
Broader impacts The ability to identify the true latent generative model for data has both positive
and negative implications. On the one hand, it could be used to interpret data generative processes
which can be scrutinized for to reduce implicit bias and improve algorithmic fairness. On the other
hand, it may have negative consequences if privacy is a concern. Environmental concerns related to
training large generative models is also worth considering.

Outline This supplement is organized as follows:

• Appendix A provides additional comparisons to related work, examples, and counterexam-
ples.

• Appendix B provides an outline of the overall proof.
• Appendices C-F contain the main technical proofs.
• Appendix G compares the notion of equivalence in iVAE to affine equivalence.
• Appendix H provides conditions that guarantee a ReLU NN satisfies (F3) and/or (F4).
• Appendix J provides details on the experiments.

Appendices G-H are not required for the main proofs, but are included for completeness and reference.

A Additional details from Section 3

In this appendix, we provide additional detailed comparisons against previous work as well as
additional examples and counterexamples to further illustrate our theory.

A.1 Detailed comparisons

Since the original iVAE paper [35], there have been many generalizations and extensions proposed.
We pause here to provide a more detailed comparison of our results against this developing literature.
For a comparison against iVAE, see Section 2.

We first discuss related work that assumes auxiliary information is available (i.e. U is known), then
discuss more recent work that does not assume any auxiliary information; the ensuing comparisons
are then presented in alphabetical order.

Assuming auxiliary information is available.

1. [22] achieves identifiability in the fully unsupervised regime for the model in which the
latent state is defined by a Hidden Markov Model (HMM). The proof of identifiability in
[22] invokes [19] to essentially recover the HMM transition matrix and the auxiliary variable
U from X , reducing the problem to [35]. Our Theorem C.1 shows that identifiability in
fully unsupervised regime is possible even without additional structure given here by the
time-dependency according to Markov dynamics.

2. [36] extend [35] by observing that the conditional independence Zi ?? Zj | U is not
required for identifiability, so they propose a more general IMCA framework for conditional
energy-based models. However, identifiability in [36] still critically relies on observing
an auxiliary variable (in their setting, this is a dependent variable Y ). Our Theorem C.1
achieves same type of identifiability as [36] (up to affine transformation) without relying on
conditional independence or an auxiliary variable.

3. [61] extends the iVAE identifiability theory of [35] by showing that a stronger notion of
identifiability can be achieved if Z is distributed according to factorial GMM (instead of a
general exponential family as in [35]). More specifically, given the auxiliary information U ,
they show that Z can be recovered up to permutation and scaling of the variables Zi. By
contrast, in Theorem E.4, we show that under similar assumptions Zi are identifiable up
to permutation and scaling and importantly, we do this only from X , without using U in
any way. We also do not require the GMM to be factorial. Finally, our proof technique is
different: While [61] relies on [35] (and hence, for instance, require J � m+ 1), our proof
is independent of [35].
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4. [73] studies identifiability of the model (3) under the assumption that f is volume preserving
and Z comes from a conditionally factorial exponential family, similar to iVAE. They prove
that if U is known, (P2) holds, and f is twice differentiable, then Z is identifiable up to
permutation and non-linear functions applied to each Zi (i.e., Zi = hi(Z⌧(i)). If additionally
Z is a GMM, then Z can be recovered up to permutation, scaling, and translation. In
comparison, we do not require U to be known, and we do not require f to be volume
preserving or even differentiable everywhere. We show that under the same assumption
(P2) the latent variables Zi can be recovered up to permutation, scaling, and translation if
f is only assumed to be piecewise affine. Additionally, we show that a weaker notion of
identifiability holds if Z is not assumed to be conditionally factorial.

5. [75] considers a contrastive model in which samples arrive in pairs, which is a type of weak
supervision. Additionally, it is assumed that the latent variables are sampled uniformly from
a convex body, and that f is differentiable and injective. By comparison, our model allows
for more general non-uniform mixture priors, non-injective and non-smooth f , and is fully
unsupervised.

No auxiliary information.

1. [18] propose a novel Multifacet VAE (MFCVAE) model for unsupervised deep clustering.
Their model has the following form

p(x, z, u) = p(x|z)
kY

j=1

p(zj |uj)p(uj), zj |uj ⇠ N (µuj ,⌃uj ) (5)

Through empirical experiments, [18] emphasizes the importance of high-dimentional struc-
ture of U and shows how it results in improved clustering performance. The key idea is
that while the number of meaningful clusters in the data may be very large, there may be
meaningful individual categorical variables Ui (“facets”) with a much smaller number of
states, which may be easier to learn. In this way, by simultaneously performing clustering
for each “facet" Ui one can learn meaningful fine-grained clusters in the data. Note that k
binary variables Ui result in J = 2k fine-grained clusters in the data.
Compared to our work, [18] is focused on practical implementation details, and lacks a
formal identifiability theory. In fact, our results provide precisely such a formal identifiability
theory in a more general setting. If p(x|z) is modeled by ReLU/leaky-ReLU NN, MFCVAE
is a special case of our model (3) with high-dimensional U . More specifically, the MFCVAE
model (5) restricts our model (3) to the case when ui are independent and ne(Ui) = {i}. In
particular, it satisfies assumption (P3). Therefore, Theorem 3.10 implies that for MFCVAE
with diagonal covariances ⌃uj , dim(U), dim(Uj), P (U) are identifiable from P (X) up to
a permutation of U , and P (Z) is identifiable up to permutation, scaling, and/or translation.

2. [38] establishes the identifiability of latent representations for non-parametric measurement
models U ! X . Their result crucially relies on the fact that observed variables are
conditionally independent Xi ?? Xj | U . Our Theorem F.2 significantly generalizes this
result, by showing the same guarantees for the model (3) that allows arbitrarily complex
dependencies between the observed variables X .

3. [51] propose a sparse VAE and prove that the latent space of this model is identifiable.
Similar to [69], identifiability of f is not addressed. Their identifiability results also assume
an anchor feature assumption, which we do not require. Even our strongest assumption (P3)
is weaker compared to the anchor feature assumption (see Remark 3.8). Moreover, we do
not require any sparsity assumptions.

4. [69] propose LIDVAE as a way to identify the latent space of a VAE without auxiliary
information, however, their approach only guararantees identifiability of P (Z), and does
not address f (this is acknowledged by the authors in their discussion as an open question).
By restricting f to be a Brenier map, they guarantee that the likelihood is injective, which
leads to identifiability of P (Z). Compared to [69] our work restricts f in a different way
(i.e. by an injective ReLU network), which matches common practice. Moreover, we show
that both f and the multivariate U structure (i.e. in addition to P (Z)) are identifiable under
mild additional assumptions.
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A.2 Special cases

Our main results contain some notable special cases that warrant additional discussion.

Classical VAE The classical, vanilla VAE [37, 56] with an isotropic Gaussian prior is equivalent to
(3) with J = 1. In this case, U is trivial and the Gaussian distribution P (Z) can be transformed by
an affine map to a standard isotropic Gaussian N (0, I). In this case, Theorem 3.9(c) shows that f is
identifiable from P (X) up to an orthogonal transformation. In fact, this case can readily be deduced
from known results on the identifiability of ReLU networks, e.g. [62].

Although the J = 1 case is already identifiable, there are clear reasons to prefer a clustered latent
space: It is natural to model data that has several clusters by a latent space that has similar clusters (e.g.
Figure 2). Although in principle any distribution can be approximated by f(Z) where Z ⇠ N (0, I)
and f is piecewise affine, such f is likely to be extremely complex. At the same time, the same
distribution may have a representation with Z being a simple GMM and f being a simple piecewise
affine function. Clearly, the latter representation is preferable to the former and can likely be more
robustly learned in practice. This is consistent with previous empirical work [16, 18, 32, 33, 41, 44,
71].

Linear ICA In classical linear ICA [11], we observe X = AZ, where Z is assumed to have
independent components. Compared to the general model (1), this corresponds to the special case
where f is linear and " = 0. In our most general setting under (F2) only, our results imply that P (Z)
can be recovered up to an affine transformation without assuming independent components, which
might seem surprising at first. This is, however, easily explained: In this case, X is also a GMM,
and hence P (Z) can already be trivially recovered up to the affine transformation z 7! Az. This
follows from well-known identifiability results for GMMs [63]. This provides some intuition to how
the mixture prior assumption (P1) helps to achieve identifiability.

Nonlinear ICA In classical nonlinear ICA, one assumes the model (1) with (a) no assumptions
on f and (b) independence assumptions in the latent space. It is well-known that this model
is nonidentifiable [28]. Our problem setting is distinguished from the classical nonlinear ICA
model via assumptions (P1)-(F1). While we do not require the Zi to be mutually independent, we
impose assumptions on the form of f . It is precisely this inductive bias that allows us to recover
identifiability. As a result, our identifiability theory does not contradict known results such as the
Darmois construction [15] discussed in [28].

A.3 Counterexamples

A natural question is whether or not the mixture prior (P1) or the piecewise affine nonlinearity (F1)
can be relaxed while still maintaining identifiability. In fact, it is not hard to show this is not possible:
If either (P1) or (F1) is broken, then the model (1) becomes nonidentifiable. Of course, this is entirely
expected given known negative results on nonlinear ICA [28].
Example A.1. If f is allowed to be arbitrary, but (P1) is still enforced, then (1) is no longer
identifiable: Pick any two GMMs P =

PJ
j=1 �jN(µj ,⌃j) and P 0 =

PJ 0

j=1 �
0
jN(µ0

j ,⌃
0
j). Then we

can always find a function g such that g]P 0 = f]P (e.g. use the inverse CDF transform), and g 6= f .
Example A.2. If P (Z) is allowed to be arbitrary, but (F1) is still enforced, then (1) is no longer
identifiable: Consider any two arbitrary piecewise affine, injective functions f, g : Rm ! Rm.
Then almost surely the preimages f�1({x}) and g�1({x}) will not be equivalent up to an affine
transformation. In other words, fixing P (X), we can find models (f, P ) and (g, P 0) such that
f]P = P (X) = g]P 0, but f is not equivalent to g (i.e. up to any affine transformation).

B Proof outline

We will prove the main results by breaking the argument into four phases:

1. (Appendix C) First, we show that if f is weakly injective, then P(Z) is identifiable (Theo-
rem C.1). The proof involves a novel result on identifiability of a nonparametric mixture
model (Theorem C.2) that may be of independent interest.
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2. (Appendix D) Second, we show that if f is continuous and injective, then f is identifiable
up to an affine transformation (Theorem D.1). This result strengthens existing identifiability
results in nonlinear ICA by exploiting the mixture prior, which is crucial in the sequel.

3. (Appendix E) Next, we show that if Z is conditionally factorial GMM, then under mild
generic assumptions, the individual variables Zi can be recovered (up to permutation, scaling
and translation) (Theorem E.1).

4. (Appendix F) Finally, since for conditionally factorial Z we are able to recover the individual
variables Zi, we show how we can apply the theory developed in [38] to recover the
multivariate discrete latent variable U , its dimension, domain sizes of each Ui and Pr(U,Z)
(Theorem F.2). Since we can only recover Z up to permutation, scaling and translation,
the results from [38] cannot be applied directly, and we show how to perform this recovery
under an unknown affine transformation.

Each of these phases tackles a particular level of the identifiability hierarchy described in the main
theorems. A detailed proof outline of each main theorem is provided below; technical proofs can be
found in the subsequent appendices.

A notable difference between Theorems 3.9 (k = 1) and 3.10 (k > 1) is the conclusion in the latent
space: Theorem 3.9 identifies P (U,Z) jointly whereas Theorem 3.10 identifies P (Z) and P (U)
separately. The reason is simple: If U is 1-dimensional, i.e., k = 1, then P (U,Z) for (3) is trivially
identifiable from P (Z), since P (Z) is assumed to be a GMM by (P1). Indeed, since finite mixture
of Gaussians are identifiable, we can recover P (U = u) and P (Z | U = u) as mixture weights
and corresponding Gaussian components. This extends to more general exponential mixtures as in
Remark 2.1, see Barndorff-Nielsen [8] for details.

When k > 1, the situation is considerably more nontrivial, as one also needs to learn the high-
dimensional structure of U .

Proof of Theorem 3.9. We assume " = 0 without any loss of generality; i.e. it is sufficient to consider
the noiseless case. This follows from a standard deconvolution argument as in Khemakhem et al. [36]
(see Step I of the proof of Theorem 1).

(a) By Theorem C.1, P(Z) is identifiable up to an affine transformation. Moreover, as described
above, we can identify P(U,Z) from P(Z).

(b) Since P (Z) is identifiable up to an affine transformation by part a), claim follows from
Theorem E.1.

(c) By Theorem D.1, f is identifiable.

Proof of Theorem 3.10. As with Theorem 3.9, we assume " = 0 without loss of generality.

(a) By Theorem C.1, P(Z) is identifiable up to an affine transformation.

(b) Since P (Z) is identifiable up to an affine transformation by part a), by Theorem E.1, Zi are
identifiable up to permutation, scaling and translation.

(c) Follows from Theorem F.2.

(d) By Theorem D.1, f is identifiable.

C Identifiability of Z up to an affine transformation via nonparametric
mixtures

In this section we prove that if in model (3) the function f is weakly injective, then Z is identifiable
up to an affine transformation. More specifically, we prove the following:
Theorem C.1. Assume that (U,Z,X) are distributed according to model (3). If f is weakly injective
(see (F2) in Definition 3.2), then P(U,Z) is identifiable from P(X) up to an affine transformation.
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We will prove this result by first proving a result on identifiability of nonparametric mixtures that
may be of independent interest.
Theorem C.2. Let f, g : Rm ! Rn be piecewise affine functions satisfying (F2). Let Y ⇠
JP

i=1
�iN (µi,⌃i) and Y 0 ⇠

J 0P
j=1

�0
jN (µ0

j ,⌃
0
j) be a pair of GMMs (in reduced form). Suppose that

f(Y ) and g(Y 0) are equally distributed.

Then there exists an invertible affine transformation h : Rm ! Rm such that h(Y ) ⌘ Y 0, i.e., J = J 0

and for some permutation ⌧ 2 SJ we have �i = �0
⌧(i) and h]N (µi,⌃i) = N (µ0

⌧(i),⌃
0
⌧(i)).

In other words, a mixture model whose components are piecewise affine transformations of a Gaussian
is identifiable. To see this more clearly, observe that

JX

j=1

�kf]N (µk,�k) ⇠ f]
⇣ JX

j=1

�kN (µk,�k)
⌘
.

To the best of our knowledge, this identifiability result for a nonparametric mixture model is new
to the literature. In Theorem C.2, the transformation and number of components is allowed to be
unknown and arbitrary, and no separation or independence assumptions are needed.

C.1 Technical lemmas

We recall that a m-dimensional Gaussian distribution N (µ,⌃) with covariance ⌃ and mean µ has
the following density function

p(x) =
1p

(2⇡)m det⌃
exp

⇣
(�1/2)(x� µ)T⌃�1(x� µ)

⌘
. (6)

We assume that all Gaussian components are non-degenerate in the sense that ⌃ is positive definite.
We also recall that if Y ⇠ N (µ,⌃) and Y 0 = AY + b for an invertible A 2 Rm⇥m and b 2 Rm,
then Y 0 ⇠ N (Aµ+ b, A⌃AT ).
Definition C.3. We say that a Gaussian mixture distribution

P =
JX

j=1

�jN (µj ,⌃j) (7)

is in reduced form if �j > 0 for every j 2 [J ] and for every i 6= j 2 [J ] we have (µi,⌃i) 6= (µj ,⌃j).

In the proofs we use the notion of real analytic functions. We remind the definition for reader’s
convenience.
Definition C.4. Let D ✓ Rn be an open set. A function f : D ! R is called a (real) analytic
function if for every compact K ⇢ D there exists a constant C > 0 such that for any ↵ 2 Nn we
have

sup
x2K

����
@↵f

@x↵
(x)

����  ↵!C |↵|+1. (8)

Alternatively, a real analytic function f : D ! R can be defined as a function that has a Taylor
expansion convergent on D.

It is a standard fact that a linear combination and a product of analytic functions are analytic, and it is
well-known that the density of the multivariate Gaussian is a real analytic function on Rm. We will
also need the standard notion of analytic continuation:
Definition C.5. Let D0 ✓ D ✓ Rn be open sets. Let f0 : D0 ! R. We say that an analytic function
f : D ! R is an analytic continuation of f0 onto D if f(x) = f0(x) for every x 2 D0.
Definition C.6. Let x0 2 Rm and � > 0. Let p : B(x0, �) ! R. Define

Ext(p) : Rm ! R (9)

to be the unique analytic continuation of p on the entire space Rm if such a continuation exists, and
to be 0 otherwise.
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Definition C.7. Let D0 ⇢ D and p : D ! R be a function. We define p|D0
: D0 ! R to be a

restriction of p to D0, namely a function that satisfies p|D0(x) = p(x) for every x 2 D0.
Theorem C.8. Consider a pair of finite GMMs (in reduced form) in Rm

P =
JX

j=1

�jN (µj ,⌃j) and P 0 =
J 0X

j=1

�0
jN (µ0

j ,⌃
0
j). (10)

Assume that there exists a ball B(x0, �) such that P and P 0 induce the same measure on B(x0, �).
Then P ⌘ P 0, i.e., J = J 0 and for some permutation ⌧ we have �i = �0

⌧(i) and (µi,⌃i) =

(µ0
⌧(i),⌃

0
⌧(i)).

Proof. Follows from the identity theorem for real analytic functions and the identifiability of finite
GMMs.

Definition C.9. Let f : Rm ! Rn be a piecewise affine function. We say that a point x 2 f(Rm) ✓
Rn is generic with respect to f if the preimage f�1({x}) is finite and there exists � > 0, such that
f : B(z, �) ! Rn is affine for every z 2 f�1({x}).
Lemma C.10. If f : Rm ! Rn is a piecewise affine function such that {x 2 Rn :
|f�1({x})| = 1} ✓ f(Rm) has measure zero with respect to the Lebesgue measure on f(Rm),
then dim(f(Rm)) = m and almost every point in f(Rm) (with respect to the Lebesgue measure on
f(Rm)) is generic with respect to f .

Proof. Let gi(z) = Az + b, g : D ! Rn be one of the affine pieces defining piecewise affine
function f . If A does not have full column rank, then every x 2 g(D) has an infinite number of
preimages. Therefore, the assumption of the lemma implies that for at least one of the affine pieces
gi, A has full column rank. Thus, dim(f(Rm)) = m.

Let S = {x 2 Rn : |f�1({x})| = 1} then by assumption S has measure zero in f(Rm). Let
E be the set of points z 2 Rm such that for every � > 0, f is not affine on B(z, �). Since f is
piecewise affine, E can be covered by a locally-finite union of (m� 1)-dimensional subspaces, i.e.
every compact set intersects only finitely many of these (potentially infinite) (m� 1)-dimensional
subspaces. Thus E has measure zero. Moreover, since dim(f(Rm)) = m, f(E) has measure zero in
f(Rm).

Finally, by definition, every x 2 f(Rm) \
�
S [ f(E)

�
is generic.

We make the following useful observation.

Lemma C.11. Consider a random variable Z distributed according to the GMM
JP

j=1
�jN (µj ,⌃j).

Consider the random variable X = f(Z), where f : Rm ! Rm is a piecewise affine function, such
that dim(f(Rm)) = m. Let x0 2 Rm be a generic point with respect to f . Let p be the density
function of X . Then the number of points in the preimage f�1({x0}) can be computed as

|f�1({x0})| = lim
�!0

ª

x2Rm

Ext(p|B(x0,�))(x)dx. (11)

Proof. Since x0 is generic with respect to f , the preimage of x0 consists of finitely many points,
f�1({x0}) = {z1, z2, . . . , zs}, and there exists " > 0 such that for every i 2 [s] there is a well-
defined invertible affine function gi : B(zi, ") ! Rm such that gi(z) = f(z) for all z 2 B(zi, ").

We can write gi(z) = Aiz + bi for some Ai 2 Rm⇥m and bi 2 Rm. Let �0 > 0 be such that

B(x0, �0) ✓
s\

i=1

gi(B(zi, ")). (12)

Let 0 < � < �0. Then, for µ0
ij = Aiµk + bi and ⌃ij = Ai⌃jAT

i , and every x 2 B(x0, �) we have

p|B(x0,�)(x) =
sX

i=1

JX

j=1

�jp
(2⇡)m det⌃ij

exp
⇣
(�1/2)(x� µ0

ij)
T⌃�1

ij (x� µ0
ij)

⌘
. (13)
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The RHS of (13) is a real analytic function defined on all of Rm (i.e. it is an entire function) that
equals p on an open neighborhood, hence it defines Ext(p|B(x0,�)) on the entire space Rm. Therefore,

ª

x2Rm

Ext(p|B(x0,�))(x)dx =

=

ª

x2Rm

sX

i=1

JX

j=1

�jp
(2⇡)m det⌃ij

exp
⇣
(�1/2)(x� µ0

ij)
T⌃�1

ij (x� µ0
ij)

⌘
=

=
sX

i=1

ª

x2Rm

JX

j=1

�jp
(2⇡)m det⌃ij

exp
⇣
(�1/2)(x� µ0

ij)
T⌃�1

ij (x� µ0
ij)

⌘
=

= s = |f�1({x0})|.

We can deduce the following corollary.
Corollary C.12. Let f, g : Rm ! Rn be piecewise affine functions that satisfy (F2).

Let Z ⇠
JP

i=1
�iN (µi,⌃i) and Z 0 ⇠

J 0P
j=1

�0
jN (µ0

j ,⌃
0
j). Suppose that f(Z) and g(Z 0) are equally

distributed. Assume that for x0 2 Rn and � > 0, f is invertible on B(x0, 2�) \ f(Rm).

Then there exists x1 2 B(x0, �) and �1 > 0 such that both f and g are invertible on B(x1, �1) \
f(Rm).

Proof. Since f is piecewise affine and f is invertible on B(x0, 2�) \ f(Rm), then dim f(Rm) = m.
Note that since f(Z) and g(Z 0) are equally distributed and since regular GMMs have positive density
at every point, we have

f(Rm) = supp(f(Z)) = supp(g(Z 0)) = g(Rm).

Therefore, dim(g(Rm)) = dim(f(Rm)) = m and, by Lemma C.10, almost every point x 2
B(x0, �) \ f(Rm) is generic with respect to f and w.r.t to g. Let x1 2 B(x0, �) be such a point.
Since f is invertible on B(x1, �), we have that |f�1({x1})| = 1. Since x1 is generic with respect to
f and with respect to to g, by Lemma C.11, we deduce that |g�1({x1})| = 1. Therefore, since x1

is generic, there exists 0 < �1 < � such that on
�
B(x1, �1) \ f(Rm)

�
⇢

�
B(x0, 2�) \ f(Rm)

�
the

function g is invertible.

C.2 Identifiability of nonparametric mixtures

First we prove our identifiability theorem under the assumption that f and g are invertible in the
neighborhood of the same point.

Theorem C.13. Let f, g : Rm ! Rn be piecewise affine. Let Z ⇠
JP

i=1
�iN (µi,⌃i) and Z 0 ⇠

J 0P
j=1

�0
jN (µ0

j ,⌃
0
j) be a pair of GMMs (in reduced form). Suppose that f(Z) and g(Z 0) are equally

distributed.

Assume that there exists x0 2 Rn and � > 0 such that f and g are invertible on B(x0, �) \ f(Rm).
Then there exists an invertible affine transformation h : Rm ! Rm such that h(Z) ⌘ Z 0, i.e., J = J 0

and for some permutation ⌧ we have �i = �0
⌧(i) and h]N (µi,⌃i) = N (µ0

⌧(i),⌃
0
⌧(i)).

Proof. Since f and g are piecewise affine and both f and g are invertible on B(x0, �)\ f(Rm), then
dim f(Rm) = m and the inverse functions are piecewise affine. Hence, moreover, there exist x1 and
�1 > 0 with B(x1, �1) ✓ B(x0, �) such that f�1 and g�1 on B(x1, �1) ✓ B(x0, �) are defined by
affine functions.

Let L ✓ Rn be an m-dimensional affine subspace, such that B(x1, �1) \ f(Rm) = B(x1, �1) \ L.

Let hf , hg : Rm ! L be a pair of invertible affine functions such that h�1
f coincides with f�1 on

B(x1, �1) \ L and h�1
g coincides with g�1 on B(x1, �1) \ L. This means that distributions hf (Y )
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and hg(Y 0) coincide on B(x1, �1) \ L. Moreover, since hf and hg are affine transformations, then
hf (Y ) and hg(Y 0) are finite GMMs. Therefore, by Theorem C.8, hf (Y ) ⌘ hg(Y 0). The claim of
the theorem holds for h = h�1

g � hf .

Combining this identifiability result with results of Section C.1, we obtain the proof of our main
identifiability result for non-parametric mixtures.

Proof of Theorem C.2. By Corollary C.12 there exists x0 2 f(Rm) that is generic with respect to to
both f and g and � > 0 such that f and g are invertible on B(x0, �) \ f(Rm). Therefore, the result
follows from Theorem C.13.

C.3 Proof of Theorem C.1

We give a proof by contradiction. Assume that there exists another model (U 0, Z 0, X 0) and a piecewise
affine function g in model 3 that generates the same distribution, i.e., P(X) = P(X 0).

By Corollary C.12 there exists x0 2 f(Rm) that is generic with respect to to both f and g and
� > 0 such that f and g are invertible on B(x0, �) \ f(Rm). Therefore, by Theorem C.13, there
exists h : Rm ! Rm such that Z 0 = h(Z). In other words, P (U,Z) is identifiable up to an affine
transformation.

D Identifiability of f

In this section we show that if f is continuous piecewise affine and injective then it is identifiable
from P (X) up to an affine transformation.
Theorem D.1. Assume that (U,Z,X) are distributed according to model (3). Assume that f is
continuous piecewise affine and satisfies (F4) (i.e., f is injective).

Then (P(U,Z), f) is identifiable from P(X) up to an affine transformation.

Before proving this theorem, we provide an example that shows that assumption (F2) does not
guarantee that f can be recovered uniquely up to an affine transformation in Theorem C.1.
Example D.2. Consider

Y ⇠ 1

2
N (�2, 1) +

1

2
N (2, 1) (14)

Define a pair of piecewise affine functions (see also Figure 3)

f(x) =

8
>>><

>>>:

x� 4, for x � 2,

� x, for � 2  x < 2,

x+ 4, for � 4  x < �2,

(x+ 4)/5, for x < �4.

g(x) =

8
>>>>>><

>>>>>>:

x� 4, for x � 4,

� x+ 4, for 2  x < 4,

x, for � 2  x < 2,

� x� 4, for � 4  x < �2,

(x+ 4)/5, for x < �4.

(15)

Figure 3: Graphs of f (black and red) and g (black and blue) in Example D.2.
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Then it is easy to see that f(Y ) and g(Y ) have the same distribution, but f cannot be transformed
into g by an affine transformation.

In order to prove Theorem D.1 we need to show that for a mixture of Gaussians P and a pair of
piecewise affine functions f, g if f]P = g]P , then f = h � g for some invertible affine h. We first
consider the case when g is the identity.

Lemma D.3. Let Z ⇠
JP

j=1
�jN (µj ,⌃j). Assume that f : Rm ! Rm is a continuous piecewise

affine function such that f(Z) ⇠ Z. Then f is affine.

Proof. Since Z has positive density at every point and f(Z) ⇠ Z we must have dim f(Rm) = m.

If f is not affine, then there exist an (m� 1)-dimensional affine subspace L, z0 2 L and � > 0 such
that the following holds: The subspace L divides B(z0, �) into two sets (formally, these are “half-
balls”) B+ and B� such that f+(z) := f |B+(z) = A1z + b1 and f�(z) := f |B�(z) = A2z + b2,
where (A1, b1) 6= (A2, b2) and A1, A2 are invertible.

Since f(Z) ⇠ Z we have

{f+(µ1), . . . , f+(µJ)} = {µ1, µ2, . . . , µK} = {f�(µ1), . . . , f�(µJ)}

as multisets (i.e. including repetitions). Let µ⇤ =
1

J

JP
j=1

µj . Then, since f+ and f� are affine we get

f+(µ⇤) = f�(µ⇤) = µ⇤. By translating Y and adjusting f accordingly, we may assume that µ⇤ = 0.
In this case, b1 = b2 = 0. Moreover, since f+(z) = f�(z) for z 2 L, we get

(A�1
1 A2)(z) = z for all z 2 L. (16)

Finally, since f(Y ) ⇠ Y , we have

{A1⌃1A
T
1 , . . . , A1⌃JA

T
1 } = {⌃1,⌃2, . . .⌃J} = {A2⌃1A

T
2 , . . . , A2⌃JA

T
2 },

as multisets (i.e. including repetitions). This implies that
JY

j=1

det
⇣
A1⌃jA

T
1

⌘
=

JY

j=1

det
�
⌃j

�
=

JY

j=1

det
⇣
A2⌃jA

T
2

⌘
.

Hence, det(A1)2 = det(A2)2 = 1, and det(A�1
1 A2)2 = 1. By (16), A�1

1 A2 is the identity map
on L. Let v be a unit vector orthogonal to L (in the direction of B+). Then we get that either
A�1

1 A2v = v, or A�1
1 A2v = �v. In the latter case A1(y0 + (�/2)v) = A2(y0 � (�/2)v), which

means that f is not injective. This contradicts Lemma C.11. Therefore, we must have A�1
1 A2v = v,

and so, by (16), A1 = A2.

Therefore, f+ = f�, which contradicts (A1, b1) 6= (A2, b2). It follows that f must be affine.

Theorem D.4. Let f, g : Rm ! Rn be continuous invertible piecewise affine functions. Let

Z ⇠
JP

i=1
�iN (µi,⌃i) and Z 0 ⇠

J 0P
j=1

�0
jN (µ0

j ,⌃
0
j) be a pair of GMMs (in reduced form). Suppose

that f(Z) and g(Z 0) are equally distributed.

Then there exists an affine transformation h : Rm ! Rm such that h(Z) ⌘ Z 0 and g = f � h�1.

Proof. By Theorem C.13, there exists an invertible affine transformation h0 : Rm ! Rm such that
h0(Z) = Z 0. Then, f(Z) ⇠ g(h0(Z)), and since g and h0 are invertible, we can rewrite this as
Z ⇠ (h�1

0 � g�1 � f)(Z). By Lemma D.3, (h�1
0 � g�1 � f) is affine, i.e. there exists an invertible

affine map h1 such that

h�1
0 � g�1 � f = h1 , f = g � (h0 � h1)

Hence the claim of the theorem holds for h = h0 � h1.

Proof of Theorem D.1. Immediately follows from Theorems C.1 and D.4.
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D.1 Identifiability under assumption (F3)

In this section we discuss the case (F3). In particular, show that in (3) under the weaker assumption
(F3), f is identifiable up to an affine transformation on the preimage of every connected open set onto
which f is injective.
Theorem D.5. Let f, g : Rm ! Rn be continuous piecewise affine functions satisfying (F3).

Let Z ⇠
JP

i=1
�iN (µi,⌃i) and Z 0 ⇠

J 0P
j=1

�0
jN (µ0

j ,⌃
0
j) be a pair of variables with GMM distribution

(in reduced form). Suppose that f(Z) and g(Z 0) are equally distributed.

Let D ✓ Rn be a connected open set such that f and g are injective onto D. Then there exists
an affine transformation h : Rm ! Rm such that h(Z) ⌘ Z 0 and g(z) = (f � h�1)(z) for every
z 2 g�1(D).

Proof. Similarly, as in the proof of Theorem D.4, by Theorem C.13, there exists an invertible affine
transformation h0 : Rm ! Rm such that h0(Z) = Z 0. Then, f(Z) ⇠ g(h0(Z)), and since g is
invertible on D and h0 is invertible, we can rewrite this as Z ⇠ (h�1

0 � g�1 � f)(Z) on f�1(D).
Since f is invertible and continuous piecewise affine, f�1(D) is an open connnected set. Therefore,
applying Lemma D.3 on f�1(D), we deduce that (h�1

0 � g�1 � f) is affine on f�1(D), i.e. there
exists an invertible affine map h1 such that

h�1
0 � g�1 � f = h1 , f = g � (h0 � h1) on f�1(D)

Therefore, for h = (h0 � h1), we have g(y) = (f � h�1)(z) for every z 2 g�1(D).

Remark D.6. Let f be a continuous piecewise affine function that satisfies (F3). Denote

S = {x 2 Rn : |f�1({x})| > 1} ✓ f(Rm).

Recall that assumption (F3) says that S has measure zero in f(Rm).

We claim that (F3) implies that for every x 2 S in fact |f�1({x})| = 1. Indeed, if for all sufficiently
small � > 0 we have dim

�
B(x, �) \ f(Rm)

�
< m, then |f�1({x})| = 1 since f is continuous

piecewise affine. Otherwise, using Corollary C.10, we get that for every � > 0 there exists a generic
with respect to f point x� 2 B(x, �) \ f(Rm). Assumption (F3) implies that |f�1({x�})| = 1 for
every x�. Therefore, since f is continuous piecewise affine we get that either |f�1({x})| = 1 or
|f�1({x})| = 1.

E Identifiability of Z up to a permutation, scaling and translation

Under (P2), we have

Z ⇠
JX

j=1

�jN (µj ,⌃j), (17)

where ⌃j is diagonal for every j 2 [J ]. In the setup of model (3) this just means that Zi ?? Zj | U .

Let Y = AZ + b, where A : Rm ! Rm is an invertible linear map and b 2 Rm. Then Y is also a
GMM. We next show how Z may be recovered from Y up to a permutation, scaling, and translation.
Theorem E.1. Let J � 2, and �j > 0 for all j 2 [J ]. Let Z = (Z1, Z2, . . . , Zm) be given by

Z ⇠
JX

j=1

�jN (µj ,⌃j) (18)

Assume that ⌃j is diagonal for every j 2 [J ]. Let Y = AZ + b, where A : Rm ! Rm is an
invertible linear map and b 2 Rm. Moreover, assume that there exist indices i1, i2 2 [J ], such that all
numbers ((⌃i1)tt / (⌃i2)tt | t 2 [m]) are distinct. Given Y , one can recover an invertible linear map
A0 : Rm ! Rm, such that (A0)�1A = QD, where Q is a permutation matrix and D is a diagonal
matrix with positive entries.
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Remark E.2. The translation b is impossible to recover without stronger assumptions, as b corresponds
to an arbitrary translation in the Z space. In other words, choice of b determines the origin in the
coordinate space of Z and it can be completely arbitrary.
Remark E.3. A slightly different version of Theorem E.1 under different assumptions appeared in
[73]. The main difference is that [73] assumed that f is volume-preserving but nonlinear, whereas we
restrict to the general (i.e. not necessarily volume-preserving) linear case.

Proof. Without loss of generality assume i1 = 1 and i2 = 2.

Let ⌃i be the covariance matrices of Zi and let e⌃i be the covariance matrices of Yi for i 2 [J ].
Clearly

e⌃i = A⌃iA
T for each i 2 [J ]. (19)

The matrices e⌃i are PSD. Therefore, using SVD we can find PSD matrices Vi, such that for every
i 2 [J ],

e⌃i = ViV
T
i . (20)

Moreover, such a decomposition is unique up to an orthogonal matrix, i.e., for every pair of such
decompositions e⌃i = ViV T

i = V 0
i (V

0
i )

T there exists a unitary matrix R such that ViR = V 0
i .

Therefore, for every i 2 [J ] there exists a matrix Ri, such that

ViRi = A⌃1/2
i (21)

In particular,

V1R1⌃
�1/2
1 = V2R2⌃

�1/2
2 ) R1

⇣
⌃�1/2

1 ⌃1/2
2

⌘
R�1

2 =
⇣
V �1
1 V2

⌘
(22)

Since R1 and R�1
2 are unitary and

⇣
⌃�1/2

1 ⌃1/2
2

⌘
is diagonal, they can be determined from the SVD

of V �1
1 V2. Moreover, they can be determined uniquely up to a permutation matrix since all diagonal

entries of ⌃�1/2
1 ⌃1/2

2 are distinct. In other words, using SVD for
⇣
V �1
1 V2

⌘
we can find R0

1 such that
for some permutation matrix P we have

V1R
0
1Q = A⌃1/2

1 , so, for A0 := V1R1 we have (A0)�1A = Q⌃�1/2
1 . (23)

This concludes the proof.

As an immediate corollary we can deduce the following theorem from Theorem C.1.
Theorem E.4. Assume that (U,Z,X) are distributed according to model (3) and that f is weakly
injective. Suppose that Zi ?? Zj | U for all i 6= j. Moreover, assume that there exist a pair of states
U = u1 and U = u2 such that all ((⌃u1)tt / (⌃u2)tt | t 2 [m]) are distinct.

Then P (U,Z) is identifiable from P (X) up to permutation, scaling ans translation of Zi.

Proof. By Theorem C.1, P(Z) is identifiable from P(X) up to an affine transformation. That is, we
can reconstruct a random variable Y from P(X) which satisfies Y = AZ + b for some invertible
A 2 Rm⇥m.

Now, by Theorem E.1, we can find A0 such that Z 0 = (A0)�1Y = QDZ + (A0)�1b, where Q is a
permutation matrix and D is a diagonal matrix. This means, that we can recover Z up to permutation,
shift and scaling of individual variables Zi.

F Identifiability of multivariate U structure

When k = 1, P (Z) contains all the information about P (U,Z), however, when k > 1 (i.e. U
is multivariate), this may not be true anymore. It is not even obvious that P (Z) must contain
information about the true dimension of U . The distribution P (U,Z) may contain interesting
dependencies between individual variables Ui and Zj .

Previously, [38] studied necessary and sufficient conditions for identifiability of P (U) when Z is
observed under the so-called measurement model. A key limitation of Kivva et al. [38] is that it
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requires the observed variables to be conditionally independent, which is not the case in our setting.
Ultimately, this is a consequence of Z being unobserved: Previous work such as Kivva et al. [38]
assumes there is only a single layer of hidden variables connected to the observations. In our setting,
under (3), we need to recover U from Z, the latter of which is unobserved. As a result, if we can
only identify Z up to an affine transformation (e.g., like in Theorem C.1); i.e. we can only recover
Z 0 = AZ + b, then it almost surely will not be conditionally factorial. Hence, the results from Kivva
et al. [38] cannot be applied directly for weak (e.g., up to affine transformation, or as in 35) notions
of identifiability of Z.

Luckily, in Section E, we showed how to recover the true Z from Z 0 = AZ + b. This will enable us
to identify P (U) in Theorem 3.10(c). In the remainder of this appendix, we outline these details.

We say that a distribution P(U,Z) satisfies the Markov property with respect to the neighborhoods
ne(Zi) (cf. Definition 3.7) if

P(U,Z) = P(U)
Y

i

P(Zi | ne(Zi)). (24)

Remark F.1. The neighborhoods ne(Zi) define a bipartite graph between (U1, . . . , Uk) and
(Z1, . . . , Zm) that is described in Kivva et al. [38]. Since this graph is not needed for our purposes,
we proceed without further mention of this graph. The assumptions below have been re-phrased
accordingly.

[38] show that assumptions (L1)-(L4) below are necessary for identifiability of U .

(L1) (No twins) For any Ui 6= Uj we have ne(Ui) 6= ne(Uj).
(L2) (Maximality) There is no U 0 such that:

(a) P(U 0, Z) is Markov with respect to the neighborhoods ne(Zi) defined by U 0;
(b) U 0 is obtained from U by splitting a hidden variable (equivalently, U is obtained from

U 0 by merging a pair of vertices);
(c) U 0 satisfies Assumption (L1).

(L3) (Nondegeneracy) The distribution over (U,Z) satisfies:
(a) P(U = u) > 0 for all u.
(b) For all Z 0 ⇢ Z and u1 6= u2, P(Z 0| ne(Z 0) = u1) 6= P(Z 0| ne(Z 0) = u2), where u1

and u2 are distinct configurations of ne(Z 0).
(L4) (Subset condition) For any pair of distinct variables Ui, Uj the set ne(Ui) is not a subset of

ne(Uj).

We prove the following identifiability result.
Theorem F.2. Assume that (U,Z,X) are distributed as in (3) and that f satisfies (F2). Assume
further that (P2)-(P3) hold and P (U = u) > 0 for all u in the domain of U .

Then dim(U) = k, dim(Uj), P(U,Z) are identifiable from P (X) up to a permutation of variables
Ui and permutation, scaling and translation of variables Zi.

Proof. The assumptions of Theorem F.2 are stronger than those of Theorem E.4, so by Theorem E.4,
P (Z) is identifiable up to a permutation, scaling and translation of Z.

Combined with the positivity assumption P (U = u) > 0, the assumptions (L1)-(L4) are weaker than
assumption (P3). Indeed, (P3) (a) is equivalent to (L3) (b); (P3) (c) is equivalent to (L4) and implies
(L1); and, finally, (P3) (b) and (c) together imply (L2).

Since Z is identifiable up to a permutation, scaling and translation, Zi ?? Zj | U , and assumptions
(L1)-(L4) hold, using [38, Thm 3.2], we deduce that dim(U) = k, dim(Uj), P(U), and ne(Ui)
are identifiable up to a permutation of the variables Ui. Finally, by the Markov Property, P(U),
ne(Ui) for all i, and the fact that P (Z) is a finite GMM (that is identifiable) are sufficient to recover
P(U,Z).

Remark F.3. As the proof indicates, assumptions (L1)-(L4) are weaker than (P3), so Theorem F.2
implies part (c) of Theorem 3.10.
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G Equivalence in iVAE

In this section we compare the equivalence relation up to which iVAE [35] guarantees identifiability
and equivalence up to an affine transformation. While iVAE achieves the best possible identifiability
under the assumptions they make, we show that identifiability up to an affine transformation is
considerably stronger.

G.1 iVAE equivalence relation

Recall that iVAE [35] considers the following model, which differs from (3) by assuming that Z has
conditionally factorial exponential family distribution:

U = u ⇠ p(u)

[Z |U = u] ⇠
mY

i=1

Qi(zi)

C(u)
exp

0

@
tX

j=1

Ti,j(zi)�i,j(u)

1

A

[X |Z = z] ⇠ f(z) + ", " ⇠ N (v,�2)

9
>>>>>>=

>>>>>>;

=) U ! Z ! X. (25)

Here Ti = (T1, T2, . . . Tt) are sufficient statistics, Qi is the base measure and �i,j parameters
depending on u. iVAE defines the following equivalence relation:
Definition G.1.

(f, T,�) ⇠ (f 0, T 0,�0) , 9A, c : T (f�1({x})) = A(T 0((f 0)�1(x) + c, (26)

where A : Rmt ! Rmt is an invertible linear map, and c 2 RN .

This type of identifiability allows for essentially any (synchronized) changes to Z and f :
Lemma G.2. Let ' : Rm ! Rm be any invertible map. Let f 0 = f � ', and T 0 = T � '. Then
(f, T,�) ⇠ (f 0, T 0,�).

Moreover, if Z has exponential family distribution with statistics T , then Z 0 = '�1(Z), has an
exponential family distribution with statistics T 0, and f(Z) ⇠ f 0(Z 0).

Proof. We have (f 0)�1 = '�1 �f�1, so T 0 � (f 0)�1 = T �f . Hence (f, T,�) ⇠ (f 0, T 0,�0), where
in (26) A is the identity map and c = 0.

Since Z comes from an exponential family distribution, we can write

P(Z | U) = h(Z)g(U) exp(�(U)T (Z)). (27)

Let Z 0 = '�1(Z). Then by the change of variable formula

P(Z 0 | U) =
⇣
h('(Z)) det |Jac('(•))|•='�1(Z)

⌘
g(U) exp(�(U)T ('(Z))), (28)

where Jac(') is the Jacobian of '. Hence Z 0 indeed has an exponential family distribution with
statistics T 0. Clearly, f 0(Z 0) = (f � ' � '�1)(Z) ⌘ f(Z).

Remark G.3. In other words, the equivalence relation (26) allows an arbitrary (possibly highly
nonlinear) change of basis in the latent Z space. In principle, this may indicate, that any meaningful
analysis of the Z space in this setup may be challenging.
Remark G.4. As in Khemakhem et al. [35], the additional assumption that Z has a conditionally
factorial distribution imposes additional restrictions on '. In this case, ' : Rm ! Rm can be any
invertible coordinatewise function '(Z 0) = ('1(z01),'2(z02), . . .'2(z0m)).

G.2 GMMs give more robust identifiability

The next result was also observed in [61]. We present a slightly simplified proof for completeness.

If P(Z|U) is a multivariate Gaussian distribution, then the sufficient statistics are given by

Tm = (z1, . . . , zm, z1z1, z1z2, . . . zmzm). (29)
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Remark G.5. For product measures, there are no cross-terms zizj .
Proposition G.6 (61, Appendix B). Assume that (Tm, f,�) ⇠ (Tm, f 0,�0), where Tm is defined by
(29). Then there exists an invertible linear map M : Rm ! Rm and a vector c 2 Rm such that
f�1({x}) = M(f 0)�1(x) + c for every x.

Proof. Let z = f�1({x}) and z0 = (f 0)�1(x). By an assumption of the proposition there exists an
invertible matrix A : Rm+m2 ! Rm+m2

such that
0

BBBBBBBBBBBB@

z1
z2
...
zn
z1z1
z1z2

...
zmzm

1

CCCCCCCCCCCCA

= A

0

BBBBBBBBBBBB@

z01
z02
...
z0n
z01z

0
1

z01z
0
2

...
z0mz0m

1

CCCCCCCCCCCCA

+ b (30)

This means that for every i there exists a polynomial pi of degree at most 2 such that zi =
pi(z01, . . . , z

0
m). Assume that for some i, we have deg(pi) = 2. Then it is easy to verify (say,

by using lexicographical order on monomials) that deg(p2i ) = 4. If z0 is defined on an open neigh-
bourhood, we get a contradiction with (30) as z2i can be written as a degree-2 polynomial over
variables z0j . Therefore, every pi is a polynomial of degree at most 1. But this means that that
z = Mz0 + c for some matrix M and a vector c. Moreover, since A is invertible, M is invertible as
well.

H Conditions on ReLU Neural Network that guarantee that it is an
observable injection

For completeness, in this section we provide simple sufficient conditions on ReLU architectures that
guarantee that it is an observable injection (cf. (F3)) and simple sufficient conditions on leaky-ReLU
architectures which guarantee that it is injection (cf. (F4)). For a more comprehensive account of
identifiability in ReLU networks, see [62].

We recall the definitions of ReLU and leaky-ReLU (with parameter a > 0, a 6= 1) activation
functions

ReLU(x) =

(
x, for x > 0,

0, for x  0,
LReLU(x) =

(
x, for x > 0,

a · x, for x  0.
(31)

A standard choice of a for leaky-ReLU is a = 0.01.
Definition H.1. Let A↵(n1, n2) denote the set of affine maps h : Rn1 ! Rn2 .

Let � : R ! R be a general activation function. For a vector x 2 Rt, �(x) is a vector obtained from
x by applying � coordinatewise.
Definition H.2. Let n1, n2, . . . , nt � n0 = m and � be an activation function. Define

Fn0,...,nt
� = {ht � � � ht�1 � � � . . .� � h1 | hi 2 A↵(ni�1, ni)} (32)

Fm,!n
� =

1[

t=1

[

n1,n2,...,nt�n0, n0=m, nt=n

Fn0,...,nt
� (33)

Remark H.3. The function families Fm,!n
ReLU , Fm,!n

LReLU are genuinely nonparametric: There is no bound
on the number of layers.
Remark H.4. In the arguments below we do not rely on the fact that the activation function is the
same on every layer, or even the same across the nodes of the same layer. However, we will give
proofs only in this case, to simplify the presentation.
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Remark H.5. ReLU networks under similar assumptions were also studied in [36].
Lemma H.6. Let f = ht � � � ht�1 � � � . . .� � h1 2 Fm,!n

ReLU . Assume that m = n0  n1  . . . 
nt = n, and dim(f(Rm)) = m. Then for almost all y 2 f(Rm) there exists �y such that f�1 is a
well-defined affine function on B(y, �y) \ f(Rm).

Proof. We prove the claim by induction on the depth of the NN. If t = 1, we have f = h1 and the
claim is trivial. Assume that we already proved the lemma for all t  s� 1. We prove the claim for
t = s. We can write f as f = ht � � � g where g 2 Fm,!nt�1

ReLU .

Since dim(f(Rm)) = m, the map ht has full column rank. Additionally, denoting by D = {x 2
Rnt�1 | xi > 0, 8i 2 [nt�1]} the domain on which � is injective, we get g(Rm) \ D has positive
measure in g(Rm). Moreover, by the induction assumption, g satisfies conclusion of the lemma,
i.e., there exists a set S of measure 0 in g(Rm) such that for any y 2 g(Rm) \ S there exists a
�y > 0 such that g�1 is a well-defined affine function on B(y, �y)\ g(Rm). Since ht has full column
rank, f�1 is a well-defined affine function on B(x, �x) \ f(Rm) for every x = (f � �)(y) where
y 2

�
g(Rm) \ S

�
\D. Clearly, such x form a set of full measure in f(Rm).

Corollary H.7. Let f = ht � � � ht�1 � � � . . .� � h1 2 Fm,!n
ReLU . Assume that m = n0  n1 

. . .  nt = n, and dim(f(Rm)) = m, then f satisfies (F3).

Proof. Immediately follows from Lemma H.6.

Lemma H.8. Let f = ht � � � ht�1 � � � . . .� � h1 2 Fm,!n
LReLU. Assume that m = n0  n1  . . . 

nk = n and every hi is invertible. Then for almost all y 2 f(Rm) there exists �y such that f�1 is a
well-defined affine function on B(y, �y) \ f(Rm).

Proof. Clearly, any f = ht � � � ht�1 � � � . . .� � h1 2 FLReLU is a piecewise affine function.
The LReLU activation function is invertible, so f is invertible. Finally, since f is a piecewise affine
transformation, for almost all y 2 B(x0, �) there exists �y such that f�1 is an affine function on
B(y, �y).

Corollary H.9. Let f = ht � � � ht�1 � � � . . .� � h1 2 Fm,!n
LReLU. Assume that m = n0  n1 

. . .  nt = n, then generically f satisfies (F4).

Proof. Generically, every hi has full column rank, and so is injective. Since LReLU is injective, we
get that f is injective.

We conclude with an example of a very simple LReLU NN that is not even weakly injective.
Example H.10. Let �(x) = x for x � 0 and �(x) = x/2 for x < 0. Let h1 : R ! R2 defined as
h1(x) = (x,�x). Then � � h1(x) = (x,�x/2) if x � 0 and � � h1(x) = (x/2,�x) if x < 0. Let
h2 : R2 ! R2 given by

h2 =

✓
1 �1
1 1

◆

Then (h2 � � � h1)(x) = (3x/2, x/2) for x � 0 and (h2 � � � h1)(x) = (3x/2,�x/2) for x < 0
(see Figure 4). Let h3(x, y) = y. Then f(x) := (h3 � � � h2 � � � h1)(x) = |x|/2. By Remark 3.12,
this implies that f is not invertible at every point except 0.

J Experiment details

J.1 Metrics

Previous work has relied on the Mean Correlation Coefficient (MCC) as a metric to quantify identi-
fiability. For consistency with previous work, we report this metric, but also propose a new metric
to quantify identifiability up to an affine transformation. There are two challenges in designing
such a metric: Firstly, for two Gaussian mixtures, standard distance metrices such as TV-distance or
KL-divergence do not have a closed form. Secondly, we need to find an affine map A that best aligns
a pair of Gaussian mixtures. Therefore, developing a metric to quantify identifiability up to an affine
transformation has natural challenges. We propose distA↵,L2, defined below, as an additional metric
in this setting.

30



Figure 4: Graphs of � � h1 (black) and h2 � � � h1 (blue) in Example H.10
.

Measuring loss In this work, we consider two different metrics. For a pair of distributions p1, p2,
we define distA↵,L2 loss as

distA↵,L2(p1, p2) = min
A:Rm!Rm,

affine

�L2(A]p1, p2), where �L2(p1, p2) =
kp1 � p2kL2

kp1k1/2L2
kp2k1/2L2

(34)

The other metric we consider is the Mean Correlation Coefficient (MCC) metric which had been used
in prior works [36, 70]. See Khemakhem et al. [36, Appendix A.2] for a detailed discussion. There
are two versions of MCC that have been used:

• The strong MCC is defined to be the MCC before alignment via the affine map A.
• The weak MCC is defined to be the MCC after alignment.

In our experiments, we report both the strong MCC and weak MCC. Moreover, all reported MCCs
are out-of-sample, i.e. the optimal affine map A is computed over half the dataset and then reused for
the other half of the dataset.

Alignment To find the affine map A that best aligns the two GMMs, we use two approaches. One
approach is to use Canonical Correlation Analysis (CCA) as was done in prior works in computing
MCC.

We describe an alternative approach now. Given two GMMs, we iterate over all permutations of
the components and for each fixed permutation, we find the best map A that maps the components
accordingly. In an ideal setting, we would want to find A to align not just the means but also the
covariance matrices but unfortunately this is a challenging optimization problem. Therefore, we
instead find A that maps the means of the first GMM to the means of the second GMM. The map
A can be found by solving a least-squares optimization problem which is straightforward using a
Singular Value Decomposition (SVD). In practice, we find that this technique of matching the means
works well.

J.2 Implementation

For VaDE [32], we use the implementation available at https://github.com/mperezcarrasco/
Pytorch-VaDE. For MFCVAE [18], we use the author implementation available at https:
//github.com/FabianFalck/mfcvae. For iVAE [35], we use the implementation available at
https://github.com/MatthewWilletts/algostability. Experiments were performed on an
NVIDIA Tesla K80 GPU with 12GB memory.

J.3 Setup

Our experiments consist of three different setups, designed to probe different aspects of identifiability.
First, we checked the exact log-likelihood for a unique global minimizer on simple toy models
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(Appendix J.3.1). We then used VaDE [32] to train a practical VAE on a simulated dataset where
the ground truth latent space is known (Appendix J.3.2). Finally, we compared the performance of
MFCVAE [18] against iVAE on MNIST (Appendix J.3.3). The last experiment is based on previous
work by [70] that compares iVAE to VaDE; we successfully replicated these experiments using
MFCVAE as an additional baseline that closely aligns with our assumptions.

The fact that our theory closely aligns with and replicates existing empirical work illustrates that the
model (3) is not merely a theoretical curiosity, but in fact practically relevant in modern applications.
In our view, this is a significant advantage compared to related work.

J.3.1 Maximum likelihood

We simulated random models of the form (1) as follows:

1. Fix J = 2 or J = 3;

2. Randomly select (�1, . . . ,�J) from a uniform grid by discretizing the simplex;

3. Randomly select (µ1, . . . , µJ) from a uniform grid on the hypercube;

4. Randomly select coefficients (↵1,↵2), weights (�1,�2), and biases (⇡1,⇡2) from a uniform
grid on the hypercube.

Given these parameters, the prior P (Z) is defined as in (2) and the decoder f is defined to be the
following single-layer ReLU network

f(z) = ↵1 ReLU(�1z + ⇡1) + ↵2 ReLU(�2z + ⇡2).

As a result of the simulation mechanism, the following important cases of misspecification naturally
arise:

• We allow �j = 0, i.e. the model allows for J = 3 components, but the true model only has
two nontrivial components.

• We allow ↵j = 0 and �j = 0, i.e. the model allows for up to two neurons in the hidden
layer, but the true model only has one nontrivial neuron.

• f is not forced to be injective or even weakly injective, i.e. assumptions (F2)-(F4) are not
checked explicitly.

After generating a pair (f, P (Z)), the exact negative log-likelihood is approximated via numerical
integration. An exhaustive grid search is performed over all parameters to identify the global
minimizers. The computational cost of this step limited the complexity of the models that could be
tested, hence the restriction to simple toy models in this experiment. In all runs, the ground truth
was the unique global minimizer of the negative log-likelihood, as predicted by our theory. Since
the problem is nonconvex, there often exist additional (non-global) local minima (see e.g. Figure 1),
however, the global minimizer is always unique up to affine equivalence. That is, due to affine
equivalence, in some cases there is more than one global minimizer, but in all such cases it is easy to
check that the different minimizers are indeed affinely equivalent. Multiple minimizers also arise
when certain parameters (e.g. �j or ↵j) vanish, again, these are easily checked.

J.3.2 Simulated data

We consider 4 synthetic datasets described below: Pinwheel and three different copies of the “Random
parallelograms" dataset

See Section 4 for results of the simulated experiments on the “pinwheels” dataset (see 33). In those
experiments we use 5000 samples and set m = n = 2. In that experiment we used the same neural
network architecture as discussed below for “Random parallelograms".

We simulate an artificial dataset “Random parallelograms” as follows: We generate 3 randomly
oriented parallelograms in the plane. After that, an n-dimensional observed distribution is obtained
by sampling points uniformly at random from these parallelograms and by adding Gaussian noise to
every sampled point.
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We fit VaDE to each (observed) dataset 5 times (see Figures 2, 5-7). Let Z(1), Z(2), . . . , Z(5) be the
learned latent spaces. For every pair Z(i), Z(j) we evaluate the MCC and distA↵,L2 loss. We report
means of the MCCs/losses and their standard deviations in Table 2.

For the VaDE training, we use a sequential neural network architecture with LeakyReLU activations
for the encoder, with four fully connected layers of the following dimentions: n ! 64 ! 512 !
64 ! m. For the decoder, we use a sequential neural network architecture with LeakyReLU
activations, with four fully connected layers of the following dimentions: m ! 64 ! 512 ! 512 !
n. We pretrain the autoencoder for 15 epochs and then run VaDE training for 20 epochs.

In all experiments with simulated data we set m = 2. We set the number of observed samples to be
5000.

Dataset distA↵,L2 Strong MCC Weak MCC
Random parallelograms #1 0.1542 (0.150) 0.86 (0.09) 0.99 (0.003)
Random parallelograms #2 0.1231 (0.076) 0.83 (0.12) 0.99 (0.003)
Random parallelograms #3 0.578 (0.301) 0.91 (0.08) 0.99 (0.001)

Table 2: Mean (std) distA↵,L2 distance (lower is better) and Mean (std) MCC (higher is better) for
synthetic data

Figure 5: Recovered latent spaces for 5 runs of VaDE on “Random parallelograms” dataset #1 with 3
clusters

Figure 6: Recovered latent spaces for 5 runs of VaDE on “Random parallelograms” dataset #2 with 3
clusters

Figure 7: Recovered latent spaces for 5 runs of VaDE on “Random parallelograms” dataset #3 with 3
clusters

J.3.3 Real data

We run MFCVAE [18] on the MNIST dataset 10 times with different initializations. For all the 45
pairs of runs, we compute the strong MCC (before alignment) and weak MCC (after alignment with
CCA of dimension 5). For these experiments, we omit the distA↵,L2 metric since it’s computationally
infeasible with a large number of components. The mean and standard deviation of the MCCs are
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reported in Table 3. As a baseline, we also report the same metrics for 10 runs of iVAE [35] on
identical architecture and latent dimension, but recall that iVAE has additional access to the true digit
labels U .

Architecture Model Activation Strong MCC Weak MCC

Arch1
MFCVAE ReLU 0.7 (0.07) 0.91 (0.05)
MFCVAE LeakyReLU 0.69 (0.06) 0.94 (0.02)

iVAE LeakyReLU 0.65 (0.07) 0.88 (0.07)

Arch2
MFCVAE ReLU 0.69 (0.07) 0.89 (0.08)
MFCVAE LeakyReLU 0.69 (0.06) 0.92 (0.03)

iVAE LeakyReLU 0.64 (0.07) 0.87 (0.04)

Arch3
MFCVAE ReLU 0.69 (0.07) 0.86 (0.08)
MFCVAE LeakyReLU 0.70 (0.05) 0.92 (0.03)

iVAE LeakyReLU 0.67 (0.06) 0.87 (0.05)

Table 3: Mean and standard deviation of the MCCs (higher is better) across various models, architec-
tures and activations

As recommended in [18], we set the dimension of the latent space to be 5 and number of components
to be 25. No hyperparameter tuning was done. The architectures we use are as follows:

• Arch1: The encoder is a sequential neural network architecture with fully connected layers
of dimensions n ! 500 ! 1000 ! m. The decoder is also a sequential neural network
architecture with fully connected layers of dimensions m ! 500 ! 500 ! n.

• Arch2: The encoder is a sequential neural network architecture that is fully connected with
dimensions n ! 256 ! 512 ! 512 ! m. The decoder is similarly a sequential neural
network architecture with fully connected layers of dimensions m ! 512 ! 256 ! n.

• Arch3: The encoder is a sequential neural network architecture that is fully connected with
dimensions n ! 128 ! 256 ! 128 ! 128 ! m. The decoder is again a sequential neural
network architecture with fully connected layers of dimensions m ! 128 ! 128 ! n.

The work [70] ran extensive experiments comparing VaDE and iVAE. We augment these experiments
by using MFCVAE instead of VaDE. We observe that even without access to U , MFCVAE has
competitive performance (stability) in recovering the latent space as compared to iVAE which has
full access to U . This offers strong evidence for stability of training, as predicted by our theory.

For purely illustrative purposes, we also show the output of MFCVAE on MNIST. In Figure 8, we
show samples synthetically generated from each learnt cluster. In Figure 9, we visualize the true
datapoint x and the corresponding reconstructed bx for four different datapoints in each cluster. For
similar experiments on other datasets and other architectures, we refer the reader to [18].
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(a) Arch1 (b) Arch2

Figure 8: Output of MFCVAE on MNIST data: Synthetically generated samples. Each row corre-
sponds to a different learnt component. The columns are samples generated from the component.
The rows are sorted by average confidence.
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(a) Arch1 (b) Arch2

Figure 9: Output of MFCVAE on MNIST data: Reconstruction accuracy. Each row corresponds to a
different learnt component, the columns correspond to 4 different pairs of x and bx in that order.
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