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Abstract

Generating step-by-step "chain-of-thought" rationales improves language model
performance on complex reasoning tasks like mathematics or commonsense
question-answering. However, inducing language model rationale generation cur-
rently requires either constructing massive rationale datasets or sacrificing accuracy
by using only few-shot inference. We propose a technique to iteratively leverage a
small number of rationale examples and a large dataset without rationales, to boot-
strap the ability to perform successively more complex reasoning. This technique,
the "Self-Taught Reasoner" (STaR), relies on a simple loop: generate rationales to
answer many questions, prompted with a few rationale examples; if the generated
answers are wrong, try again to generate a rationale given the correct answer; fine-
tune on all the rationales that ultimately yielded correct answers; repeat. We show
that STaR significantly improves performance on multiple datasets compared to a
model fine-tuned to directly predict final answers, and performs comparably to fine-
tuning a 30× larger state-of-the-art language model on CommensenseQA. Thus,
STaR lets a model improve itself by learning from its own generated reasoning.1

1 Introduction
Human decision-making is often the result of extended chains of thought [1, 2]. Recent work has
shown that explicit intermediate reasoning (“rationales”) can improve large language model (LLM)
performance as well [3–8]. For example, [5] demonstrated that LLMs explicitly trained to use
“scratchpads” for intermediate steps can attain perfect in-distribution performance on arithmetic,
and strong out-of-distribution generalization, while models trained to predict answers directly fail
to do either. These works suggest that generating explicit rationales before giving a final answer
(“rationale generation”) is valuable for LLMs across diverse tasks including mathematical reasoning,
commonsense reasoning, code evaluation, social bias inference, and natural language inference.
However, the two primary methods for inducing rationale generation both have serious drawbacks.

One approach to rationale generation is the construction of a fine-tuning dataset of rationales, either
manually by human annotators or automatically with hand-crafted templates [3–5, 9]. Manual
methods are expensive, and it is infeasible to construct such a dataset for each interesting problem
[3]. Meanwhile, template-based methods rely on automatically-generated rationales but only work
when a general solution is already known [5] or reasonable hard-coded heuristics can be made [4].

An alternative is to leverage in-context learning by including only a few rationale examples in the
language model prompt. This has been shown to improve accuracy on mathematical and symbolic
reasoning tasks relative to prompting without rationales (“direct” prompting) [5, 6]. Yet, while few-
shot techniques with rationales tend to outperform their non-reasoning counterparts, they generally
substantially underperform models fine-tuned to directly predict answers using larger datasets [5, 6].
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1We release our code at https://github.com/ezelikman/STaR.
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Q: What can be used
to carry a small dog?
Answer Choices:
(a) swimming pool
(b) basket
(c) dog show
(d) backyard
(e) own home
A: The answer must be
something that can be
used to carry a small
dog. Baskets are
designed to hold things.
Therefore, the answer
is basket (b).

Figure 1: An overview of STaR and a STaR-generated rationale on CommonsenseQA. We indicate
the fine-tuning outer loop with a dashed line. The questions and ground truth answers are expected to
be present in the dataset, while the rationales are generated using STaR.

In this paper, we adopt a different approach: by leveraging the LLM’s pre-existing reasoning ability,
we iteratively bootstrap the ability to generate high-quality rationales. Specifically, we few-shot
prompt a large language model to self-generate rationales and refine the model’s ability further by
fine-tuning on those rationales that lead to correct answers. We repeat this procedure, using the
improved model to generate the next training set each time. This is a synergistic process, where
improvements in rationale generation improve the training data, and improvements in training data
further improve rationale generation.

However, we find this loop eventually fails to solve any new problems in the training set because it
receives no direct training signal for problems it fails to solve. To overcome this issue, we propose
rationalization: for each problem that the model fails to answer correctly, we generate a new rationale
by providing the model with the correct answer. This lets the model reason backward—given the
correct answer, the model can more easily generate a useful rationale. These rationales are then
collected as part of the training data, which often improves overall accuracy.

We thus develop the Self-Taught Reasoner (STaR, Fig. 1) method, a scalable bootstrapping method
allowing models to learn to generate their own rationales, while also learning to solve increasingly
difficult problems. In our method, we repeat the following process: in each iteration, first construct a
finetuning dataset by attempting to solve the dataset using the current model’s rationale generation
ability; then, augment this dataset using rationalization, justifying ground-truth answers to problems
the model failed to solve; finally, finetune the large language model on the combined dataset.

Applying STaR on arithmetic, math word problems, and commonsense reasoning, we observe it is
able to effectively translate a small number of few-shot prompts into a large rationale dataset, yielding
dramatic performance improvements. On CommonsenseQA [10], we find STaR improves over both
a few-shot baseline (+35.9%) and a baseline fine-tuned to directly predict answers (+12.5%) , and
performs comparably to a fine-tuned model that is 30× larger (72.5% vs. 73.0%).

Thus, we make the following contributions:

1. We propose a bootstrapping mechanism to iteratively generate a rationale dataset from a few
initial examples with rationales—without needing to check new rationales’ correctness.

2. We complement rationale generation with rationalization, where a model is tasked with
justifying an answer and then fine-tuned as if it had come up with the rationale without any
hint. We show rationalization accelerates and improves the bootstrapping process.

3. We evaluate these techniques with a variety of ablations in both mathematical and common-
sense reasoning domains.

4. We propose what is, to our knowledge, the first technique to allow a pre-trained large
language model to iteratively use its language modeling capacity to improve itself.
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2 Background and Related Work
In-context Learning Recently, a collection of works has emerged exploring the capacity for large
language models to perform in-context learning [11, 12]. In essence, in-context learning treats
few-shot learning as a language modeling problem, by showing a few examples in the context (i.e.
prompt), and allowing the model to learn and identify the pattern to apply to new examples. Some
have studied in-context learning based on the language modeling objective in terms of Bayesian
inference [13] while others have attempted to describe the process more mechanistically in terms
of “induction heads” [14]. Moreover, differences in prompt configurations have been known to have
dramatic effects on few-shot performance. Some have even found that replacing few-shot prompts
with a “soft prompt” which can be optimized in embedding space results in noticeable gains [15].
Instead of emphasizing the representation of the question, we focus on the model output; in particular,
we focus on the model’s ability to reason through a problem before coming to a conclusion.

Rationales One initial work on the impact of rationales on language model performance was [3],
showing that training a language model on a dataset with explicit rationales preceding the answer
could improve a model’s ability to generate the final answer. However, this required many thousands
of training examples to be manually annotated with human reasoning. Recently, [5] demonstrated that
step-by-step “scratchpads” improve fine-tuned LLM performance and generalization on tasks such
as arithmetic, polynomial evaluation, and program evaluation. Similarly, [6] used a single few-shot
“chain-of-thought” reasoning prompt to improve model performance on tasks without fine-tuning.
Finally, [16] showed that a curriculum learning approach could help solve formal math problems, if 1)
they were translated into Lean (a theorem-proving language [17]), 2) one could directly evaluate the
proofs’ validity, 3) one could sample many solutions per problem, 4) had trained a separate value func-
tion model, and 5) started with GPT-f (a model fine-tuned on a large math dataset [18]). We note there
are many domains where these conditions do not all apply. In addition, works have aimed to explain
why rationales help: some have analyzed their impact from the perspective of latent variable models
[19] while others have provided formal proofs of the benefit of intermediate task supervision [20].

Iterated Learning A variety of iterated learning algorithms have been proposed, where solutions
or successful methods which are found are in turn used to find additional solutions [21, 22, 16].
[21] introduced Expert Iteration (ExIt), a reinforcement learning technique serving as an inspiration
for our approach. Essentially, it consists of a loop of self-play by an “apprentice,” followed by
imitation learning with feedback from a slower “expert” and then the replacement of the expert
with the now-improved apprentice. [16] builds off of ExIt for formal reasoning, while [22] applies
iterated learning to visual question answering using modular networks which can be combined
compositionally. There are further similarities between STaR and expert iteration methods [21]. For
example, filtering generated examples based on whether their ultimate answer matches the target
can be seen as expert feedback. However, we have a fixed “expert” and do not train a separate value
function. The idea of alternating between filtering steps and training steps more broadly is also
well-grounded in prior work in NLP such as [23] and in other weak supervision contexts [24, 25].

Natural Language Explanations Natural language explanations have also been discussed from the
perspective of explainable machine learning, focusing on justification rather than reasoning [26, 27].
The motivation for this line of work is largely grounded in explainable decision making, and similarly
to [3], generally does not find that requiring post-hoc explanations improves model performance.

3 Method
3.1 Rationale Generation Bootstrapping (STaR Without Rationalization)

We are given a pretrained LLM M and an initial dataset of problems x (including answer choices
if applicable) with correct final answers y: D = {(xi, yi)}Di=1. Our technique starts with a small
prompt set P of examples with intermediate rationales r: P = {(xp

i , r
p
i , y

p
i )}Pi=1, where P ≪ D (e.g.

P = 10). Like standard few-shot prompting, we concatenate this prompt set to each example inD, i.e.
xi = (xp

1, r
p
1 , y

p
1 , . . . , x

p
P , r

p
P , y

p
P , xi), which encourages the model to produce a rationale r̂i for xi

followed by an answer ŷi. We assume that rationales that lead to correct answers are of better quality
than those that lead to incorrect answers. Therefore, we filter the generated rationales to include only
the ones which result in the correct answer (ŷi = yi). We fine-tune the base model M on this filtered
dataset, and then restart this process by generating the new rationales with the newly fine-tuned
model. We keep repeating this process until the performance plateaus. Note that during this process,
once we collect a new dataset, we train from the original pre-trained model M instead of continually
training one model to avoid overfitting. We provide an outline of this algorithm in Algorithm 1.
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STaR can be seen as an approximation to an RL-style policy gradient objective. To see this, note
that M can be viewed as a discrete latent variable model pM (y | x) =

∑
r p(r | x)p(y | x, r); in

other words, M first samples a latent rationale r before predicting y. Now, given the indicator reward
function 1(ŷ = y), the total expected reward across the dataset is

J(M,X, Y ) =
∑
i

Er̂i,ŷi∼pM (·|xi)1(ŷi = yi), (1)

∇J(M,X, Y ) =
∑
i

Er̂i,ŷi∼pM (·|xi) [1(ŷi = yi) · ∇ log pM (ŷi, r̂i | xi)] , (2)

(3)

where the gradient is obtained via the standard log-derivative trick for policy gradients. Note that
the indicator function discards the gradient for all sampled rationales that do not lead to the correct
answer yi: this is the filtering process in STaR (Line 5). Thus, STaR approximates J by (1) greedily
decoding samples of (r̂i, ŷi) to reduce variance of this estimate (at the cost of potentially biased
exploration of rationales), and (2) taking multiple gradient steps on the same batch of data (similar
to some policy gradient algorithms [28]). These approximations make STaR a simple and broadly
applicable method that can be implemented with standard LLM training machinery; future work
should more closely investigate the link between STaR and the RL objective above.

3.2 Rationalization
Q: Where do you put your grapes just
before checking out?
Answer Choices:
(a) mouth
(b) grocery cart (CORRECT)
(c) super market
(d) fruit basket
(e) fruit market
A: The answer should be the place
where grocery items are placed before
checking out. Of the above choices,

grocery cart makes the most sense for
holding grocery items. Therefore,

the answer is grocery cart (b).

Figure 2: A few-shot prompt hint we use for
rationalization (and not for rationale gener-
ation), using the rationale from [6], with its
hint included in green, followed by the ratio-
nale and the answer generated by the model.

The rationale generation bootstrapping algorithm car-
ries a limitation. As the model is only trained on the
examples which it answers correctly, improvement
ends when the model fails to solve new problems in
the training set. This is fundamentally due to the fact
that the algorithm cannot obtain any training signal
from failed examples. Inspired by [3], we propose
a technique we call “rationalization”. Specifically,
we provide the answer as a hint to the model and ask
it to generate rationales in the same style as in the
previous rationale generation step. Given the answer,
the model is able to reason backwards, and hence
more easily generate a rationale leading to the correct
answer. Figure 2 provides an example of this format
on CQA, also used in the few-shot rationalization
prompt, indicating that ”(b) grocery cart” is the cor-
rect answer. We apply rationalization to problems
which the model failed to solve with rationale genera-
tion. When adding a rationalization-generated rationale to our dataset, we do not include the hint in its
corresponding prompt, as if the model had come up with the rationale without the hint. After filtering,
we fine-tune on the previously generated dataset combined with the rationalization-generated dataset.

Algorithm 1 STaR
Input M : a pretrained LLM; dataset D = {(xi, yi)}Di=1 (w/ few-shot prompts)

1: M0 ←M # Copy the original model
2: for n in 1...N do # Outer loop
3: (r̂i, ŷi)←Mn−1(xi) ∀i ∈ [1, D] # Perform rationale generation
4: (r̂rat

i , ŷrat
i )←Mn−1(add_hint(xi, yi)) ∀i ∈ [1, D] # Perform rationalization

5: Dn ← {(xi, r̂i, yi) | i ∈ [1, D] ∧ ŷi = yi} # Filter rationales using ground truth answers
6: Drat

n ← {(xi, r̂
rat
i , yi) | i ∈ [1, D] ∧ ŷi ̸= yi ∧ ŷrat

i = yi} # Filter rationalized rationales
7: Mn ← train(M,Dn ∪Drat

n ) # Finetune the original model on correct solutions - inner loop
8: end for

Algorithm 1 describes the full algorithm, with the parts in blue corresponding to rationalization.
Without those parts, Algorithm 1 corresponds to STaR without rationalization. Figure 1 provides an
overview diagram. Fine-tuning on the dataset generated by rationalization has a crucial benefit of
exposing the model to difficult problems which otherwise would not have appeared in its finetuning
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dataset. This can be understood as challenging the model to “think outside the box” about problems
on which it was unsuccessful. A secondary benefit of rationalization is an increase in dataset size.

4 Experiments
For our experiments, we focus on arithmetic, commonsense reasoning, and grade school math to
demonstrate STaR’s breadth. In particular, for arithmetic, we follow a setup inspired by [5]. For
commonsense question-answering we follow [13, 6] and use CommonsenseQA (CQA), a widely
used multiple-choice dataset for this domain [10]. For grade school math, we use GSM8K from [9].

4.1 Experimental Protocol

We used GPT-J as our base language model, and the fine-tuning script from the GPT-J repository
[29]. We chose GPT-J, a 6B-parameter model, because the checkpoint and fine-tuning code are
publicly available [29], and the model is large enough to generate rationales of non-trivial quality to
be bootstrapped from. More hyperparameter details about GPT-J and our fine-tuning are included in
Appendix G. Following the default setting of [29], we perform a 100-step learning rate warmup, from
which point we use a constant learning rate. Unless stated otherwise, we start with 40 training steps
at the first outer loop, and increase the number of inner-loop fine-tuning training steps by 20% with
each outer loop. In general, we found that training more slowly at the beginning ultimately benefits
model performance. We expect that further improvement is possible via a thorough hyperparameter
search—we leave this to future work due to computational constraints.

For arithmetic problems, we first generate a dataset of 50,000 randomly sampled questions (uniformly
over the digit lengths) in the format introduced by [5]. For each outer loop iteration on arithmetic,
we sample 10,000 problems from the dataset. We use 10 random few-shot rationale examples for
each digit for its corresponding few-shot prompt. For each of the 9, 741 questions in the training set
of CommonsenseQA, we add the question to the few-shot rationale prompt, and prompt the model
to generate the rationale and answer for that question. For few shot prompting on CQA, we start
with the same 10 questions as used in [6], with the rationales modified slightly to fix an incorrect
answer and to more explicitly reference relevant knowledge. We include these modified prompts in
Appendix B2. These prompts serve as our complete set of explanations. We run STaR until we see
performance saturate, and we report the best results.

When performing rationalization, we find that the choice to include or omit few-shot prompts on
outer-loop iterations after the first iteration does not have a substantial impact on the method’s ultimate
performance. However, there are some nuances which we discuss further in Section 5, leading us to
use few-shot prompts unless stated otherwise.

4.2 Datasets
Input:
6 2 4 + 2 5 9
Target:
<scratch>
6 2 4 + 2 5 9 , C: 0
2 + 5 , 3 C: 1
6 + 2 , 8 3 C: 0
, 8 8 3 C: 0
0 8 8 3
</scratch>
8 8 3

Figure 3: A visualization of
a 3-digit arithmetic problem
with a scratchpad. C corre-
sponds to the carry from the
previous digit’s summation.

Arithmetic The arithmetic task is to calculate the sum of two n-
digit integers. We generate the dataset based on the descriptions
in [5] and visualize an example scratchpad in Figure 3. Everything
up to and including “Target:” is given as part of a prompt, and
the model is asked to generate the scratchpad (start/end indicated
by “<scratch>”) and the final answer, as in [5]. Each line of the
scratchpad corresponds to the summation of each pair of digits from
the final digit to the first digit, the accumulating final digits of the
answer, and a carry digit corresponding to whether the previous pair
summed to at least 10. We include few-shot prompts for 1 to 5 digits.
When performing rationalization, we include the correct answer after
“Target” and query the model to produce the scratchpad and then
reproduce the correct answer following the scratchpad.

CommonsenseQA The multiple-choice commonsense reasoning
task, CommonsenseQA [10] (CQA), is constructed from ConceptNet, a semantic graph of concepts
and their relationships with over a million nodes [31]. [10] identified a set of “target” concepts in
ConceptNet for each question, where the target concepts share a semantic relationship to one “source”
concept. Then each question is crowdsourced to allow a reader to identify one target concept, while

2Based on [30], this is unlikely to meaningfully affect [6]’s few-shot performance.
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Figure 4: A visualization of the accuracy of n-digit summation with each iteration of STaR with and
without rationalization. Each series corresponds to the accuracy of summing two n-digit numbers.

mentioning the source concept. In addition, two distractor answers are added. The dataset has 12,247
questions, each with five choices, with 9,741 in the train set, 1,221 in the dev set, and 1,285 in the
(withheld) test set.

Corresponding to the broad variety of ConceptNet, CQA contains a diverse set of questions which
require commonsense reasoning ability building off of standard world knowledge, where human
performance is 89% [10]. Many have pointed out that CQA contains a number of biases, along
several dimensions including gender [3]. We discuss how this may impact our method in Section 6.
There are also many typos and questions which are fundamentally ambiguous3. We use it despite
these issues as it is a general question-answering dataset relying on both common world knowledge
and simple reasoning, which serves as a good test-bed for our method.

Grade School Math (GSM8K) We also evaluate on the Grade School Math (GSM8K) dataset,
containing 7,473 train and 1,319 test examples of grade-school-level word problems [9]. These math
problems are posed in natural language and require two to eight calculation steps to arrive at a final
answer. This dataset combines the skills needed for arithmetic and commonsense reasoning. For
rationalization, we include the final answer in parentheses immediately after the question as a hint.

4.3 Symbolic Reasoning: Results on Arithmetic

The accuracies of the model across digits 1-5 over each iteration of the outer loop are plotted in
Figure 4. After running STaR for 16 iterations, the overall accuracy is 89.5%. For reference, a
baseline trained on 10,000 examples without rationales for 5,000 steps attains 76.3% accuracy.
Notably, few-shot accuracy on arithmetic problems is very low, even with rationales: accuracy on
2-digit addition is less than 1%, and accuracy on more digits close to zero.

Iterations

A
cc

ur
ac

y 
(%

)

0

20

40

60

80

100

0 4 8 12 16 20 24 28 32 36

1

2

3

4

5

6

7

8

9

10

Figure 5: We introduce additional digits to
STaR with rationalization at the 20th iteration.

With rationalization, the accuracy is able to improve
especially quickly. After one fine-tuning iteration on
the model’s generated scratchpads, 2-digit addition
improves to 32% from less than 1%. Without ratio-
nalization, the performance improvement is stage-
wise: the model generally has poor performance
on the n-digit sum until it has good performance
on the (n− 1)-digit sum. With rationalization, the
model can learn many lengths at once, though not
with equal accuracy. Rationalization allows many
problems to be solved few-shot, so we start STaR
training with 300 steps (note, doing so without ra-
tionalization causes overfitting on 1-digit addition),
and increase training by 20 steps per iteration.

We also perform an experiment where we continue pre-training STaR with rationalization with
additional digits, starting before the 20th iteration, while keeping the total number of training examples

3For example, “Billy bought coffee and waited for his wife to arrive from France. Where might he have
been?” includes airport and train station as options. The correct answer, perhaps surprisingly, is train station.
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Table 1: We evaluate several baselines, including a few-shot GPT-J evaluation both with and without
scratchpads, a GPT-J baseline finetuned to directly predict the answer, and STaR with and without
rationalization applied to GPT-J. We use CoT to denote non-STaR models outputting rationales, and
Direct to indicate those directly predicting the final answer. Note the final STaR model is trained on
78.2% of the training dataset with rationale generation, and an additional 8.5% from rationalization.

CQA Dev Set Accuracy (%) Train Data Used (%)
GPT-3 Direct Finetuned [32] 73.0 100
Few-shot Direct GPT-J 20.9 ∼0
Few-shot CoT GPT-J 4 36.6 ∼0
Few-shot CoT LaMDA 137B [6] 55.6 ∼0
GPT-J Direct Finetuned 60.0 100
STaR without rationalization 68.8 69.7
STaR with rationalization 72.5 86.7

fixed at each iteration. We find that not only does this appear to quickly improve performance on the
initial set of digits, but when evaluated on 9 and 10 digit examples, never seen during training, the
model successfully solves many of these out-of-distribution problems. As visualized in Figure 5, the
introduction of these digits appears to make the training less stable, but the exact cause is unclear.

4.4 Natural Language Reasoning: Commonsense Question Answering

The CommonsesenseQA (CQA) setting introduces several new challenges. In the arithmetic task,
an incorrect scratchpad in the reasoning step, and to a lesser degree in the rationalization step, was
extremely likely to result in an incorrect answer. On the other hand, CQA problems are 5-way
multiple choice questions. Thus, one will get the right answer at random approximately 20% of
the time, regardless of the quality of reasoning. Moreover, some simple heuristics (e.g. semantic
similarity) can meaningfully improve this to ≈30% without any reasoning, as shown by [10].

We evaluate this dataset as described in the experimental protocol and compare to several baselines.
The first baseline is to finetune GPT-J to directly output the final answer, which we call “GPT-J
Finetuned”. We also compare to GPT-3 finetuned to directly predict the final answer from [32], and a
137B parameter Lambda model few-shot prompted with chain-of-thought (CoT) rationales from [6].

We found that, as shown in Table 1, STaR without rationalization outperformed GPT-J fine-tuned
directly on the final answer for the entire dataset, despite training on less of the data. The inclusion of
rationalization improved this performance to 72.5%, far closer to the 73% of the 30× larger GPT-3.
As expected, we also see STaR surpassed the few-shot baselines, including the much-larger 137B
LaMDA model [33, 6]. We expect accuracy would be further improved if we applied STaR to a model
with higher few-shot performance. Note that substantially higher performance is possible: [32] demon-
strated a custom 39-model ensemble which reached “super-human” performance on the CQA test set
and 93.4% accuracy on the dev set - however, it relied on access to ConceptNet, on which CQA is built.

Case Study Note that it is harder to judge the rationale quality: for arithmetic, one can compare
them to the ground truth rationales, but for CQA the evaluation is necessarily qualitative. For this
reason, we include a case study in Figure 7. We observe that the rationales provided are generally
coherent and of a similar structure to the few-shot rationales. We make the following two observations:

1. After training with STaR, we see the model was able to generate reasonable rationales that
solve new problems, which explains part of the observed performance gain.

2. We also see that there were many instances in which STaR improved the quality of rationales
over those generated in a few-shot manner.

Human Evaluation Based on the observation that STaR may improve reasoning quality for prob-
lems even when they were initially answered correctly via few-shot prompting, we performed a prelim-
inary qualitative analysis. We randomly selected 50 rationales generated from few-shot CoT and STaR-
generated rationales on questions which they both answered correctly, as well as human-generated ra-
tionales for these problems from [3]. We then presented a random subset of 10 questions and rationales
to each of 20 crowdworkers on Prolific [34] with the rationales in a randomized order, asking them to
rank the rationales based on which they felt best justified the answer. The participants were 30% more
likely to rank the STaR-generated rationales higher than the few-shot rationales (p = .039). This
indicates that, as mentioned in the case study, STaR can improve the quality of rationale generation.

4We use the same few-shot rationales as described in Section 4.1 - namely fixing typos and improving clarity.
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Table 2: We find that STaR substantially improves GSM8K performance over the baselines, despite
training on only 25.0% of the data for the model without rationalization, and 30.3% of the dataset
(with 1.2% from rationalization) for the model with rationalization.

GSM8K Test Accuracy (%) Train Data Used (%)
Few-shot Direct GPT-J 3.0 ∼0
Few-shot CoT GPT-J 3.1 ∼0
GPT-J Direct Finetuned 5.8 100
STaR without rationalization 10.1 25.0
STaR with rationalization 10.7 30.3

We also found that the participants were 74% more likely to prefer the STaR-generated rationales
over the human-generated rationales (p < .001). To be clear, we do not believe that this indicates
human-level rationale-generation performance. Instead, we feel that it speaks to the difficulty of
eliciting high-quality rationales. We reproduce the test prompts in Appendix C and elaborate on the
limitations of the crowdsourced explanations dataset.

Failure Cases Finally, we found a variety of interesting failure cases, many of which corresponded
to standard logical fallacies. For example, the model often made statements related to the topic of the
question but which were not actually arguments for why the answer should be true. Sometimes, the
model claimed the question implied the answer as an argument, without explaining why. Other times,
especially early in training, the model answered as if it has knowledge about a particular individual,
instead of making a general statement - e.g. “the king’s castle is a place where he feels safe” instead
of “castles are places where kings feel safe.” We provide examples and analyze errors in Appendix A.

Few-shot Prompt Training Using few-shot prompts during fine-tuning [12] appears to have a mean-
ingful benefit (60.9%→68.8% without rationalization, 69.9%→72.5% with rationalization). Thus,
we generally suggest its use for at least a portion of training, though we discuss caveats in Section 5.

4.5 Mathematical Reasoning in Language: Grade School Math
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Figure 6: A comparison of the number of
calculator steps generated by the model to
solve examples in the training set relative to
the number of steps used in the ground truth.

We again find on GSM8K that STaR substantially im-
proves performance beyond few-shot with rationales
or training to directly predict the answers (without
rationales), shown in Table 2 and include the few-shot
prompt in Appendix I. We observe that on this task,
rationalization does not substantially improve perfor-
mance. Note that, in training, it was necessary to
cap the number of training steps at the 30th iterations
(after 7912 steps), to prevent training from becom-
ing prohibitively long. The results were reached after
36 iterations for STaR without rationalization and an
additional 12 iterations with rationalization.

Usually, the number of calculation steps generated
by the model matches the number of steps taken by
humans (generally 53-57% agreement across all itera-
tions). We visualize this explicitly in Figure 6. We see
that when the ground truth and model disagree on the
number of calculation steps, the model typically uses
fewer. Sometimes this is because the model skips steps, but occasionally it finds novel solutions, as
in Appendix J, where the model disregards redundant details and solves a 7-step problem in one step.

5 Discussion and Challenges
The Impact of Rationalization An essential question is exactly what role rationalization plays.
Intuitively, rationalization allows a model to reverse-engineer a solution, or provides a heuristic for
identifying whether each step makes the conclusion more likely. This parallels real-world problems
where the final result is known, but challenging to derive a good justification. From a mathematical
perspective, while rationale generation samples rationales from the distribution p(r | x) provided by
our model M , rationalization conditions on the answer, letting us access an alternative distribution
p(r | x, y) which may be a better search space for rationales. Then rationalization could be framed as
an off-policy estimate of the objective in Equation 1, sampling from the hint-augmented model as a
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proposal distribution. Future work should establish more connections between rationalization and
these RL objectives, and examine more generally when and why rationalization improves learning.

In addition, due to the low sampling temperature, outputs without rationalization correspond to
examples where the model is most confident in its answer. This results in these examples providing a
weaker gradient signal than the rationalization examples, at least in the first iteration. Since we retrain
from the initial pre-trained model every time we run a fine-tuning iteration, the degree of this effect is
also difficult to measure directly. Finally, we must point out that the method to add the “hint” does not
follow immediately from the question and answer and in some contexts providing it may be nontrivial.
Exploring the impacts of different hinting techniques and their generality is an avenue for future work.

Temperature One intuitive alternative to rationalization, if one seeks to expand the training
dataset, is more and higher-temperature sampling. However, in practice, we found that this is
counterproductive. In general, it substantially increases the likelihood of a correct answer despite
incorrect reasoning, and training on bad or irrelevant reasoning prevents generalization. This is
particularly clear in more structured tasks, like arithmetic, where the scratchpads that the model learns
to produce with a higher-temperature sampling approach diverge into meaninglessness and cause the
model to stagnate. Overall, we found that higher temperatures as an alternative to rationalization (e.g.
0.5 or 0.7) led to models worse than models with reasoning alone, discussed further in Appendix H.

Furthermore, as text generation by large language models is sequential (i.e. one cannot produce a token
without producing the preceding token), generating text is a bottleneck and this is computationally
far less efficient than rationalization. For example, generating 10 sample outputs is approximately 10
times slower than generating one sample output. However, one potentially valuable way to leverage
multiple samples would be to use the method proposed in [35], using the majority-vote result of
multiple high-temperature scratchpads as a ground truth against which we compare a low-temperature
scratchpad. This allows one to apply STaR to a dataset of only questions, without answers. This
significantly underperformed using ground truth, but we discuss this ablation in Appendix H.

Few-shot Prompting A noteworthy phenomenon is that the inclusion of few-shot prompting during
sampling seems to dramatically reduce “drift” where later rationales become increasingly dissimilar
from the initial few-shot set of rationales. One benefit of this is that the model may be less constrained
by the quality and difficulty of the initial rationales, theoretically allowing it to generalize more. One
potentially negative consequence is that the style of the rationales may less-closely match the original
prompting style. Another benefit is in terms of computational resources - a shorter prompt length
allows for a shorter sequence length when sampling. Technically, the point in training at which we
“disable” few-shot prompts is another hyperparameter which we could tune, but we leave this to future
work. In addition, by leaving prompts out after the initial outer-loop iteration, the model tends to
perform gradually worse at rationalization as it trains for longer periods of time. As a result, it may
be necessary to include some hints during training for long periods of time with this approach.

Ultimately, the choice to include few-shot prompts in later iterations of training appears to depend on
the use-case: when the goal is consistent adherence to a particular prompt style, which may benefit
explainability, include few-shot prompts in sampling; when the goal is a faster training loop, one may
remove them. Moreover, it is possible that with other datasets or larger models there is an impact on
performance, so we encourage this to be generally treated as a hyperparameter.

Incorrect Rationales with Correct Answers One limitation of STaR is that undesirable rationales
(e.g. for the reasons discussed in Appendix A or later in this section) paired with correct answers will
still be used for training. These examples may detract from the performance simply by providing
unclean training data. In addition, it is possible that the ultimate performance of the model may be
worsened by training on rationales which are useful in a limited context but fail to generalize, relative
to training with non-generalizable rationales filtered out. How to identify correct and generalizable
rationales beyond checking the final answer (e.g. by using token-level verifiers as in [9]) is a valuable
direction for future study. Still, in real-world contexts there are significant consequences to user trust
and risk from a model producing bad or unfaithful explanations [36], discussed also in Appendix 6.

6 Limitations and Impacts
Bias It is important to note that STaR is designed to amplify the reasoning leading to correct
solutions on a dataset. Another implication is that if biases are “useful” in solving a dataset then they
will be amplified. This is made worse by rationalization, as biased answers that the model may not
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naturally arrive at are, in a sense, pulled out of the model. The exact interaction between the bias in a
dataset and the pre-existing bias learned by the model is unclear, and something to consider before
real-world deployment of all large language models in general, but STaR-trained models in particular.

We find some encouraging initial results on this however: for questions where gender is not relevant,
the model appears to disregard it in its explanation. For example: “Q: Where is a good place for
a woman to store her sunglasses? → A: The answer must be a place where sunglasses are stored.
Sunglasses are stored in purses. Therefore, the answer is purse (e).” or “Q: The only baggage the
woman checked was a drawstring bag, where was she heading with it? → A: The answer must be
a place where a drawstring bag is checked. The answer is airport (e).” We believe this question
warrants a much more comprehensive study.

Faithfulness One important challenge with models which seek to be interpretable or provide
explanations for their reasoning is that of faithfulness. While our primary emphasis is not on the
explainability benefits that STaR may bring, there is a fundamental challenge around evaluating
explanations and rationales: namely, faithfulness [37, 38]. [38] describe faithful explanations as those
which “accurately [represent] the reasoning process behind the model’s prediction.” While STaR
encourages the use of reasoning in rationales which leads the model to correct answers, it is difficult,
if not impossible, to ensure that the rationales reflect the model’s internal processing. For example, it
is straightforward to imagine the model implicitly selecting a particular answer immediately and then
generating a rationale to justify that selected answer. This would allow a model to generate unbiased
rationales while selecting answers in a biased way.

The fact that our model outperforms one fine-tuned to directly predict the answers, and ablation
studies from papers such as [6] make it clear that the generation of a rationale before producing an
answer non-trivially improves the model’s answer quality. However, it is difficult to evaluate the
degree to which any particular answer’s rationale is faithful. However, we note that there problems
are not unique to STaR, but are symptomatic of the difficulty of understanding large language models
and in particular the rationales generated by large language models.

Scale Finally, we note there is no guarantee that our results would generalize to larger models.
However, [39] and [40] suggest that the benefits of rationales increases with scale on numerous
problems, which is perhaps reason for optimism. On the other hand, a limitation of STaR on small
models is that in order for the first iteration of STaR to succeed, few-shot performance must be above
chance. This implies that the initial model must be big enough to have some reasoning capabilities.
For instance we found that GPT-2 was not able to bootstrap from few-shot reasoning in even the
arithmetic domain. A further limitation is that settings with a high level of chance performance
(e.g. binary decisions) yield many poor rationales, confounding the STaR approach. As discussed,
filtering bad reasoning paired with correct answers remains an open question.

7 Conclusion
We present the Self-Taught Reasoner (STaR), which iteratively improves a model’s ability to generate
rationales to solve problems. We few-shot prompt a model to solve many problems in a step-by-step
manner by generating rationales, and then prompt it to rationalize the correct answer for problems
it gets wrong. We finetune on both the initially correct solutions and rationalized correct solutions,
and repeat the process. We find that this technique significantly improves the model’s generalization
performance on both symbolic reasoning and natural language reasoning. There are several key
limitations on STaR as discussed in Section 5 and Appendix 6. Nonetheless, we believe using
examples without reasoning to bootstrap reasoning is a very general approach, and that STaR can
serve as the basis of more sophisticated techniques across many domains.
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