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Abstract

Universally modeling all typical information extraction tasks (UIE) with one
generative language model (GLM) has revealed great potential by the latest study,
where various IE predictions are unified into a linearized hierarchical expression
under a GLM. Syntactic structure information, a type of effective feature which
has been extensively utilized in IE community, should also be beneficial to UIE. In
this work, we propose a novel structure-aware GLM, fully unleashing the power
of syntactic knowledge for UIE. A heterogeneous structure inductor is explored
to unsupervisedly induce rich heterogeneous structural representations by post-
training an existing GLM. In particular, a structural broadcaster is devised to
compact various latent trees into explicit high-order forests, helping to guide a
better generation during decoding. We finally introduce a task-oriented structure
fine-tuning mechanism, further adjusting the learned structures to most coincide
with the end-task’s need. Over 12 IE benchmarks across 7 tasks our system shows
significant improvements over the baseline UIE system. Further in-depth analyses
show that our GLM learns rich task-adaptive structural bias that greatly resolves
the UIE crux, the long-range dependence issue and boundary identifying.

1 Introduction

Information extraction (IE) is widely considered as one of the most kernel topics in natural language
processing (NLP), which is defined as to identify the desired structural information from the unstruc-
tured texts [4, 63, 47, 44, 39, 29, 15]. There is a variety of IE and IE-derived tasks, yet all of which
revolves around predicting two key elements: mention spans or/and their semantic relations. For
example as in Fig. 1(b), NER detects the mention spans, while RE recognizes each possible mention
and its associated mention with relation. In this regard, all the existing IE jobs can be reduced into
three prototypes: span extraction, pair extraction and hyper-pair extraction, as depicted in Fig. 1(a).

In the era of deep learning, IE witnesses extraordinary developments, where especially the recent
triumph of pre-trained language models (LMs) helps push the state-of-the-art (SoTA) IE performances
amazingly [10, 3, 25, 80, 73]. Prior related works mostly design particular models for certain IE
tasks in isolation; while the latest SoTA progress [42] is achieved by unifying all IE tasks with a
single encoder-decoder GLM, i.e., UIE. As different IE tasks essentially share the similar nature (i.e.,
modeling span and relation features), it is proven that universally modeling multiple IE tasks helps
further learning of general sharable knowledge from varying task sources, which makes UIE great
potentials in real-world scenarios. In this work we inherit this wisdom and also focus on UIE.
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Figure 1: We reduce all the IE tasks into three prototypes (a) with representative examples (b). We
unify all IEs with an encoder-decoder GLM (c). Both syntactic dependency (d) and constituency
structure (e) plays a key but distinct role in IE, where the former helps solve long-range dependence
problem and the latter benefits boundary detection issue. Best viewed with zooming in.

On the other hand, previous IE research extensively employs the external syntactic structure infor-
mation, such as the dependency tree, for task improvements [5, 49, 45, 24, 52, 18]. Behind the
enhancements is that IE structure corresponds much with the syntax structure explicitly, where the
latter can essentially offer low-level linguistic bias for better learning the high-level semantic structure.
As exemplified in Fig. 1(d), the dependency tree coincides much with structure of EE task as in
Fig. 1(b). Importantly, some findings reveal that the LMs, being pre-trained on large corpus, capture
structural syntax knowledge [68, 20, 23], which gives rise to LMs’ distinguishing promotion on IE.
Yet probing tasks show that the auto-learned structure representations is weak, which inevitably limits
the LM efficacy for IE [8, 30, 65]. Correspondingly, a line of researches fuse external syntax trees
into LMs to reinforce the structure awareness, i.e., structure-aware LMs [71, 2, 38, 6].

Motivations. After carefully revisiting the existing literatures, we summarize four key limitations of
syntactic structure-aware LMs that hamper IE from further improvements. First, existing structure-
aware LMs are mostly designed for one certain IE task (e.g., NER [69], RE [36]) instead of UIE,
leaving the shared IE knowledge and the task-invariant syntax features unexploited. Second, current
structure-aware LMs merely consider making use of one standalone type of syntax structures, i.e.,
mostly using the dependency trees [49, 24]. We however argue that as one core grammar, constituency
syntax can serve complementary contributions for IEs. There are two common challenges of IEs: long-
range dependence problem and boundary identifying, in which the dependency structure especially
helps solve the former one [49, 45, 52] and the constituency syntax could mostly benefits the latter
[79, 46, 54], as in Fig. 1(d)&(e). Thus it is best to simultaneously model both two heterogeneous
structures [31, 17]. Third, existing works mostly integrate supervised syntax parse trees, where
unfortunately, either the amount of manually annotated syntactic data (e.g., PTB) are largely limited,
or the annotation noises from third-party parsers are inevitably introduced due to such explicit
injection. Fourth, parsing syntax comes with task-irrelevant or indirect substructures (e.g., in Fig.
1(d) the black and dotted lines respectively), which would deteriorate the efficacy. Meanwhile,
different IE tasks largely demand distinct bias of structural features, while current structure-aware
LMs fail to fine-tune the structure knowledge to allow the structure bias best accord with end task’s
need.

Contributions. On the above basis, we propose learning a latent adaptive structure-aware generative
language model for UIE (namely LasUIE). First of all, we reduce UIE into three uniform prototypes,
upon which we transform the UIE into generative paradigm with an encoder-decoder GLM, predicting
the linearized hierarchical expression (i.e., spans&attributes, relations&types, as shown in Fig. 1(c)).
Then, we adopt a three-stage of LM training procedure, where an additional structure-aware post-
training is added between the pre-training and fine-tuning stages for structure learning. Inspired by
the progress of unsupervised grammar induction [58, 59, 28, 60], we design a heterogeneous structure
inductor (HSI) module, where two heterogeneous syntactic structures are simultaneously measured
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and automatically learned. With HSI, our GLM initialized with existing pre-trained parameters,
during post-training, performs unsupervised syntax induction based on unlabeled texts without relying
on external syntax parses or any annotation labor (cf. Fig. 2).

Since the induced latent structural representations may be squeezed aside by the mainstay contextual
representations in LM encoder, we further enhance the utility of syntax by introducing a structural
broadcaster (SB) module (cf. Fig.2). SB compacts multiple varying latent trees from different
encoding attention heads into an explicit constituency-like and a dependency-like forest respectively.
During each decoding step, two heterogeneous syntactic forests are utilized to produce high-order
features at global level for guiding better content generation. Finally, during the prompt-based
fine-tuning stage we perform task-oriented structure adaptive tuning to narrow the gaps between the
induced syntactic and task-specific structures (cf. Fig. 3). With policy gradient we dynamically adjust
the attributes of two heterogeneous structures according to the feedback of end task performance.

Extensive experiments are performed on 12 representative data across 7 IE tasks. On both the
supervised and low-resource settings our framework consistently shows improvements over the
baseline systems. Via further analyses we verify that 1) unifying IE tasks by further modeling
structure information in LM benefits IE substantially, especially in the low-resource scenario. 2)
Integrating two heterogeneous structures brings mutual advantages for UIE, helping fully resolve the
boundary identifying and long-range dependence issue. 3) Automatically inducing latent structures
in LM with further task-oriented structural adaptation learning significantly consolidates the efficacy
of structure knowledge for end tasks. 4) Different types of IE tasks rely subtly on varying structural
bias, all of which can be flexibly learned and correctly satisfied by our system. Our resources can be
found at https://github.com/ChocoWu/LasUIE.

2 Related Work

IE is a long-standing research topic in NLP, which includes various tasks as well as growing
derivations [4, 63, 47, 44, 35, 78]. We reveal that essentially all the IE tasks can be summarized
into three main prototypes, according to the combination numbers of ‘mention span’ and ‘semantic
relation’ prediction targets: 1) span extraction, e.g., named entity recognition (NER) [9], aspect-
based sentiment analysis (ABSA) [64], aspect-term extraction (ATE) [37]; 2) pair extraction, e.g.,
relation extraction (RE) [81, 34], aspect-opinion pair extraction (AOP) [85], aspect-based sentiment
triplet extraction (ASTE) [50]; and 3) hyper-pair extraction, e.g., event extraction (EE) [21],
semantic role labeling (SRL) [19], opinion role labeling (ORL) [27, 61]. Mostly prior IE researches
all solve one particular task exclusively (or one specific IE type) [49, 72, 40, 77, 86], while they
may unfortunately ignore certain task-invariant universal IE features. In this work, we consider the
line of UIE, unifying all IE tasks to exploit the shared IE knowledge. And based on the above UIE
prototypes, we develop a LM-based unified framework with generative paradigm.

Many efforts are paid for building LMs to handle IE tasks by taking advantages of the knowledge
from large-scale pre-training [10, 3, 25, 80, 73]. Another line of IE researches propose injecting
external knowledge into LMs or GLMs, such as knowledge graph (KG) [41, 26, 83, 16], syntax
structure information [71, 2, 38, 6]. Comparing to the integration of domain-specific KG information
for certain IE tasks, syntactic information would provide much broader generic features in the scope
of UIE. The very latest research attention of LMs has been focused on the GLMs, the encoder-decoder
paradigm LMs. GLMs transform various NLP tasks into a unified seq-to-seq scheme with some
properly-designed prompt texts as additional inputs [32, 55, 80]. Very recently, Lu et al. (2022)
[42] pioneer the UIE by casting the IE structure prediction into text generation with a GLM, with
which our UIE modeling shares the same spirit. We however note that our work can advance in two
major aspects. First, we consider the integration of additional structural knowledge in GLMs for
UIE enhancements. Besides, [42] require supervisedly pre-training their UIE GLM on a large-scale
annotated IE corpus, while our system automatically induces structure knowledge based merely on
unlabeled texts without any further annotation and labor.

This work also closely relates to the line of structure-aware LMs. On the one hand, some researches
propose directly introducing external syntax trees into LMs to reinforce the structure awareness. They
mostly take the Transformer-based LMs as backbone, and fuse the syntax signals (annotations) from
external parsers or PTB corpus by modifying the Transformer attentions [71, 38, 6]. Another line of
structure-aware LMs directly induce syntax structure into LMs automatically, a.k.a., unsupervised
grammar induction [7, 75, 58, 12, 59, 28]. We in this work borrow the success of unsupervised
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grammar induction, inducing rich structure information for LMs for better UIE. Inspired by the
foundation of syntax distance measurements [58, 13, 60], we propose to induce linguistic structures
and compose both the constituency and dependency syntax structures simultaneously.

3 Unifying Information Extraction with Text Generative Paradigm

As aforementioned, we reduce all IE jobs into the predictions of few structural elements: 1) spans
and 2) relations, and without losing the generality of UIE, we also consider the predictions of 3) span
attributes and 4) relation types. Using different combinations of the structural elements properly can
construct a hierarchical IE structure. In other words, we can arrange these elements into a sequential
textual expression, from which the actual IE target can be easily restored. Based on this we unifiedly
model all IE tasks (i.e., UIE) by transforming the structure prediction into text generation. Fig. 1(c)
illustrates the main idea. Such generative scheme also enables to take the advantage of the recent
achievement of GLMs, such as BART [32] and T5 [55]. Taking an existing GLM as backbone, we
reach the goal of end-to-end UIE as well as complex IE, such as overlapped and discontinuous cases
[82, 14, 33]. Our LM encoder takes input text (i.e., x), and the decoder produces the linearized
hierarchical expression (LHE), i.e., y. Fig. 3 illustrates the input and output implications.

Input. The input text x = {w1, · · · , wn} includes the raw sentence and task-specific label prompts.
The label prompts contain the pre-defined task-specific labels, including span attributes (‘Attr’) and
relational types (‘Type’), where each label is separated by a ‘<SPAN>’ or a ‘<REL>’ marker. Parts
of the ‘Attr’ and ‘Type’ labels will be copied and output in y. We also insert a task identifier token
‘<TASK>’ to inform the model which task to predict.

Output. The output text y is a linearized hierarchical expression that describes how the structural
elements organize into the target structure, as depicted in Fig. 3. For example, in span extraction, y
should be a list of text spans and attribute labels, i.e., ‘{(Span,Attr), · · · }’. In pair extraction y is a
list of pairs, where a pair is represented as ‘(Spani, Attri [Typek](Spanj , Attrj))’ in which Spanj is
a subordinate mention of Spani with a semantic relation Typek. For hyper-pair extraction y is a list
of hyper-pairs represented as ‘(Spani, Attri [Typek](Spanj , Attrj) [Typem](Spank, Attrk) · · · )’.

It is also noteworthy that our LHE takes a similar scheme with [42] , but with difference. For example,
in our scheme all the mention comes with an associated attribute label in any IE prototype; while in
[42] the subordinate mentions have no attribute labels. Thus, our design could be more generalized.

4 Learning Latent Adaptive Structure-aware Generative Language Model

4.1 Overall Framework

The overall framework is built upon a Transformer-based encoder-decoder GLM, based on which we
additionally add 1) a heterogeneous structure inductor module at top of the encoder for structural
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learning, 2) a structural broadcaster module between GLM encoder and decoder for enhancing the
structural feature utility. Fig. 2 shows the overall architecture of our LasUIE GLM.

LasUIE takes a three-stage training process, where a structure-aware post-training is inserted between
the pre-training and fine-tuning stages for structure learning. LasUIE takes an existing well pre-
trained GLM parameters (e.g., BART, T5) as initiation. During structure-aware post-training stage our
GLM carries out unsupervised syntax induction based on unlabeled plain texts (cf. §4.2). Thereafter,
LasUIE is fine-tuned on the in-house training data, along with which we perform task-oriented
structure adaptive tuning (cf. §4.3). We also note that LasUIE takes a consistent paradigm of text-to-
text generation throughout the whole three stages, which ensures a minimum information loss from
the early trainings to the final predicting.

4.2 Unsupervised Structure-aware Post-training

Heterogeneous structure inductor. As cast earlier, although LMs are able to learn certain linguistic
knowledge from generic pre-training, the signal strength of learned syntax is quite weak to contribute
IE enough [65, 30]. In the structure-aware post-training stage, we aim to unsupervisedly enrich our
GLM with sufficient structural knowledge, reinforcing the awareness of linguistic syntax.

Inspired by Shen et al. (2021) [60], we explore a heterogeneous structure inductor (HSI) stacked on
top of GLM encoder to reach the above goal. HSI induces linguistic structures based on the foundation
of syntax distance measurements [58]. We employ two heterogeneous syntax measurements, i.e.,
OC={oc1, · · · , ocn−1} (oc<1=oc>n−1=∞) for measuring constituency syntax, and OD={od1, · · · , odn}
for measuring dependency syntax. As illustrated in Fig. 2(b), oci is a real value depicting the height
of the lowest common ancestor between two consecutive words wi and wi+1; while odi is a real
value describing the spanning distance between the words linking to wi. Intuitively, bigger oci means
bigger information divergence of the split point between the two sides of phrasal span, and larger odi
implies wider range of connections, i.e., longer-term dependent relations. As revealed that the syntax
features are best learned at lower layer of GLM encoder [23], HSI thus takes the first-layer encoding
representations h1

i as input and produce syntax context representations via convolution operation:
h∗
i =Conv(h1

i ). Based on h∗
i , HSI represents oci and odi as:

oci = V cTanh(W [h∗
i ;h

∗
i+1]) , odi = V dTanh(Wh∗

i ) . (1)

Then, two rules are made for generating two heterogeneous syntax based on the two measurements
[60], which also helps coordinate two types of structures so that they can co-exist together and legally.

▶ Rule ΓC : A smallest constituent span C[l,r] of wi (l<i<r) should satisfy (ocl−1>odi )&(ocr>odi ).
For example as in Fig. 2(b), oc2(=4)>od3(=3.5) and oc8(=∞)>od3, thus C[3,8] is the valid minimum
span for w3.

▶ Rule ΓD: Generalizing wi as a potential span C[l=i,r=i], the dependent head of any word in
C[l,r] is wj ← argmaxk∈[l,r](o

d
k). For example, the maximum od in constituent span of C[3,8] is

od6=4.5, thus dependent head of the word in C[3,8] is w6.

Based on rule ΓC we first generate all possible phrasal spans and organize them into a constituency
tree T C , then constructing the dependency tree T D according to rule ΓD. We parameterize the
above structure construction process so as to make it all differentiable, i.e., by describing into the
probabilistic perspective. We represent the span C[l,r] distribution as:
pc(ck|wi) = p(wl|wi) · p(wr|wi)

= [σ(odi − Max
k∈[l,i)

(ock))− σ(odi − Max
k∈(l,i)

(ock))] · [σ(odi − Max
k∈[i,r)

(ock))− σ(odi − Max
k∈[i,r]

(ock))],
(2)

where ck is a short hand for C[l,r], σ is a sigmoid function. We then depict the rule ΓD, and represent
the word-word dependent distribution:

pd(wj |wi) = pd(wj |ck) · pc(ck|wi) = pc(ck|wi) · exp(hL
j )/

r∑
k=l

exp(hL
k ) , (3)

where we use the top-layer encoder representation hL
i , by which we encourage the final encoding

representations to learn from the low-layer syntax-rich representations. We note that the above
structure induction is carried out in each of multi-head attention blocks (total M ) in Transformer.
This means that multiple distinct syntax trees of each type (i.e., T C and T D) will be induced.
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Structural broadcaster. It is a high chance that in GLM encoder the mainstay contextual represen-
tations will weaken the structural features and thus hurt the structure utility at decoder. To combat
this, we propose a SB module, by which we explicitly collect varying trees of a type and compacted
them into a forest, respectively, i.e., constituency forest FC and dependency forest FD. According
to prior studies [48, 43, 62], comparing to the optimal 1-best syntax tree, a compact forest advances
in higher structure recall, which allows to learn a better bias for task. In SB, the structural priors from
the syntax forests are explicitly broadcast into each decoding step for guiding the generation process.

Technically, SB selects and ranks candidate tree substructures based on the probabilistic confidence
(Eq.2&3), which are then compacted into a forest based on the K-best maximum spanning tree (MST)
algorithm [1, 88]. We then model the two types of forests with a graph attention model (GAT) [67]
respectively, during which the decoding representation e at each step is attended to spot the high-order
structural feature u at global level:

uc/d = GAT(FC/D, e | h1) , (4)

u = ud ⊕ uc . (5)
Further via a cross-attention operation (cf. Fig. 3) we navigate the encoder representation hL and the
structural feature u into the updated encoder representation e∗:

e∗ = Softmax(
hL · u√

d
) · e . (6)

Post-training objectives. The first objective is performing seq-to-seq style language modeling, i.e.,
‘corrupting + reconstructing’ the inputs [32], which is identical to the pre-training objectives. We
denote the language modeling loss as LW .

Along with the language modeling we then promote the unsupervised structure induction, including
the one for dependency syntax and the one for constituency syntax:

LD = −
∑M

m

∑n
i

∑n
j log pd(wj |wi) , (7)

LC = −∑M
m

∑n
i

∑K
k
[log pc(ck|wi) + log(expϕ(ck)/Z)] , (8)

where ϕ(ck)=
(hc)T ·hL

[l,r]

||hc||·||hL
[l,r]

|| is a span similarity score between the constituent phrase ck and the

counterpart text span derived from the top-layer encoder. Z is for normalization.

We also perform structure diversifying regularization (SDR), putting constraints on the varying trees
induced from different multi-head encoder attentions so as to ensure structure diversification.

LSDR = −
∑M

m

∑M
k
||Am ⊙Ak|| , k ̸= m, (9)

where Am or Ak is an attention map. We put all the above objectives together as the post-training
target: LPRT = LW + LD + LC + LSDR.

4.3 Task-oriented Structure Fine-tuning
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Figure 3: Fine-tuning our GLM with structure adaptive learning.

After structure-aware post-
training, our GLM is finally
fine-tuned on a specific terminal
IE task to learn the on-demand
features. This target is an
empirical risk minimization with
cross-entropy loss:
LTask = −

∑D log p(y|x) , (10)

where D is the mini-batch size.

Meanwhile, we perform fur-
ther task-oriented structural fine-
tuning, adapting the learned struc-
ture information to the task-
specific IE structures, for exam-
ple, in dependency structure prun-
ing those trivial word-word con-
nections and adjusting the range
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of dependent paths; in constituency structure refining the phrase widths and granularities. Our
main idea is to amend the syntax attribute (i.e., dependency links and constituent compositions) by
directly taking the feedback of end task performance. Therefore, we employ the stochastic policy
gradient algorithm [76]. As shown in Fig. 3, the actions ac/di ∈ (−1, 1) are real values sampled with
probabilities from a Gaussian distribution, by which we maintain a continuous control over syntax
measurements, i.e., OD and OC .

ā
c/d
i ∼ πC/D(s

c/d
i ; θc/d) = N (0, I) , (11)

a
c/d
i = 2σ(ā

c/d
i )− 1 , (12)

o
c/d
i := ac/d + o

c/d
i , (13)

where the s
c/d
i =(h1

i ⊕ h∗
i ⊕ hL

i ) are the state representations as the inputs of the policy agents.
The policy agents πC(θc) and πD(θd) are two parameterized two-layer feedforward networks,
respectively. We design the reward of the policy as the probability of correct task prediction, such
that the structure adjustments are directly supervised by terminal task’s signals: RC/D = log p(y|x).
The learning target of each policy is to maximize the corresponding expected reward:

LFD = −
∑

(ad
1s

d
1 ···ad

nsdn)

∏
i

p(ad
i |sd

i ; θ
d) ·RD

i , (14)

LFC = −
∑

(ac
1s

c
1···ac

nscn)

∏
i

p(ac
i |sc

i ; θ
c) ·RC

i . (15)

We summarize all the fine-tuning targets: LFT =LTask + LFS , where LFS=LFD + LFC .

5 Experiments

5.1 Setups

We take the pre-trained T5 Base as default backbone GLM. We use the plain texts from Wikipedia2

and BooksCorpus3 corpora for the post-training. To cover all three UIE prototypes, we consider 7
representative IE tasks with corresponding data: 1) NER: CoNLL03 [66], OntoNote [53], ACE04
[11], ACE05 [22]; 2) RE: CoNLL04 [57], NYT [56], ACE05 [22]; 3) AOP: Res14 [51]; 4) ASTE:
Res14 [51]; 5) ORL: MPQA [74]; 6) SRL: CoNLL12 [53]; 7) EE: ACE05 [22]. Each dataset has its
own split, and we follow the same practice of the relevant prior works when using it.

We verify the IE performances under the traditional separate scheme and the recent unified scheme,
respectively. 1) In separate IE, we compare with the current SoTA systems (all using Large version
LM/GLM) of each specific data; meanwhile we implement a T5 (Base version) system, namely
GEN-T5, using the same generative manner (based on prompt input, generating LHE as ours) for
running each task individually. We also retrofit the GEN-T5 system by injecting into the external
syntax parse trees via additional training on the syntax annotated corpus, including the dependency
syntax (+DepSyn), constituency syntax (+ConSyn) and both two types syntax (+Dep&ConSyn),
respectively. 2) In unified IE, we mainly make comparisons with the current UIE system [42].
Note that the default UIE model (marked as UIE∗†) in raw paper uses T5 Large and meanwhile
takes additional supervised pre-training on the large-scale IE corpus (the version without supervised
IE pre-training marked as UIE∗). To ensure fair comparisons, we re-implement their system with
T5-Base parameters and without supervised IE pre-training, marked as UIE. Same as to GEN-T5, we
also retrofit the UIE model by integrating heterogeneous syntax parse trees in different combinations.

Following each of previous works, we use the F1 evaluation metrics. For each task, we consider the
end-to-end prediction. For example, for the span extraction (NER), we measure if both the mention
span and the mention attribute are correct. For the pair(/hyper-pair) extraction, we measure if the
span boundary & span attribute & relation & type are all correct simultaneously.

5.2 Main Results

We present the overall comparison results on various IE tasks in Table 1 and Table 2 under the
fully-supervised and low-resource scenario, respectively. As can be seen, our proposed LasUIE

2https://autonlp.ai/datasets/wikipedia-news-corpus
3https://huggingface.co/datasets/bookcorpus
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Table 1: Overall IE performances by different methods (all using LM/GLM). Models with ∗ (M1,
M6, M7 & M8) refers to the use of Large version LM, where scores by M1, M6 & M7 are copied
from their raw paper [42]. UIE∗† (M6) takes additional supervised pre-training on the large-scale IE
corpus. Bold: the best results among the comparisons using Large and Base LMs, respectively.

Task&Data
Span Extraction Pair Extraction Hyper-pair Extraction

Avg.
NER RE AOP ASTE ORL SRL EE

CoNLL03 OntoNote ACE04 ACE05 CoNLL04 NYT ACE05 Res14 Res14 MPQA CoNLL12 ACE05

• Separate IE
M1 SoTA∗ 93.2 91.9 86.8 84.7 73.6 92.7 65.6 69.3 73.6 53.0 73.5 48.3 75.5
M2 GEN-T5 91.0 89.1 84.3 83.0 69.4 90.3 60.2 62.5 71.8 49.8 69.3 43.7 72.0
M3 +DepSyn 91.5 89.5 84.9 83.4 70.3 91.8 62.4 64.3 72.6 51.5 70.8 45.5 73.2
M4 +ConSyn 92.1 90.0 85.3 83.8 69.8 90.9 61.5 63.1 72.3 50.7 70.1 44.3 72.8
M5 +Dep&ConSyn 92.3 90.4 85.3 84.0 71.2 92.1 63.3 66.0 73.0 51.8 71.3 46.2 73.9

• Unified IE
M6 UIE∗† 93.0 / 86.9 85.8 75.0 / 66.0 / 74.5 / / / /
M7 UIE∗ 92.1 / 86.5 85.5 73.1 93.5 64.7 / / / / / /
M8 LasUIE∗ (Ours) 93.2 93.0 86.8 86.0 75.3 94.2 66.4 73.6 75.2 57.8 76.3 51.7 77.4
M9 UIE 91.4 89.7 85.0 83.5 70.5 91.0 61.6 65.8 72.8 50.8 70.2 44.6 73.1

M10 +DepSyn 91.8 90.0 85.3 83.7 71.2 92.0 62.9 67.6 73.5 52.0 71.5 46.4 74.0
M11 +ConSyn 92.0 90.5 85.6 84.0 70.8 91.3 62.1 66.1 73.1 51.3 71.0 45.2 73.6
M12 +Dep&ConSyn 92.3 90.7 85.8 84.5 71.7 92.4 63.4 68.2 73.7 53.6 72.6 47.0 74.6
M13 LasUIE (Ours) 92.6 92.0 86.3 85.0 73.2 93.0 64.4 70.2 74.8 56.0 74.7 49.0 75.9
M14 w/o SB 92.0 90.7 85.5 84.2 71.5 91.8 62.9 68.3 73.4 54.7 73.4 47.7 74.6
M15 w/o LSDR 92.2 91.6 86.2 84.8 72.8 92.4 64.1 70.0 74.4 55.5 74.0 48.6 75.6
M16 w/o LFS 92.4 91.4 85.9 84.7 71.8 92.0 63.6 69.1 73.6 54.2 73.0 47.1 74.9

framework consistently outperforms the baseline UIE and other SoTA models on all tasks in both two
learning scenarios, under both the Large or Base T5 initiations. This demonstrates the efficacy of our
proposal. Also we compare the counterparts between M2-M5 and M9-M12, where the only difference
between these generative methods lies in the seprate or unified modeling of IE. From the results
we learn that the unified modeling of IE (i.e., UIE) is more effective than the traditional separate
modeling of specific IE task. This verifies that the universal modeling helps share the task-invariant
IE features, coinciding with the findings in [42].

5.3 In-depth Analysis

To aid better understanding the strengths of our method, we further present in-depth analyses from
varying angles, i.e., by asking four key questions concentrating on the structure-aware GLM for UIE.

Q1: Can fusing syntax structure knowledge into GLM contribute to UIE? Let’s compare the
results in Table 1: M2 vs. M3&M4&M5 in separate IE setup, and M9 vs. M10&M11&M12 in
unified IE setup, where either in separate or unified IE setup, integrating additional linguistic syntax
features into GLM evidently improves all end task performances. Interestingly, different tasks can
receive varying degree of improvements from the syntax features. Importantly, we see in Table 2 that
with the aids of structure knowledge, the performances of low-resource transfer can be promoted,
especially in the combination with the unified modeling of IE tasks. This proves that the syntactic
structures in GLM can serve as IE task-invariant features, further contributing to UIE.

Q2: What are the differences to integrate the constituency and dependency syntactic structure?
We now observe the results of different tasks in both Table 1&2, and we can find that on the
span extraction type IE (i.e., NER) the improvements from constituency syntax prevail, while the
dependency type of structure features dominate the pair-wise tasks, i.e., (hyper-)pair extraction. We
further analyze the error rate on the predictions of two kernel elements of IE, i.e., boundary recognition
and relation detection, respectively on various tasks. We see from Fig. 4 that the constituency structure
more tends to offer key clues for the boundary recognition; while the dependent trees are more apt
to cope with the relation detection, solving long-range dependence issue. This shows that two
heterogeneous structures have complementary advantages to UIE. Thus, when combining both of
them together, all the end tasks receive the enhancements to the greatest extent.
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Table 2: Performances on low-resource settings by IE models (using T5 Base). The scores by UIE†,
which takes additional pre-training with large-scale supervised IE corpus, are copied from raw paper
[42]. GEN-5 model takes separate IE modeling on each task, while the other models take unified IE.

Task&Data
Span Extraction Pair Extraction Hyper-pair Extraction

Avg.
NER RE AOP ASTE ORL SRL EE

CoNLL03 OntoNote ACE04 ACE05 CoNLL04 NYT ACE05 Res14 Res14 MPQA CoNLL12 ACE05

• 1-shot
UIE† 46.4 / / / 22.1 / / / / / / / /
GEN-T5+Dep&ConSyn 27.2 20.4 14.8 17.6 8.2 25.7 10.8 12.8 10.8 1.1 6.5 1.5 13.1
UIE+Dep&ConSyn 30.3 23.6 17.5 20.7 12.8 26.7 14.3 16.7 13.0 2.8 14.0 3.8 16.4
LasUIE 39.4 47.6 38.5 44.7 25.7 45.0 26.7 30.0 38.4 18.9 32.8 23.7 34.3

• 10-shot
UIE† 73.9 / / / 52.4 / / / / / / / /
GEN-T5+Dep&ConSyn 67.4 64.7 49.2 52.8 45.6 50.8 37.4 19.7 17.8 5.4 18.7 12.2 36.8
UIE+Dep&ConSyn 69.5 68.4 52.8 54.1 51.8 56.0 43.8 22.5 26.1 10.5 23.2 17.6 41.4
LasUIE 74.0 78.3 60.3 65.3 55.0 67.7 46.1 42.4 48.8 25.4 45.8 27.1 53.0

• 1% data
UIE† 82.8 / / / 30.8 / / / / / / / /
GEN-T5+Dep&ConSyn 79.5 72.4 58.3 61.7 17.8 35.8 15.4 15.3 15.3 3.3 10.7 3.4 32.4
UIE+Dep&ConSyn 80.6 73.2 60.4 63.8 23.5 40.4 22.7 20.6 18.5 5.3 17.6 10.2 36.4
LasUIE 82.1 84.5 65.7 70.1 32.0 53.6 34.2 34.8 41.7 21.0 39.8 25.7 48.8

• 10% data
UIE† 89.6 / / / 59.2 / / / / / / / /
GEN-T5+Dep&ConSyn 89.0 84.0 71.3 68.8 52.4 80.4 45.7 56.0 59.7 22.4 50.7 26.7 58.9
UIE+Dep&ConSyn 89.3 85.8 72.1 70.6 54.9 82.5 47.6 58.3 62.6 27.4 54.3 31.7 64.4
LasUIE 91.6 89.3 83.6 81.7 60.8 86.0 50.5 63.0 66.7 36.0 58.4 38.4 67.2
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Figure 4: Error rates on boundary recognition and relation detection, respectively.

Q3: For UIE, is it more advanced for GLM to automatically learn latent structures than
injecting external syntax parse trees? First, the comparisons in the main results directly prove
the advance of using latent structural features for UIE. For example, under the fair comparison, our
LasUIE beats the UIE+Dep&ConSyn model with average 1.3%(=75.9-74.6) F1 improvement. Even
comparing with the UIE∗† that takes additional pre-training on large-scale supervised IE corpus,
LasUIE keeps its superiority in almost all cases. This evidently verifies that it is necessary for LMs to
automatically learn latent structure information for better UIE. The underlying reason of our model’s
improvements could be that the dynamically learned richer structural knowledge in LasUIE largely
avoids the noises that are introduced in external syntax parse annotations. Besides, as shown in
Fig. 4, LasUIE reduces the errors on predicting the mention boundaries and relational pairings more
significantly than the baseline counterparts.

Further we step into our LasUIE system itself, and inspect the ablation models, M14-M15, as shown
in Table 1. We see that the proposed structural broadcaster module plays important role to the overall
system, i.e., without SB, LasUIE is downgraded to the level of UIE+Dep&ConSyn. Also the structure
diversification regularization mechanism serves positive effect.

Q4: Is it necessary to further fine-tune the structures in GLM for UIE? According to the
results of the ablation model, M16, in Table 1, we can directly claim the answer is positive. Without
performing structural fine-tuning, the results by LasUIE hurt clearly, with averaged 1.0%(=75.9-74.9)
F1 drop. We next dig into the structural fine-tuning mechanism, analyzing how the auto-induced
structural features influence the UIE performances.
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We first study the changing trajectories of the 1) the structure agreement rates ΩD/C and 2) the
structure densities ∆D/C of the structural forests FD/C , during fine-tuning. ΩC or ΩD is defined as
the percentage that gold spans correspond to the phrasal spans in the constituency forest FC , or the
gold relational pairs coincide with the word-word edges in the dependency forest FD. As plotted in
Fig. 5, along with the fine-tuning process the task performance climbs gradually. Meanwhile, both
the agreement rate ΩD/C increases, which means that the structural fine-tuning indeed can effectively
adjust the learned structural information towards task-specific. Also, the structural densities of two
forests change from dense to sparse, which depicts a structure pruning process in our system.

Finally, in Fig. 6 we present the distribution of the range of word-word dependency links in FD

and distribution of the constituency phrasal span width in FC . We can discover that different end
tasks rely on subtly varying structural features or attributes. For example, hyper-pair extraction tasks
require longer-range dependency features for relation determination, comparing to the IE tasks of
other prototypes. In turn, this certifies that our system can correctly learn the peculiar structural bias
for a specific IE task, thanks to the task-oriented structure fine-tuning mechanism.

6 Conclusion and Discussion
This work investigates a novel structure-aware generative language model (GLM) that learns rich
heterogeneous syntactic structure representations for better unified information extraction (UIE).
First, a well pre-trained GLM is taken as backbone to reach the goal of UIE, feeding with label
prompt-based texts and predicting linearized hierarchical expressions that describe the actual IE target.
During post-training, the proposed heterogeneous structure inductor automatically generates rich
structure information without relying on any additional syntax annotation. A structural broadcaster
then compacts various trees into forests for enhancing the structural feature utility and guiding
better context generation. The learned structural knowledge is further fine-tuned on the in-house
training data so as to adapt into the task-specific need. Extensive experiments and in-depth analyses
demonstrate the efficacy of our system on improving the UIE.

Potential impact and limitations of the work. The proposed structure-aware GLM learns syntactic
knowledge relies only on the plain texts with easy access, without any cost of large-scale human-labor
annotations. The system will benefit the development of IE community, i.e., training one single
unified model for effectively solving various IE tasks, which especially addresses the issue of IE data
annotation scarcity in the real-life applications. One biggest potential risk is that the GPU-based
training of our language model will cost energy consumption and CO2 emissions.
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