Supplementary Material for Paper 6775 (On Batch Teaching with Sample Complexity Bounded by VCD)

Anonymous Author(s) Affiliation Address email

Abstract

This paper contains proof details omitted from the main paper as well as a more detailed discussion of the ambiguity of STD_{min}-teaching.

3 A Proof of Theorem 9

- **Theorem 9** Let T^n be an antichain teacher for \mathcal{P}_n and suppose $\operatorname{ord}(T^n) \leq \operatorname{ord}(T)$ for all antichain teachers T for \mathcal{P}_n . Then, for all but finitely many n, we have $0.22 \cdot n < \operatorname{ord}(T^n) < 0.23 \cdot n$.
- ⁶ To establish this result, we first introduce some notation and some background on bipartite matching.
- 7 **Definition 21** Let C be any concept class. The antichain number of C, denoted by ACN(C), is the 8 smallest possible order of a teacher for C with the antichain property.

9 Theorem 9 can then be restated as follows:

10 For all but finitely many n, we have $0.22 \cdot n < ACN(\mathcal{P}_n) < 0.23 \cdot n$.

11 It is well known that a bipartite graph all of whose vertices have the same degree contains a perfect 12 matching. The simple proof is based on a double counting argument. The same kind of argument can 13 be used to show the following (most likely also well known) result:

Lemma 22 Let $G = (V_1, V_2, E)$ be a bipartite graph with vertex sets V_1 and V_2 . Suppose that every vertex in V_1 has degree d_1 while every vertex in V_2 has degree $d_2 \le d_1$. Then G contains a matching of size $|V_1|$.

Proof. For $U \subseteq V_1$, $\Gamma(U)$ denotes the neighborhood of U, i.e., $\Gamma(U) = \{v \in V_1 \mid v \text{ is adjacent to} some vertex in <math>U\}$. It suffices to show that Hall's condition,

$$\forall U \subseteq V_1 : |\Gamma(U)| \ge |U| ,$$

is satisfied. Fix a set $U \subseteq V_1$. The number of edges having one endpoint in U equals $d_1 \cdot |U|$. The number of edges having one endpoint in $\Gamma(U)$ is at most $d_2 \cdot |\Gamma(U)|$. An edge with an endpoint in Umust have its other endpoint in $\Gamma(U)$. Hence $d_1 \cdot |U| \le d_2 \cdot |\Gamma(U)|$. Since $d_2 \le d_1$, we may conclude that $|U| \le |\Gamma(U)|$.

Corollary 23 Let d, n be integers such that $1 \le d \le (n+1)/2$. Let X be a set of size n. Let $G = (V_1, V_2, E)$ be the bipartite graph such that

• V_1 (resp. V_2) consists of all subsets of X with d - 1 (resp. d) elements,

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

- a set $U \in V_1$ is adjacent to a set $U' \in V_2$ iff $U \subseteq U'$.
- ²⁷ Then G contains a a matching of size $|V_1|$.
- **Proof.** Each vertex in V_1 has degree n d + 1 whereas each vertex in V_2 has degree d. Since $d \le (n+1)/2$, by assumption, it follows that $d \le n d + 1$. Now apply Lemma 22.
- 30 Let X be a set of size n. A sample set over X is said to be *conflict-free* if it does not contain both
- 31 (x,0) and (x,1) for some $x \in X$. Let $\mathcal{F}_{\leq d,n}$ be the family of all conflict-free sample sets over X
- with *d* or fewer elements. The conflict-free sample sets with exactly *d* elements form an antichain denoted by $\mathcal{F}_{=d,n}$ in the sequel – in $\mathcal{F}_{\leq d}$. Obviously

 $\mathcal{F}_{=d,n} = \{(x_1, b_1), \dots, (x_d, b_d) : x_1, \dots, x_d \text{ are } d \text{ distinct elements of } X \text{ and } b_1, \dots, b_d \in \{0, 1\}\}$

- and therefore the antichain $\mathcal{F}_{=d,n}$ is of size $\binom{n}{d} \cdot 2^d$.
- ³⁵ The following result is a relative of Sperner's Theorem:
- **Lemma 24** $\mathcal{F}_{=d,n}$ is a maximum antichain in $\mathcal{F}_{\leq d,n}$.

Proof. An antichain \mathcal{A}' with conflict-free sets $A'_1, \ldots, A'_{s'}$ (without repetition) is called an *extension* 37 of another antichain \mathcal{A} with conflict-free sets A_1, \ldots, A_s (again without repetition) if s' = s and 38 $A_i \subseteq A'_i$ for $i = 1, \ldots, s$ (after renumbering the sets in \mathcal{A}' if necessary). We show, by induction on 39 d, that every antichain \mathcal{A} with sets taken from $\mathcal{F}_{\leq d,n}$ has an extension \mathcal{A}' with sets taken from $\mathcal{F}_{=d,n}$. 40 For d = 1, this is obviously true. Let $d \ge 2$ and assume inductively that it holds for d - 1. Fix an 41 antichain \mathcal{A} with sets taken from $\mathcal{F}_{\leq d}$, n. Let \mathcal{A}_1 be the antichain consisting of the sets of size at 42 most d-1 in \mathcal{A} and let $\mathcal{A}_2 = \mathcal{A} \setminus \overline{\mathcal{A}'}$. By our inductive assumption, there is an extension \mathcal{A}'_1 of \mathcal{A}_1 43 whose sets are taken from $\mathcal{F}_{\leq d-1,n}$. The inductive proof can now be accomplished by proving the 44 45 following assertions:

- 46 **Claim 1:** $\mathcal{A}'_1 \cup \mathcal{A}_2$ is an antichain in $\mathcal{F}_{\leq d,n}$ whose sets are of size d-1 or d.
- 47 **Claim 2:** Any antichain \mathcal{B} with sets of size d 1 or d has an extension \mathcal{B}' with sets taken from 48 $\mathcal{F}_{\leq d,n}$.
- ⁴⁹ Claim 1 becomes obvious from the following observations:
- No set in A_2 (with d elements) can be a subset of some set in A'_1 (with d-1 elements).
- Since no set in A_1 is a subset of some set in A_2 (by the antichain property of A), no set in the extension A'_1 is a subset of some set in A_2 .

As for proving Claim 2, fix some antichain \mathcal{B} . Let $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be the decomposition of \mathcal{B} into sets of size d-1 and sets of size d, respectively. A set of \mathcal{B}_1 is of the form $B = \{(x_1, b_1), \dots, (x_{d-1}, b_{d-1})\}$. Let M be the matching of size $|V_1|$, whose existence is guaranteed by Corollary 23. Pick x_d such

that $\{x_1, ..., x_{d-1}, x_d\}$ is the *M*-partner of $\{x_1, ..., x_{d-1}\}$. Then the set

$$B' = \{(x_1, b_1), \dots, (x_{d-1}, b_{d-1}), (x_d, 0)\}$$

⁵⁷ is called the *M*-partner of *B*. Note here that different sets from \mathcal{B}_1 have different *M*-partners. ⁵⁸ Let \mathcal{B}'_1 be the antichain obtained from \mathcal{B}_1 by replacing each set *B* in \mathcal{B}_1 by its *M*-partner and let ⁵⁹ $\mathcal{B}' = \mathcal{B}'_1 \cup \mathcal{B}_2$. By construction, all sets in \mathcal{B}' are of size *d*. In order to show that \mathcal{B}' is an antichain ⁶⁰ that extends \mathcal{B} , it suffices to show that no *M*-partner of a set $B \in \mathcal{B}_1$ can be equal to one of the sets ⁶¹ in \mathcal{B}_2 . But this is obvious because *B* is a subset of its *M*-partner, but not a subset of any set in \mathcal{B}_2 (by ⁶² the antichain property of \mathcal{B}). Claim 2 follows from this discussion, which also completes the proof of ⁶³ the lemma.

Corollary 25 Let $d_0 = d_0(n)$ be the smallest d such that $2^d \cdot \binom{n}{d} \ge 2^n$. Let $G = (V_1, V_2, E)$ be the bipartite graph given by (i) $V_1 = \mathcal{F}_{=n,n}$ and $V_2 = \mathcal{F}_{=d_0,n}$, and (ii) a set $U' \in V_1$ is adjacent to a set $U \in V_2$ iff $U \subseteq U'$. Then G contains a matching of size $|V_1|$.

Proof. Each vertex in V_1 has degree $\binom{n}{d_0}$ whereas each vertex in V_2 has degree 2^{n-d_0} . The definition of d_0 implies that $2^{n-d_0} \leq \binom{n}{d_0}$. Now apply Lemma 22.

- ⁶⁹ Note that ACN(C) is upper-bounded by the smallest number d such that the following graph G =
- 70 (V_1, V_2, E) contains a matching M that matches every vertex in V_1 : (i) $V_1 = C$ and $V_2 = \mathcal{F}_{=d,n}$, (ii)
- a concept $C \in C$ is adjacent to a sample $S \in \mathcal{F}_{=d,n}$ iff it is consistent with S.
- 72 We now obtain a non-trivial reformulation of ACN:

Theorem 26 Let |X| = n and let $d_0 = d_0(n)$ be the smallest d such that $2^d \cdot \binom{n}{d} \ge 2^n$. Then ACN $(\mathcal{P}_n) = d_0(n)$.

Proof. Note that \mathcal{P}_n can be identified with $\mathcal{F}_{=n,n}$: each map $C : X \to \{0,1\}$ is identified with the full sample $\{(x, C(x)) \mid x \in X\}$. An application of Corollary 25 yields $ACN(\mathcal{P}_n) \leq d_0(n)$.

77 Set $d = \operatorname{ACN}(\mathcal{P}_n)$. Then the maximum antichain in $\mathcal{F}_{\leq d,n}$ is of size at least $|\mathcal{P}_n| = 2^n$. Using 78 Lemma 24 and the fact that $|\mathcal{F}_{=d,n}| = \binom{n}{d} \cdot 2^d$, this translates into $2^d \cdot \binom{n}{d} \geq 2^n$. The definition of 79 $d_0(n)$ now implies that $d > d_0(n)$.

We now show that $d_0(n)$ is a function linear in n.

Lemma 27 Let $d_0 = d_0(n)$ be the smallest d such that $2^d \cdot \binom{n}{d} \ge 2^n$. Then $0.22 \cdot n < d_0(n) < 0.23 \cdot n$ for all but finitely many n.

Proof. For d = n/2, we have $\binom{n}{n/2} \approx \sqrt{\frac{2}{\pi n}} 2^n$, which is asymptotically larger than $2^{n/2}$. We may therefore assume that $d \le n/2$. For such d, the term $\binom{n}{d}$ decreases when d decreases, while 2^{n-d} increases. Hence it suffices to show that $2^d \cdot \binom{n}{d} \ge 2^n$ is fulfilled for large enough n when $d = 0.23 \cdot n$, while it is not fulfilled for large enough n when $d = 0.22 \cdot n$.

⁸⁷ To this end, let d = pn with $0 , and rewrite <math>2^d \cdot \binom{n}{d} \ge 2^n$ as

$$\frac{1}{n}\log\binom{n}{pn} \ge 1 - p\,.$$

It is well known that the left-hand side converges to H(p), where $H(\cdot)$ denotes the binary entropy. The lemma now follows from H(0.22) < 0.78 = 1 - 0.22 and H(0.23) > 0.77 = 1 - 0.23.

⁹⁰ This allows us to conclude that, asymptotically, the value of $ACN(\mathcal{P}_n)$ lies between $0.22 \cdot n$ and ⁹¹ $0.23 \cdot n$, as claimed by Theorem 9.

92 **B** Other Proof Details for Section 3

Proposition 8 Let C be any concept class, $Z \in \{\text{RTD}, \text{NCTD}\}$, and T any Z-teacher for C. Then there is a Z-teacher T' for C with ord(T') = ord(T) such that T' has the antichain property.

Proof. First, let T be any NCTD-teacher for C. For $C \in C$, obtain T'(C) from T(C) as follows. If each sample set in T(C) has size $\operatorname{ord}(T)$, then T'(C) = T(C). Otherwise, T'(C) results from T(C)by adding examples that are consistent with C to every sample set $T_C \in T(C)$, until the size of T_C equals $\operatorname{ord}(T)$. Then T' inherits the non-clashing property on C from T. Clearly, a non-clashing teacher mapping that produces only sample sets of a constant size must also fulfill the antichain property. So T' is an NCTD-teacher for C with the antichain property, and $\operatorname{ord}(T') = \operatorname{ord}(T)$.

Second, suppose T is an RTD-teacher. The construction of T' is identical to that in the first case. It remains to verify that the resulting antichain teacher T' with $\operatorname{ord}(T') = \operatorname{ord}(T)$ is also an RTD-teacher for C. Using the notation from Definition 2, we know that, for $C \in \mathcal{C}_i^{\min}$, the set T(C) is a teaching set for C wrt \mathcal{C}_i . Since adding examples (consistently with C) to T(C) does not change this fact, we obtain that, for $C \in \mathcal{C}_i^{\min}$, the set T'(C) is a teaching set for C wrt \mathcal{C}_i . Hence T' is an RTD-teacher for C.

Proposition 11 STD *is not domain-monotonic. In particular, for every* n > 3*, there is a concept class* C *over a domain* $X = X' \cup X''$ *such that* STD(C) = n - 1*, while* $STD(C\downarrow_{X'}) = 2$.

Proof. Let n > 3, and let $X' = \{x'_1, \dots, x'_n\}$ and $X'' = \{x''_1, \dots, x''_n\}$. For every $J \subseteq [n]$ of size 1 or 2, let C_J be the concept that assigns label 1 (resp. label 0) to x'_j and x''_j if $j \in J$ (resp. if $j \notin J$). Let C_{\emptyset} be the concept that assigns label 0 to x'_1, \dots, x'_n and label 1 to x''_1, \dots, x''_n . Consider now the

- following concept class C over the domain $X = X' \cup X''$: $C = \{C_J \mid J \subseteq [n], 0 \le |J| \le 2\}$. See
- Table 3 for an illustration of the case n = 5.
- Note that $\mathcal{C}_{\downarrow X'}$ is the class of all subsets of X whose size is at most 2. It is well known [Zilles et al., 2011] that $STD(\mathcal{C}_{\downarrow X'}) = 2$.
- It remains to prove that $STD(\mathcal{C}) = n 1$. To this end, we first determine the minimum teaching sets for every concept in \mathcal{C} :
- (i) The minimum teaching sets for C_{\emptyset} are the sets of the form $\{(x'_i, 0), (x''_i, 1)\}$ for j = 1, ..., n.
- (ii) For $1 \le i < j \le n$, the minimum teaching sets for $C_{\{i,j\}}$ are the sets of the form $\{(u_i, 1), (u_j, 1)\}$ where $u_i \in \{x'_i, x''_i\}, u_j \in \{x'_j, x''_j\}$ and $\{u_i, u_j\} \cap \{x'_i, x'_j\} \neq \emptyset$.
- (iii) For $1 \le i \le n$, the minimum teaching sets for $C_{\{i\}}$ are the sets of the form $\{(u_j, 0) \mid j \in [n] \setminus \{i\}\}$ where $u_j \in \{x'_j, x''_j\}$ and, for at least one index $j' \in [n] \setminus \{i\}$, we have $u_{j'} = x''_{j'}$.
- For each $C \in C$, let TS(C) be the collection of minimum teaching sets for C. The largest of these minimum teaching sets, namely the ones for concepts of the form $C_{\{i\}}$, are of size n - 1. Hence TD(C) = n - 1. Next, we will verify the following property for every concept $C \in C$:
- (*) If S is a minimum teaching set for C wrt C, then every proper subset of S is contained in a minimum teaching set for some concept C' wrt C, where $C' \in C$, $C' \neq C$.
- (i) Consider an index $j \in [n]$ and a teaching set $\{(x'_j, 0), (x''_j, 1)\} \in \mathrm{TS}(C_{\emptyset})$. Removing $(x'_j, 0)$ from this set yields a subset of one of the teaching sets for $C_J \neq C_{\emptyset}$ whenever $j \in J$ and |J| = 2. A similar reasoning applies when removing $(x''_j, 1)$ instead of $(x'_j, 0)$.
- (ii) Consider indices $i \neq j \in [n]$ and a teaching set $\{(u_i, 1), (u_j, 1)\} \in \mathrm{TS}(C_{\{i,j\}})$. Removing one example, say $(u_i, 1)$, from this set yields a subset of one of the teaching sets for $C_J \neq C_{\{i,j\}}$ whenever $j \in J$, $i \notin J$ and |J| = 2.
- (iii) Consider an index $i \in [n]$ and a teaching set $\{(u_j, 0) \mid j \in [n] \setminus \{i\}\} \in \mathrm{TS}(C_{\{i\}})$. Removing ($u_{j_0}, 0$) from this set yields a subset of one of the teaching sets for $C_{\{j_0\}}$.
- 137 This establishes Property (*), which immediately implies $STD(\mathcal{C}) = TD(\mathcal{C}) = n 1$.

concept	x_1	x_2	x_3	x_4	x_5	x_1'	x'_2	x'_3	x'_4	x'_5
C_{\emptyset}	0	0	0	0	0	1	1	1	1	1
$C_{\{1\}}$	1	0	0	0	0	1	0	0	0	0
$C_{\{2\}}$	0	1	0	0	0	0	1	0	0	0
$C_{\{3\}}$	0	0	1	0	0	0	0	1	0	0
$C_{\{4\}}$	0	0	0	1	0	0	0	0	1	0
$C_{\{5\}}$	0	0	0	0	1	0	0	0	0	1
$C_{\{1,2\}}$	1	1	0	0	0	1	1	0	0	0
$C_{\{1,3\}}$	1	0	1	0	0	1	0	1	0	0
$C_{\{1,4\}}$	1	0	0	1	0	1	0	0	1	0
$C_{\{1,5\}}$	1	0	0	0	1	1	0	0	0	1
$C_{\{2,3\}}$	0	1	1	0	0	0	1	1	0	0
$C_{\{2,4\}}$	0	1	0	1	0	0	1	0	1	0
$C_{\{2,5\}}$	0	1	0	0	1	0	1	0	0	1
$C_{\{3,4\}}$	0	0	1	1	0	0	0	1	1	0
$C_{\{3,5\}}$	0	0	1	0	1	0	0	1	0	1
$C_{\{4,5\}}$	0	0	0	1	1	0	0	0	1	1

Table 3: The concept class C from the proof of Proposition 11 for n = 5. The entries in bold indicate one (arbitrarily chosen) minimum teaching set for each concept.

138 C Proof Details for Section 4

Observation 1 Every subset teaching sequence of order d can be transformed into a normalized sequence $(T_k)_{k\in\mathbb{N}}$ of the same order, where a normalized subset teaching sequence has the property that, for every k and every $C \in C$, we have (i) T_{k+1} differs from T_k on exactly one concept, (ii) $|T_{k+1}(C)| \in \{|T_k(C)| - 1, |T_k(C)|\}$, (iii) $|T_k(C)| \ge d$, which implies that $|T_{k^*}(C)| = d$.

Proof. Properties (i) and (ii) are easy to achieve by breaking a step from T_k to T_{k+1} into several smaller intermediate steps. Assume that (ii) holds. Then property (iii) can be achieved by omitting all steps that make $|T_k(C)|$ smaller than d. It is easy to see that the resulting sequence is again an admissible subset teaching sequence.

147 **Proposition 13** $\text{STD}_{\min}(\mathcal{C}) \leq \text{STD}(\mathcal{C})$, and for all $n \in \mathbb{N}$ there is some succinct \mathcal{C}_n such that 148 $\text{STD}_{\min}(\mathcal{C}_n) = 2$ and $\text{STD}(\mathcal{C}) = n$.

Proof. To see that STD_{\min} is bounded from above by STD, let k^* be as defined in Definition 4. For each $k \leq k^*$, let $T_k(C)$ be *any one* set in $\text{STS}^k(C)$ such that $T_{k^*}(C) \subseteq T_{k^*-1}(C) \subseteq \ldots \subseteq T_1(C)$. Such sets $T_k(C)$ exist by the definition of STD. Finally, set $T_0(C) = \{(x, C(x)) \mid x \in X\}$. Then $\mathcal{T} = (T_k)_{k \in \mathbb{N}}$ is a subset teaching sequence of order STD(C) for C. So, $\text{STD}_{\min}(C) \leq \text{STD}(C)$.

An example of a succinct concept class C_n as claimed is the class over a domain of size n + 1, consisting of all concepts of size either 1 or 2. It was shown by Zilles et al. [2011], that STD(C) = n. By contrast, one can easily obtain STD_{min}(C_n) = 2, as illustrated in Table 4: for any concept C of size 2, the set $T_1(C)$ contains only the two positively labeled instances for C, while $T_1(C) = T_0(C) = \{(x, C(x)) \mid x \in X\}$ if C is a singleton. In the next iteration, set $T_2(\{x_n\}) = \{(x_n, 1), (x_1, 0)\}$ and $T_2(\{x_i\}) = \{(x_i, 1), (x_{i+1}, 0)\}$ for each singleton concept $\{x_i\}$ with $i \neq n$. Clearly, for all $i, T_2(\{x_i\}) \subseteq T_1(\{x_i\})$ and $T_2(\{x_i\}) \not\subseteq T_1(C)$ for any $C \neq \{x_i\}$. Thus, we obtain a subset teaching sequence of order 2 for C, i.e., STD_{min}(C) = 2.

concept in C_4	x_1	x_2	x_3	x_4	x_5	T_1
C_1	1	0	0	0	0	$\{(x_1,1),(x_2,0),(x_3,0),(x_4,0),(x_5,0)\}$
C_2	0	1	0	0	0	$\{(x_1,0), (x_2,1), (x_3,0), (x_4,0), (x_5,0)\}$
C_3	0	0	1	0	0	$\{(x_1,0),(x_2,0),(x_3,1),(x_4,0),(x_5,0)\}$
C_4	0	0	0	1	0	$\{(x_1,0),(x_2,0),(x_3,0),(x_4,1),(x_5,0)\}$
C_5	0	0	0	0	1	$\{(x_1,0),(x_2,0),(x_3,0),(x_4,0),(x_5,1)\}$
C_6	1	1	0	0	0	$\{(x_1,1),(x_2,1)\}$
C_7	1	0	1	0	0	$\{(x_1,1),(x_3,1)\}$
C_8	1	0	0	1	0	$\{(x_1,1),(x_4,1)\}$
C_9	1	0	0	0	1	$\{(x_1,1),(x_5,1)\}$
C_{10}	0	1	1	0	0	$\{(x_2,1),(x_3,1)\}$
C_{11}	0	1	0	1	0	$\{(x_2,1),(x_4,1)\}$
C_{12}	0	1	0	0	1	$\{(x_2,1),(x_5,1)\}$
C_{13}	0	0	1	1	0	$\{(x_3,1),(x_4,1)\}$
C_{14}	0	0	1	0	1	$\{(x_3,1),(x_5,1)\}$
C_{15}	0	0	0	1	1	$\{(x_4,1),(x_5,1)\}$

Table 4: The concept class C_n [Zilles et al., 2011], from the proof of Proposition 13 for the case n = 4. The final subset teaching sets (corresponding to T_2) that witness $\text{STD}_{\min}(C_n) = 2$ are highlighted in blue. The rightmost column shows the mapping T_1 ; the subsets marked in blue are not contained in any other set in that column, hence they can be used by the teacher T_2 in the next iteration. When calculating STD instead of STD_{\min} , the teacher T_1 assigns every singleton its unique minimum teaching set, which is a set of four negative examples. These sets cannot be reduced in subsequent iterations, since their proper subsets occur in minimum teaching sets for other concepts; hence $\text{STD}(C_4) = 4$.

Proposition 15 STD_{min} *is class-monotonic, domain-monotonic, and satisfies the antichain property.*

Proof. Class-monotonicity is obvious: If C, C' are concept classes over a fixed domain X, $C \subseteq C'$, and $\mathcal{T}' = (T'_k)_{k \in \mathbb{N}}$ is a subset teaching sequence for C' of order $\mathrm{STD}_{\min}(C')$, then define T_k to be the restriction of T'_k to C. Clearly, $\mathcal{T} = (T_k)_{k \in \mathbb{N}}$ is a subset teaching sequence for C of order at most STD_{min}(C'). Hence $\mathrm{STD}_{\min}(C) \leq \mathrm{STD}_{\min}(C')$. To establish domain-monotonicity, let C be any concept class over a domain X, and let $X' \subseteq X$ preserve C. Then any subset teaching sequence \mathcal{T}' for $\mathcal{C}\downarrow_{X'}$ can be turned into a subset teaching sequence \mathcal{T} for C, by setting $T_0(C) = \{(x, C(x)) \mid x \in X\}$ and $T_k(C) = T'_k(C)$ for all $C \in C$ and all $k \ge 1$. Note that $\operatorname{ord}_{\mathcal{C}}(\mathcal{T}) = \operatorname{ord}_{\mathcal{C}\downarrow_{X'}}(\mathcal{T}')$. Therefore $\operatorname{STD}_{\min}(\mathcal{C}\downarrow_{X'}) \ge \operatorname{STD}_{\min}(\mathcal{C})$.

By the definition of subset teaching sequence, it is obvious that STD_{min} satisfies the antichain property.

D Proof Details for Section 5

Proposition 16 For every $n \in \mathbb{N}$ there is (i) a concept class C with $STD(C) = STD_{\min}(C) = 1$ and NCTD(C) = n; (ii) a concept class C with $STD(C) = STD_{\min}(C) = n$ and $NCTD(C) = \frac{n}{2}$.

Proof. (i) Consider the class C_u^{pair} , as defined by Zilles et al. [2011], for any number $u \ge 3$. This 175 concept class is shown in Table 5 for u = 3. It is defined over $2^u + u$ instances x_1, \ldots, x_{2^u+u} . The 176 set $\{x_{2^{u}+1}, \ldots, x_{2^{u}+u}\}$ of the last u instances is shattered. Let $\alpha_1, \ldots, \alpha_{2^{u}}$ be the list of all possible 177 assignments of labels to the last u instances. For each such assignment α_i , the concept class contains 178 two concepts C_{2i-1} and C_{2i} realizing α_i . The concept C_{2i-1} does not contain any of the first 2^u 179 instances x_1, \ldots, x_{2^u} . The concept C_{2i} contains x_i , but none of the other instances in $\{x_1, \ldots, x_{2^u}\}$. 180 See Table 5 for an illustration when u = 3. Note that this concept class can be equivalently written in 181 block matrix form as follows: 182

$$\begin{bmatrix} I_{2^u} & P_u \\ 0 & P_u \end{bmatrix}$$

where P_u represents the powerset over a set of u instances and I_{2^u} is the $2^u \times 2^u$ identity matrix.

It was proven by Zilles et al. [2011] that $\text{STD}(\mathcal{C}_u^{pair}) = 1$. We claim that $\text{NCTD}(\mathcal{C}_u^{pair}) = \lceil \frac{u}{2} \rceil$. 184 To see this, note that the subclass of concepts C_{2i-1} , $1 \le i \le 2^u$ is the powerset over the last 185 u instances, where all these concepts agree on the first 2^u instances. Thus, the NCTD of this 186 subclass equals the NCTD of the powerset over u instances, which is $\left\lceil \frac{u}{2} \right\rceil$ [Kirkpatrick et al., 2019]. 187 Since NCTD is class-monotonic, we have $\text{NCTD}(\mathcal{C}_u^{pair}) \geq \lceil \frac{u}{2} \rceil$. A teacher mapping T witnessing 188 $\operatorname{NCTD}(\mathcal{C}_{u}^{pair}) \leq \lfloor \frac{u}{2} \rfloor$ can be defined by (i) setting $T(C_{2i}) = \{(x_i, 1)\}$ for $1 \leq i \leq 2^u$, and (ii) 189 teaching the concepts C_{2i-1} , $1 \le i \le 2^u$, with a non-clashing teacher for the powerset over the last 190 u instances, as used by Kirkpatrick et al. [2019]. Clearly, T is clash-free. 191 For $n \in \mathbb{N}$ and u = 2n, thus $\operatorname{STD}(\mathcal{C}_u^{pair}) = \operatorname{STD}_{\min}(\mathcal{C}_u^{pair}) = 1$ and $\operatorname{NCTD}(\mathcal{C}_u^{pair}) = n$. 192

(ii) Consider the powerset \mathcal{P}_n on n instances. The fact that $\operatorname{NCTD}(\mathcal{C}) = \frac{n}{2}$ was shown by Kirkpatrick et al. [2019]. It is obvious that $\operatorname{STD}_{\min}(\mathcal{P}_n) = n$: Every sample set for a concept $C \in \mathcal{P}_n$ that omits one instance from X is also a sample set for some concept $C' \neq C$, $C' \in \mathcal{P}_n$. Thus any subset teaching sequence for \mathcal{P}_n satisfies $T_k = T_0$ for all $k \in \mathbb{N}$.

197 E Details for Section 6

198 E.1 Proof Details for Theorem 20

To complete the proof of Theorem 20, we show that STD_{\min} is not unambiguous on Warmuth's 199 class C_W which was defined by Doliwa et al. [2014] after communication with M. Warmuth. C_W 200 is a concept class of 10 concepts over 5 instances, see Table 6. We know that $VCD(\mathcal{C}_W) =$ 201 $\mathrm{VCD}_{\min}(\mathcal{C}_W) = 2$, while $\mathrm{RTD}(\mathcal{C}_W) = \mathrm{STD}(\mathcal{C}_W) = 3$. It turns out that $\mathrm{STD}_{\min}(\mathcal{C}_W) \leq 2$, as 202 witnessed by the subset teaching sequence that is highlighted in Table 6. However, there is a second 203 204 STD_{min} -teacher for \mathcal{C}_W that has exactly the same range as the one resulting from the subset teaching sequence in Table 6 – see Table 7. A comparison of Tables 6 and 7 shows that T_2 and T'_2 swap the 205 teaching sets for C_{2i-1} and C_{2i} , for all $i \in \{1, \ldots, 5\}$. 206

207 E.2 Redundant Instances Can Cause Extreme Forms of Ambiguity

The ambiguity of STD_{\min} can take extreme forms for artificially created concept classes that have many redundant instances. An instance $x \in X$ is redundant for C if $X \setminus \{x\}$ preserves C.

concept in C_3^{pair}	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}
C_1	0	0	0	0	0	0	0	0	0	0	0
C_2	1	0	0	0	0	0	0	0	0	0	0
C_3	0	0	0	0	0	0	0	0	0	0	1
C_4	0	1	0	0	0	0	0	0	0	0	1
C_5	0	0	0	0	0	0	0	0	0	1	0
C_6	0	0	1	0	0	0	0	0	0	1	0
C_7	0	0	0	0	0	0	0	0	0	1	1
C_8	0	0	0	1	0	0	0	0	0	1	1
C_9	0	0	0	0	0	0	0	0	1	0	0
C_{10}	0	0	0	0	1	0	0	0	1	0	0
C_{11}	0	0	0	0	0	0	0	0	1	0	1
C_{12}	0	0	0	0	0	1	0	0	1	0	1
C_{13}	0	0	0	0	0	0	0	0	1	1	0
C_{14}	0	0	0	0	0	0	1	0	1	1	0
C_{15}	0	0	0	0	0	0	0	0	1	1	1
C_{16}	0	0	0	0	0	0	0	1	1	1	1

Table 5: The concept class C_u^{pair} [Zilles et al., 2011], for the case u = 3. The subset teaching sets witnessing $\text{STD}(\mathcal{C}_3^{pair}) = 1$ are highlighted in blue. Non-clashing sets that witness $\text{NCTD}(\mathcal{C}_3^{pair}) \leq 2$ are in bold font. The proof of Proposition 16 shows that $\text{NCTD}(\mathcal{C}_3^{pair}) = 2$.

	T_0							T_1			T_2				
concept	x_1	x_2	x_3	$ x_4 $	x_5	$ x_1 $	x_2	x_3	x_4	x_5	x_1	x_2	x_3	x_4	$ x_5 $
C_1	1	1	0	0	0	*	*	0	0	0	*	*	0	*	0
C_2	1	1	0	1	0	1	1	*	1	*	1	1	*	*	*
C_3	0	1	1	0	0	0	*	*	0	0	0	*	*	0	*
C_4	0	1	1	0	1	*	1	1	*	1	*	1	1	*	*
C_5	0	0	1	1	0	0	0	*	*	0	*	0	*	*	0
C_6	1	0	1	1	0	1	*	1	1	*	*	*	1	1	*
C_7	0	0	0	1	1	0	0	0	*	*	0	*	0	*	*
C_8	0	1	0	1	1	*	1	*	1	1	*	*	*	1	1
C_9	1	0	0	0	1	*	0	0	0	*	*	0	*	0	*
C_{10}	1	0	1	0	1	1	*	1	*	1	1	*	*	*	1

Table 6: The concept class C_W . A subset teaching sequence can be chosen by defining $T_1(C_{2i})$ to consist of the only three positive examples for C_{2i} , and $T_1(C_{2i-1})$ to consist of the only three negative examples for C_{2i-1} , where $1 \le i \le 5$. In T_2 , these sets can easily be reduced to sets of size 2. Asterisks denote instances not occurring in the chosen teaching sets.

Example 1 For arbitrary $n \in \mathbb{N}$, consider a concept class for which VCD is n, while STD_{min}

equals 1, with a large number of redundant instances. Such a class can be constructed over a domain

212 X that has $n2^n$ instances and is partitioned into 2^n sets X_1, \ldots, X_{2^n} , each of size n. The concept 213 class consists of 2^n concepts, chosen so that they shatter each set $X_i, 1 \le i \le 2^n$. See Table 8 for an

illustration when n = 2.

To see that STD_{min} equals 1, let C_1, \ldots, C_{2^n} be an enumeration of all concepts in this concept class. It suffices to pick a teaching sequence as follows. We define $T_1(C_i) = \{(x, C_i(x)) \mid x \in X_i\}$, that means, we pick the instances in the *i*th set X_i to represent the *i*th concept. Now $T_2(C_i)$ can consist

and any single example from $T_1(C_i)$, since $T_1(C_i) \cap T_1(C_j) = \emptyset$ for all $j \neq i$.

219 *Obviously, by reordering concepts, we obtain different* STD_{min} *-teachers that have the same range;* 220 *in particular, they witness a very high degree of ambiguity, as will be formalized in Observation 1.*

Example 1 can be generalized to the following observation.

Observation 1 Let C be any concept class over a domain X. Suppose X can be partitioned into a family $(X_C)_{C \in C}$ of subsets such that X_C preserves C, for every $C \in C$. Then $\text{STD}_{\min}(C) = 1$ and there are at least |C|! pairwise distinct STD_{\min} -teachers for C with the same range on C. In particular, every permutation σ of C yields an STD_{\min} -teacher that maps a concept C to the singleton sample set $\{(x_{\sigma(C)}, C(x_{\sigma(C)}))\}$, where $x_{\sigma(C)}$ is any instance in $X_{\sigma(C)}$.

$T_0' = T_0$							T_1'			T_2'				
x_1	x_2	x_3	x_4	x_5	x_1	x_2	x_3	x_4	x_5	x_1	x_2	x_3	x_4	x_5
1	1	0	0	0	1	1	*	0	*	1	1	*	*	*
1	1	0	1	0	*	*	0	1	0	*	*	0	*	0
0	1	1	0	0	*	1	1	*	0	*	1	1	*	*
0	1	1	0	1	0	*	*	0	1	0	*	*	0	*
0	0	1	1	0	0	*	1	1	*	*	*	1	1	*
1	0	1	1	0	1	0	*	*	0	*	0	*	*	0
0	0	0	1	1	*	0	*	1	1	*	*	*	1	1
0	1	0	1	1	0	1	0	*	*	0	*	0	*	*
1	0	0	0	1	1	*	0	*	1	1	*	*	*	1
1	0	1	0	1	*	0	1	0	*	*	0	*	0	*
	1 1 0 0 0 1 0	$\begin{array}{c ccc} x_1 & x_2 \\ \hline 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ \end{array}$	$\begin{array}{c cccc} x_1 & x_2 & x_3 \\ \hline 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								

Table 7: A second subset teaching sequence for the concept class C_W .

	X	1	X	2	X	3	X_4		
concept	x_1	x_2	x_3	$x_3 \mid x_4 \mid$		x_6	x_7	x_8	
C_1	0	0	0	0	0	0	0	0	
C_2	0	1	0	1	0	1	0	1	
C_3	1	0	1	0	1	0	1	0	
C_4	1	1	1	1	1	1	1	1	

Table 8: The concept class from Example 1, for the case n = 2. Highlighted in blue are the labels chosen for teaching individual concepts with T_1 . Clearly, T_2 can be defined to assign each concept a singleton sample set.

227 **References**

- T. Doliwa, G. Fan, H. U. Simon, and S. Zilles. Recursive teaching dimension, VC-dimension and sample compression. J. Mach. Learn. Res., 15:3107–3131, 2014.
- D. Kirkpatrick, H. U. Simon, and S. Zilles. Optimal collusion-free teaching. In *Proceedings of Machine Learning Research (ALT2019)*, volume 98, 2019.
- S. Zilles, S. Lange, R. Holte, and M. Zinkevich. Models of cooperative teaching and learning. J. Mach. Learn.
 Res., 12:349–384, 2011.