} \in \mathcal{C}$, $C^{\prime} \neq C$.
(i) Consider an index $j \in[n]$ and a teaching set $\left\{\left(x_{j}^{\prime}, 0\right),\left(x_{j}^{\prime \prime}, 1\right)\right\} \in \operatorname{TS}\left(C_{\emptyset}\right)$. Removing $\left(x_{j}^{\prime}, 0\right)$ from this set yields a subset of one of the teaching sets for $C_{J} \neq C_{\emptyset}$ whenever $j \in J$ and $|J|=2$. A similar reasoning applies when removing $\left(x_{j}^{\prime \prime}, 1\right)$ instead of $\left(x_{j}^{\prime}, 0\right)$.
(ii) Consider indices $i \neq j \in[n]$ and a teaching set $\left\{\left(u_{i}, 1\right),\left(u_{j}, 1\right)\right\} \in \operatorname{TS}\left(C_{\{i, j\}}\right)$. Removing one example, say $\left(u_{i}, 1\right)$, from this set yields a subset of one of the teaching sets for $C_{J} \neq C_{\{i, j\}}$ whenever $j \in J, i \notin J$ and $|J|=2$.
(iii) Consider an index $i \in[n]$ and a teaching set $\left\{\left(u_{j}, 0\right) \mid j \in[n] \backslash\{i\}\right\} \in \operatorname{TS}\left(C_{\{i\}}\right)$. Removing $\left(u_{j_{0}}, 0\right)$ from this set yields a subset of one of the teaching sets for $C_{\left\{j_{0}\right\}}$.
This establishes Property $\left({ }^{*}\right)$, which immediately implies $\operatorname{STD}(\mathcal{C})=\operatorname{TD}(\mathcal{C})=n-1$.

concept	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{1}^{\prime}	x_{2}^{\prime}	x_{3}^{\prime}	x_{4}^{\prime}	x_{5}^{\prime}
C_{\emptyset}	0	0	0	0	$\mathbf{0}$	1	1	1	1	$\mathbf{1}$
$C_{\{1\}}$	1	0	0	0	0	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$C_{\{2\}}$	$\mathbf{0}$	1	0	0	0	0	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$C_{\{3\}}$	$\mathbf{0}$	$\mathbf{0}$	1	0	0	0	0	1	$\mathbf{0}$	$\mathbf{0}$
$C_{\{4\}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	1	0	0	0	0	1	$\mathbf{0}$
$C_{\{5\}}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	1	0	0	0	$\mathbf{0}$	1
$C_{\{1,2\}}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0	1	1	0	0	0
$C_{\{1,3\}}$	$\mathbf{1}$	0	$\mathbf{1}$	0	0	1	0	1	0	0
$C_{\{1,4\}}$	$\mathbf{1}$	0	0	$\mathbf{1}$	0	1	0	0	1	0
$C_{\{1,5\}}$	$\mathbf{1}$	0	0	0	$\mathbf{1}$	1	0	0	0	1
$C_{\{2,3\}}$	0	$\mathbf{1}$	1	0	0	0	1	$\mathbf{1}$	0	0
$C_{\{2,4\}}$	0	$\mathbf{1}$	0	1	0	0	1	0	$\mathbf{1}$	0
$C_{\{2,5\}}$	0	$\mathbf{1}$	0	0	1	0	1	0	0	$\mathbf{1}$
$C_{\{3,4\}}$	0	0	1	$\mathbf{1}$	0	0	0	$\mathbf{1}$	1	0
$C_{\{3,5\}}$	0	0	1	0	$\mathbf{1}$	0	0	$\mathbf{1}$	0	1
$C_{\{4,5\}}$	0	0	0	1	$\mathbf{1}$	0	0	0	$\mathbf{1}$	1

Table 3: The concept class \mathcal{C} from the proof of Proposition 11 for $n=5$. The entries in bold indicate one (arbitrarily chosen) minimum teaching set for each concept.

C Proof Details for Section 4

Observation 1 Every subset teaching sequence of order d can be transformed into a normalized sequence $\left(T_{k}\right)_{k \in \mathbb{N}}$ of the same order, where a normalized subset teaching sequence has the property that, for every k and every $C \in \mathcal{C}$, we have (i) T_{k+1} differs from T_{k} on exactly one concept, (ii) $\left|T_{k+1}(C)\right| \in\left\{\left|T_{k}(C)\right|-1,\left|T_{k}(C)\right|\right\}$, (iii) $\left|T_{k}(C)\right| \geq d$, which implies that $\left|T_{k^{*}}(C)\right|=d$.

Proof. Properties (i) and (ii) are easy to achieve by breaking a step from T_{k} to T_{k+1} into several smaller intermediate steps. Assume that (ii) holds. Then property (iii) can be achieved by omitting all steps that make $\left|T_{k}(C)\right|$ smaller than d. It is easy to see that the resulting sequence is again an admissible subset teaching sequence.

Proposition $13 \mathrm{STD}_{\min }(\mathcal{C}) \leq \operatorname{STD}(\mathcal{C})$, and for all $n \in \mathbb{N}$ there is some succinct \mathcal{C}_{n} such that $\operatorname{STD}_{\text {min }}\left(\mathcal{C}_{n}\right)=2$ and $\operatorname{STD}(\mathcal{C})=n$.
Proof. To see that $\mathrm{STD}_{\text {min }}$ is bounded from above by STD, let k^{*} be as defined in Definition 4. For each $k \leq k^{*}$, let $T_{k}(C)$ be any one set in $\operatorname{STS}^{k}(C)$ such that $T_{k^{*}}(C) \subseteq T_{k^{*}-1}(C) \subseteq \ldots \subseteq T_{1}(C)$. Such sets $T_{k}(C)$ exist by the definition of STD. Finally, set $T_{0}(C)=\{(x, C(x)) \mid x \in X\}$. Then $\mathcal{T}=\left(T_{k}\right)_{k \in \mathbb{N}}$ is a subset teaching sequence of order $\operatorname{STD}(\mathcal{C})$ for \mathcal{C}. So, $\operatorname{STD}_{\min }(\mathcal{C}) \leq \operatorname{STD}(\mathcal{C})$.
An example of a succinct concept class \mathcal{C}_{n} as claimed is the class over a domain of size $n+1$, consisting of all concepts of size either 1 or 2 . It was shown by Zilles et al. [2011], that $\operatorname{STD}(\mathcal{C})=n$. By contrast, one can easily obtain $\mathrm{STD}_{\min }\left(\mathcal{C}_{n}\right)=2$, as illustrated in Table 4 . for any concept C of size 2 , the set $T_{1}(C)$ contains only the two positively labeled instances for C, while $T_{1}(C)=T_{0}(C)=\{(x, C(x)) \mid x \in X\}$ if C is a singleton. In the next iteration, set $T_{2}\left(\left\{x_{n}\right\}\right)=\left\{\left(x_{n}, 1\right),\left(x_{1}, 0\right)\right\}$ and $T_{2}\left(\left\{x_{i}\right\}\right)=\left\{\left(x_{i}, 1\right),\left(x_{i+1}, 0\right)\right\}$ for each singleton concept $\left\{x_{i}\right\}$ with $i \neq n$. Clearly, for all $i, T_{2}\left(\left\{x_{i}\right\}\right) \subseteq T_{1}\left(\left\{x_{i}\right\}\right)$ and $T_{2}\left(\left\{x_{i}\right\}\right) \nsubseteq T_{1}(C)$ for any $C \neq\left\{x_{i}\right\}$. Thus, we obtain a subset teaching sequence of order 2 for \mathcal{C}, i.e., $\operatorname{STD}_{\min }(\mathcal{C})=2$.

concept in \mathcal{C}_{4}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	T_{1}
C_{1}	$\mathbf{1}$	$\mathbf{0}$	0	0	0	$\left\{\left(x_{1}, 1\right),\left(x_{2}, 0\right),\left(x_{3}, 0\right),\left(x_{4}, 0\right),\left(x_{5}, 0\right)\right\}$
C_{2}	0	$\mathbf{1}$	$\mathbf{0}$	0	0	$\left\{\left(x_{1}, 0\right),\left(x_{2}, 1\right),\left(x_{3}, 0\right),\left(x_{4}, 0\right),\left(x_{5}, 0\right)\right\}$
C_{3}	0	0	$\mathbf{1}$	$\mathbf{0}$	0	$\left\{\left(x_{1}, 0\right),\left(x_{2}, 0\right),\left(x_{3}, 1\right),\left(x_{4}, 0\right),\left(x_{5}, 0\right)\right\}$
C_{4}	0	0	0	$\mathbf{1}$	$\mathbf{0}$	$\left\{\left(x_{1}, 0\right),\left(x_{2}, 0\right),\left(x_{3}, 0\right),\left(x_{4}, 1\right),\left(x_{5}, 0\right)\right\}$
C_{5}	$\mathbf{0}$	0	0	0	$\mathbf{1}$	$\left\{\left(x_{1}, 0\right),\left(x_{2}, 0\right),\left(x_{3}, 0\right),\left(x_{4}, 0\right),\left(x_{5}, 1\right)\right\}$
C_{6}	$\mathbf{1}$	$\mathbf{1}$	0	0	0	$\left\{\left(x_{1}, 1\right),\left(x_{2}, 1\right)\right\}$
C_{7}	$\mathbf{1}$	0	$\mathbf{1}$	0	0	$\left\{\left(x_{1}, 1\right),\left(x_{3}, 1\right)\right\}$
C_{8}	$\mathbf{1}$	0	0	$\mathbf{1}$	0	$\left\{\left(x_{1}, 1\right),\left(x_{4}, 1\right)\right\}$
C_{9}	$\mathbf{1}$	0	0	0	$\mathbf{1}$	$\left\{\left(x_{1}, 1\right),\left(x_{5}, 1\right)\right\}$
C_{10}	0	$\mathbf{1}$	$\mathbf{1}$	0	0	$\left\{\left(x_{2}, 1\right),\left(x_{3}, 1\right)\right\}$
C_{11}	0	$\mathbf{1}$	0	$\mathbf{1}$	0	$\left\{\left(x_{2}, 1\right),\left(x_{4}, 1\right)\right\}$
C_{12}	0	$\mathbf{1}$	0	0	$\mathbf{1}$	$\left\{\left(x_{2}, 1\right),\left(x_{5}, 1\right)\right\}$
C_{13}	0	0	$\mathbf{1}$	$\mathbf{1}$	0	$\left\{\left(x_{3}, 1\right),\left(x_{4}, 1\right)\right\}$
C_{14}	0	0	$\mathbf{1}$	0	$\mathbf{1}$	$\left\{\left(x_{3}, 1\right),\left(x_{5}, 1\right)\right\}$
C_{15}	0	0	0	$\mathbf{1}$	$\mathbf{1}$	$\left\{\left(x_{4}, 1\right),\left(x_{5}, 1\right)\right\}$

Table 4: The concept class \mathcal{C}_{n} [Zilles et al., 2011], from the proof of Proposition 13 for the case $n=4$. The final subset teaching sets (corresponding to T_{2}) that witness $\operatorname{STD}_{\min }\left(\mathcal{C}_{n}\right)=2$ are highlighted in blue. The rightmost column shows the mapping T_{1}; the subsets marked in blue are not contained in any other set in that column, hence they can be used by the teacher T_{2} in the next iteration. When calculating STD instead of $\mathrm{STD}_{\min }$, the teacher T_{1} assigns every singleton its unique minimum teaching set, which is a set of four negative examples. These sets cannot be reduced in subsequent iterations, since their proper subsets occur in minimum teaching sets for other concepts; hence $\operatorname{STD}\left(\mathcal{C}_{4}\right)=4$.

Proposition $15 \mathrm{STD}_{\min }$ is class-monotonic, domain-monotonic, and satisfies the antichain property.
Proof. Class-monotonicity is obvious: If $\mathcal{C}, \mathcal{C}^{\prime}$ are concept classes over a fixed domain $X, \mathcal{C} \subseteq \mathcal{C}^{\prime}$, and $\mathcal{T}^{\prime}=\left(T_{k}^{\prime}\right)_{k \in \mathbb{N}}$ is a subset teaching sequence for \mathcal{C}^{\prime} of order $\mathrm{STD}_{\min }\left(\mathcal{C}^{\prime}\right)$, then define T_{k} to be the restriction of T_{k}^{\prime} to \mathcal{C}. Clearly, $\mathcal{T}=\left(T_{k}\right)_{k \in \mathbb{N}}$ is a subset teaching sequence for \mathcal{C} of order at most $\operatorname{STD}_{\text {min }}\left(\mathcal{C}^{\prime}\right)$. Hence $\operatorname{STD}_{\text {min }}(\mathcal{C}) \leq \operatorname{STD}_{\text {min }}\left(\mathcal{C}^{\prime}\right)$.

To establish domain-monotonicity, let \mathcal{C} be any concept class over a domain X, and let $X^{\prime} \subseteq X$ preserve \mathcal{C}. Then any subset teaching sequence \mathcal{T}^{\prime} for $\mathcal{C} \downarrow_{X^{\prime}}$ can be turned into a subset teaching sequence \mathcal{T} for \mathcal{C}, by setting $T_{0}(C)=\{(x, C(x)) \mid x \in X\}$ and $T_{k}(C)=T_{k}^{\prime}(C)$ for all $C \in \mathcal{C}$ and all $k \geq 1$. Note that $\operatorname{ord}_{\mathcal{C}}(\mathcal{T})=\operatorname{ord}_{\mathcal{C}_{X^{\prime}}}\left(\mathcal{T}^{\prime}\right)$. Therefore $\mathrm{STD}_{\min }\left(\mathcal{C} \downarrow_{X^{\prime}}\right) \geq \operatorname{STD}_{\text {min }}(\mathcal{C})$.

By the definition of subset teaching sequence, it is obvious that $S T D_{\min }$ satisfies the antichain property.

D Proof Details for Section 5

Proposition 16 For every $n \in \mathbb{N}$ there is (i) a concept class \mathcal{C} with $\operatorname{STD}(\mathcal{C})=\operatorname{STD}_{\min }(\mathcal{C})=1$ and $\operatorname{NCTD}(\mathcal{C})=n$; (ii) a concept class \mathcal{C} with $\operatorname{STD}(\mathcal{C})=\operatorname{STD}_{\min }(\mathcal{C})=n$ and $\operatorname{NCTD}(\mathcal{C})=\frac{n}{2}$.
Proof. (i) Consider the class $\mathcal{C}_{u}^{\text {pair }}$, as defined by Zilles et al. [2011], for any number $u \geq 3$. This concept class is shown in Table 5 for $u=3$. It is defined over $2^{u}+u$ instances $x_{1}, \ldots, x_{2^{u}+u}$. The set $\left\{x_{2^{u}+1}, \ldots, x_{2^{u}+u}\right\}$ of the last u instances is shattered. Let $\alpha_{1}, \ldots, \alpha_{2^{u}}$ be the list of all possible assignments of labels to the last u instances. For each such assignment α_{i}, the concept class contains two concepts $C_{2 i-1}$ and $C_{2 i}$ realizing α_{i}. The concept $C_{2 i-1}$ does not contain any of the first 2^{u} instances $x_{1}, \ldots, x_{2^{u}}$. The concept $C_{2 i}$ contains x_{i}, but none of the other instances in $\left\{x_{1}, \ldots, x_{2^{u}}\right\}$. See Table 5 for an illustration when $u=3$. Note that this concept class can be equivalently written in block matrix form as follows:

$$
\left[\begin{array}{ll}
I_{2^{u}} & P_{u} \\
0 & P_{u}
\end{array}\right]
$$

where P_{u} represents the powerset over a set of u instances and $I_{2^{u}}$ is the $2^{u} \times 2^{u}$ identity matrix.
It was proven by Zilles et al. [2011] that $\operatorname{STD}\left(\mathcal{C}_{u}^{\text {pair }}\right)=1$. We claim that $\operatorname{NCTD}\left(\mathcal{C}_{u}^{\text {pair }}\right)=\left\lceil\frac{u}{2}\right\rceil$. To see this, note that the subclass of concepts $C_{2 i-1}, 1 \leq i \leq 2^{u}$ is the powerset over the last u instances, where all these concepts agree on the first 2^{u} instances. Thus, the NCTD of this subclass equals the NCTD of the powerset over u instances, which is $\left\lceil\frac{u}{2}\right\rceil$ [Kirkpatrick et al., 2019]. Since NCTD is class-monotonic, we have $\operatorname{NCTD}\left(\mathcal{C}_{u}^{\text {pair }}\right) \geq\left\lceil\frac{u}{2}\right\rceil$. A teacher mapping T witnessing $\operatorname{NCTD}\left(\mathcal{C}_{u}^{\text {pair }}\right) \leq\left\lceil\frac{u}{2}\right\rceil$ can be defined by (i) setting $T\left(C_{2 i}\right)=\left\{\left(x_{i}, 1\right)\right\}$ for $1 \leq i \leq 2^{u}$, and (ii) teaching the concepts $C_{2 i-1}, 1 \leq i \leq 2^{u}$, with a non-clashing teacher for the powerset over the last u instances, as used by Kirkpatrick et al. [2019]. Clearly, T is clash-free.

For $n \in \mathbb{N}$ and $u=2 n$, thus $\operatorname{STD}\left(\mathcal{C}_{u}^{\text {pair }}\right)=\operatorname{STD}_{\min }\left(\mathcal{C}_{u}^{\text {pair }}\right)=1$ and $\operatorname{NCTD}\left(\mathcal{C}_{u}^{\text {pair }}\right)=n$.
(ii) Consider the powerset \mathcal{P}_{n} on n instances. The fact that $\operatorname{NCTD}(\mathcal{C})=\frac{n}{2}$ was shown by Kirkpatrick et al. [2019]. It is obvious that $\mathrm{STD}_{\min }\left(\mathcal{P}_{n}\right)=n$: Every sample set for a concept $C \in \mathcal{P}_{n}$ that omits one instance from X is also a sample set for some concept $C^{\prime} \neq C, C^{\prime} \in \mathcal{P}_{n}$. Thus any subset teaching sequence for \mathcal{P}_{n} satisfies $T_{k}=T_{0}$ for all $k \in \mathbb{N}$.

E Details for Section 6

E. 1 Proof Details for Theorem 20

To complete the proof of Theorem 20, we show that $\mathrm{STD}_{\min }$ is not unambiguous on Warmuth's class \mathcal{C}_{W} which was defined by Doliwa et al. [2014] after communication with M. Warmuth. \mathcal{C}_{W} is a concept class of 10 concepts over 5 instances, see Table 6. We know that $\operatorname{VCD}\left(\mathcal{C}_{W}\right)=$ $\operatorname{VCD}_{\text {min }}\left(\mathcal{C}_{W}\right)=2$, while $\operatorname{RTD}\left(\mathcal{C}_{W}\right)=\operatorname{STD}\left(\mathcal{C}_{W}\right)=3$. It turns out that $\operatorname{STD}_{\min }\left(\mathcal{C}_{W}\right) \leq 2$, as witnessed by the subset teaching sequence that is highlighted in Table6. However, there is a second $\mathrm{STD}_{\text {min }}$-teacher for \mathcal{C}_{W} that has exactly the same range as the one resulting from the subset teaching sequence in Table 6- see Table 7. A comparison of Tables 6 and 7 shows that T_{2} and T_{2}^{\prime} swap the teaching sets for $C_{2 i-1}$ and $C_{2 i}$, for all $i \in\{1, \ldots, 5\}$.

E. 2 Redundant Instances Can Cause Extreme Forms of Ambiguity

The ambiguity of $\mathrm{STD}_{\text {min }}$ can take extreme forms for artificially created concept classes that have many redundant instances. An instance $x \in X$ is redundant for \mathcal{C} if $X \backslash\{x\}$ preserves \mathcal{C}.

concept in $\mathcal{C}_{3}^{\text {pair }}$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}	x_{11}
C_{1}	0	0	0	0	0	0	0	0	$\mathbf{0}$	$\mathbf{0}$	0
C_{2}	$\mathbf{1}$	0	0	0	0	0	0	0	0	0	0
C_{3}	0	0	0	0	0	0	0	0	$\mathbf{0}$	0	$\mathbf{1}$
C_{4}	0	$\mathbf{1}$	0	0	0	0	0	0	0	0	1
C_{5}	0	0	0	0	0	0	0	0	$\mathbf{0}$	1	$\mathbf{0}$
C_{6}	0	0	$\mathbf{1}$	0	0	0	0	0	0	1	0
C_{7}	0	0	0	0	0	0	0	0	$\mathbf{0}$	$\mathbf{1}$	1
C_{8}	0	0	0	$\mathbf{1}$	0	0	0	0	0	1	1
C_{9}	0	0	0	0	0	0	0	0	$\mathbf{1}$	$\mathbf{0}$	0
C_{10}	0	0	0	0	$\mathbf{1}$	0	0	0	1	0	0
C_{11}	0	0	0	0	0	0	0	0	$\mathbf{1}$	0	$\mathbf{1}$
C_{12}	0	0	0	0	0	$\mathbf{1}$	0	0	1	0	1
C_{13}	0	0	0	0	0	0	0	0	$\mathbf{1}$	1	$\mathbf{0}$
C_{14}	0	0	0	0	0	0	$\mathbf{1}$	0	1	1	0
C_{15}	0	0	0	0	0	0	0	0	$\mathbf{1}$	$\mathbf{1}$	1
C_{16}	0	0	0	0	0	0	0	$\mathbf{1}$	1	1	1

Table 5: The concept class $\mathcal{C}_{u}^{\text {pair }}$ [Zilles et al., 2011], for the case $u=3$. The subset teaching sets witnessing $\operatorname{STD}\left(\mathcal{C}_{3}^{\text {pair }}\right)=1$ are highlighted in blue. Non-clashing sets that witness $\operatorname{NCTD}\left(\mathcal{C}_{3}^{\text {pair }}\right) \leq$ 2 are in bold font. The proof of Proposition 16 shows that $\operatorname{NCTD}\left(\mathcal{C}_{3}^{\text {pair }}\right)=2$.

T_{0}	T_{1}						T_{2}								
concept	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
C_{1}	1	1	0	0	0	$*$	$*$	0	0	0	$*$	$*$	0	$*$	0
C_{2}	1	1	0	1	0	1	1	$*$	1	$*$	1	1	$*$	$*$	$*$
C_{3}	0	1	1	0	0	0	$*$	$*$	0	0	0	$*$	$*$	0	$*$
C_{4}	0	1	1	0	1	$*$	1	1	$*$	1	$*$	1	1	$*$	$*$
C_{5}	0	0	1	1	0	0	0	$*$	$*$	0	$*$	0	$*$	$*$	0
C_{6}	1	0	1	1	0	1	$*$	1	1	$*$	$*$	$*$	1	1	$*$
C_{7}	0	0	0	1	1	0	0	0	$*$	$*$	0	$*$	0	$*$	$*$
C_{8}	0	1	0	1	1	$*$	1	$*$	1	1	$*$	$*$	$*$	1	1
C_{9}	1	0	0	0	1	$*$	0	0	0	$*$	$*$	0	$*$	0	$*$
C_{10}	1	0	1	0	1	1	$*$	1	$*$	1	1	$*$	$*$	$*$	1

Table 6: The concept class \mathcal{C}_{W}. A subset teaching sequence can be chosen by defining $T_{1}\left(C_{2 i}\right)$ to consist of the only three positive examples for $C_{2 i}$, and $T_{1}\left(C_{2 i-1}\right)$ to consist of the only three negative examples for $C_{2 i-1}$, where $1 \leq i \leq 5$. In T_{2}, these sets can easily be reduced to sets of size 2. Asterisks denote instances not occurring in the chosen teaching sets.

Example 1 For arbitrary $n \in \mathbb{N}$, consider a concept class for which VCD is n, while $\mathrm{STD}_{\text {min }}$ equals 1, with a large number of redundant instances. Such a class can be constructed over a domain X that has $n 2^{n}$ instances and is partitioned into 2^{n} sets $X_{1}, \ldots, X_{2^{n}}$, each of size n. The concept class consists of 2^{n} concepts, chosen so that they shatter each set $X_{i}, 1 \leq i \leq 2^{n}$. See Table 8 for an illustration when $n=2$.
To see that $\mathrm{STD}_{\min }$ equals 1 , let $C_{1}, \ldots, C_{2^{n}}$ be an enumeration of all concepts in this concept class. It suffices to pick a teaching sequence as follows. We define $T_{1}\left(C_{i}\right)=\left\{\left(x, C_{i}(x)\right) \mid x \in X_{i}\right\}$, that means, we pick the instances in the ith set X_{i} to represent the ith concept. Now $T_{2}\left(C_{i}\right)$ can consist of any single example from $T_{1}\left(C_{i}\right)$, since $T_{1}\left(C_{i}\right) \cap T_{1}\left(C_{j}\right)=\emptyset$ for all $j \neq i$.
Obviously, by reordering concepts, we obtain different $\mathrm{STD}_{\min }$-teachers that have the same range; in particular, they witness a very high degree of ambiguity, as will be formalized in Observation 1 .

Example 1 can be generalized to the following observation.
Observation 1 Let \mathcal{C} be any concept class over a domain X. Suppose X can be partitioned into a family $\left(X_{C}\right)_{C \in \mathcal{C}}$ of subsets such that X_{C} preserves \mathcal{C}, for every $C \in \mathcal{C}$. Then $\mathrm{STD}_{\min }(\mathcal{C})=1$ and there are at least $|\mathcal{C}|$! pairwise distinct $\mathrm{STD}_{\min }$-teachers for \mathcal{C} with the same range on \mathcal{C}. In particular, every permutation σ of \mathcal{C} yields an $\mathrm{STD}_{\min }$-teacher that maps a concept C to the singleton sample set $\left\{\left(x_{\sigma(C)}, C\left(x_{\sigma(C)}\right)\right)\right\}$, where $x_{\sigma(C)}$ is any instance in $X_{\sigma(C)}$.

| $T_{0} T_{1}^{\prime}=T_{0}$ | T_{1}^{\prime} | | | | | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| concept | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| C_{1} | 1 | 1 | 0 | 0 | 0 | 1 | 1 | $*$ | 0 | $*$ | 1 | 1 | $*$ | $*$ | $*$ |
| C_{2} | 1 | 1 | 0 | 1 | 0 | $*$ | $*$ | 0 | 1 | 0 | $*$ | $*$ | 0 | $*$ | 0 |
| C_{3} | 0 | 1 | 1 | 0 | 0 | $*$ | 1 | 1 | $*$ | 0 | $*$ | 1 | 1 | $*$ | $*$ |
| C_{4} | 0 | 1 | 1 | 0 | 1 | 0 | $*$ | $*$ | 0 | 1 | 0 | $*$ | $*$ | 0 | $*$ |
| C_{5} | 0 | 0 | 1 | 1 | 0 | 0 | $*$ | 1 | 1 | $*$ | $*$ | $*$ | 1 | 1 | $*$ |
| C_{6} | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $*$ | $*$ | 0 | $*$ | 0 | $*$ | $*$ | 0 |
| C_{7} | 0 | 0 | 0 | 1 | 1 | $*$ | 0 | $*$ | 1 | 1 | $*$ | $*$ | $*$ | 1 | 1 |
| C_{8} | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $*$ | $*$ | 0 | $*$ | 0 | $*$ | $*$ |
| C_{9} | 1 | 0 | 0 | 0 | 1 | 1 | $*$ | 0 | $*$ | 1 | 1 | $*$ | $*$ | $*$ | 1 |
| C_{10} | 1 | 0 | 1 | 0 | 1 | $*$ | 0 | 1 | 0 | $*$ | $*$ | 0 | $*$ | 0 | $*$ |

Table 7: A second subset teaching sequence for the concept class \mathcal{C}_{W}.

	X_{1}		X_{2}		X_{3}		X_{4}	
concept	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
C_{1}	0	0	0	0	0	0	0	0
C_{2}	0	1	0	1	0	1	0	1
C_{3}	1	0	1	0	1	0	1	0
C_{4}	1	1	1	1	1	1	1	1

Table 8: The concept class from Example 1] for the case $n=2$. Highlighted in blue are the labels chosen for teaching individual concepts with T_{1}. Clearly, T_{2} can be defined to assign each concept a singleton sample set.

References

T. Doliwa, G. Fan, H. U. Simon, and S. Zilles. Recursive teaching dimension, VC-dimension and sample compression. J. Mach. Learn. Res., 15:3107-3131, 2014.
D. Kirkpatrick, H. U. Simon, and S. Zilles. Optimal collusion-free teaching. In Proceedings of Machine Learning Research (ALT2019), volume 98, 2019.
S. Zilles, S. Lange, R. Holte, and M. Zinkevich. Models of cooperative teaching and learning. J. Mach. Learn. Res., 12:349-384, 2011.

