
A Optimization programs: extended discussion

In this section, we provide an extended discussion of the key components of our LP and SDP
formulations and the relationships between them. Apart from supplying derivations, another goal of
this section is to illustrate that there is in fact flexibility in the exact choice of formulation for the LP
(and consequently the SDP). We provide details on possible variations as part of this discussion as a
guide to users who may wish to adapt the SFE framework.

A.1 LP formulation: Derivation of the dual.

First, recall that our primal LP is defined as

max
z,b∈Rn×R

{x⊤z+ b} subject to 1⊤
S z+ b ≤ f(S) for all S ⊆ [n].

The dual is

min
{yS≥0}S⊆[n]

∑
S⊆[n]

ySf(S) subject to
∑
S⊆[n]

yS1S = x,
∑
S⊆[n]

yS = 1, for all S ⊆ [n].

In order to standardize the derivation, we first convert the primal maximization problem into mini-
mization (this will be undone at the end of the derivation). We have

min
z,b∈Rn×R

{−x⊤z− b} subject to 1⊤
S z+ b ≤ f(S) for all S ⊆ [n].

The Lagrangian is

L(z, yS , b)
yS≥0

= −x⊤z− b−
∑
S⊆[n]

yS(f(S)− 1⊤
S z− b)

= −
∑
S⊆[n]

ySf(S) + (
∑
S⊆[n]

yS1
⊤
S − x⊤)z+ b(

∑
S⊆[n]

yS − 1)

The optimal solution p∗ to the primal problem is then

p∗ = min
z,b

max
yS≥0

L(z, yS , b)

= max
yS≥0

min
z,b

L(z, yS , b) (strong duality)

= d∗,

where d∗ is the optimal solution to the dual. From the Lagrangian,

min
z,b

L(z, yS , b) =

{
−
∑

S⊆[n] ySf(S), if
∑

S⊆[n] yS1S = x and
∑

S⊆[n] yS = 1,

−∞, otherwise.

Thus, we can write the dual problem as

d∗ = max
yS≥0

−
∑
S⊆[n]

ySf(S) subject to
∑
S⊆[n]

yS1S = x and
∑
S⊆[n]

yS = 1.

Our proposed dual formulation is then obtained by switching from maximization to minimization
and negating the objective. It can also be verified that by taking the dual of our dual, the primal is
recovered (see El Halabi (2018, Def. 20) for the derivation).

A.2 Connections to submodularity, related linear programs, and possible alternatives.

Our LP formulation depends on a linear program known to correspond to the convex closure (Murota,
1998, Eq. 3.57) (convex envelope) of a discrete function. Some readers may recognize the formal
similarities of this formulation with the one used to define the Lovász extension (Bilmes, 2022).
Namely, for x ∈ Rn we can define the Lovász Extension as

F(x) = max
z∈Bf

x⊤z,

11

where the feasible set, known as the base polytope of a submodular function, is defined as Bf = {z ∈
Rn : z⊤1S ≤ f(S) S ⊂ [n], and z⊤1S = f(S) when S = [n]}. Base polytopes are also known
as generalized permutahedra and have rich connections to the theory of matroids, since matroid
polytopes belong to the class of generalized permutahedra Ardila et al. (2010).

An alternative option is to consider x ∈ Rn
+, then the Lovász extension is given by

F(x) = max
z∈Pf

x⊤z,

where Pf is the submodular polyhedron as defined in our original primal LP. The subtle differences
between those formulations lead to differences in the respective dual formulations. In principle, those
formulations can be just as easily used to define set function extensions. Overall, there are three key
considerations when defining a suitable LP:

• The constraints of the primal.
• The domain of the primal variables z, b and the cost x.
• The properties of the function being extended.

Below, we describe a few illustrative example cases for different choices of the above:

• Adding the constraint z⊤1S = f(S) when S = [n] leads to y[n] ∈ Rn for the dual. This
implies that the coefficients cannot be interpreted as probabilities in general which is
what provides the guarantee that the extension will not introduce any spurious minima.∑

S⊆[n] yS = 1 is just an affine hull constraint in that case.

• For b = 0, the constraint
∑

S⊆[n] yS = 1 is not imposed in the dual and the probabilistic
interpretation of the extension cannot be guaranteed. Examples that do not rely on this
constraint include the homogeneous convex envelope (El Halabi et al., 2018) and the Lovász
extension as presented above. However, even for b = 0, from the definition of the Lovász
extension it is easy to see that it retains the probabilistic interpretation when x ∈ [0, 1].

• Consider a feasible set defined by Pf

⋂
Rn

+ and let x ∈ Rn
+. If the function f is submodular,

non-decreasing and normalized so that f(∅) = 0 (e.g., the rank function of a matroid), then
the feasible set is called polymatroid and f is a polymatroid function. Again, in that case the
Lovász extension achieves the optimal objective value (Schrijver et al., 2003, Eq. 44.32). In
that case, the constraint

∑
S⊆[n] yS1S = x of the dual is relaxed to

∑
S⊆[n] yS1S ≥ x. This

feasible set of the dual will allow for more flexible definitions of an extension but it comes
at the cost of generality. For instance, for a submodular function that is not non-decreasing,
one cannot obtain the Lovász extension as a feasible solution to the primal LP, and the
solutions to this LP will not be the convex envelope in general.

A.3 SDP formulation: The geometric intuition of extensions and deriving the dual.

In order to motivate the SDP formulation, first we have to identify the essential ingredients of the LP
formulation. First, the constraint

∑
S⊆[n] yS1S = x captures the simple idea that each continuous

point is expressed as a combination of discrete ones, each representing a different set, which is at
the core of our extensions. Then, ensuring that the continuous point lies in the convex hull of those
discrete points confers additional benefits w.r.t. optimization and offers a probabilistic perspective.

Consider the following example. The Lovász extension identifies each continuous point in the
hypercube with a simplex. Then the continuous point is viewed as an expectation over a distribution
supported on the simplex corners. The value of the set function at a continuous point is then the
expected value of the function over those corners under the same distribution, i.e., ES∼px [1S] = x
leads to ES∼px [f(S)] = F(x). As long as the distribution px can be differentiated w.r.t x, we
obtain an extension that can be used with gradient-based optimization. It is clear that the construction
depends on being able to identify a small convex set of discrete vectors that can express the continuous
one.

This can be formulated in higher dimensions, particularly in the space of PSD matrices. A natural
way to represent sets in high dimensions is through rank one matrices that are outer products of the
indicator vectors of the sets, i.e., 1S1

⊤
S is the matrix representation of S similar to how 1S is the

12

vector representation. Hence, in the space of matrices, our goal will be again to identify a set of
discrete matrices that represents sets that can express a matrix of continuous values.

The above considerations set the stage for a transition from linear programming to semidefinite
programming, where the feasible sets are spectrahedra. Our SDP formulation attempts to capture the
intuition described in the previous paragraphs while also maintaining formal connections to the LP
by showing that feasible LP regions correspond to feasible SDP regions by simply projecting the LP
regions on the space of diagonal matrices (see Proposition 2).

Derivation of the dual. Recall that our primal SDP is defined as

max
Z⪰0,b∈R

{Tr(X⊤Z) + b} subject to
1

2
Tr((1S1

⊤
T + 1T1

⊤
S)Z) + b ≤ f(S ∩ T) for S, T ⊆ [n].

We will show that the dual is

min
{yS,T≥0}

∑
S,⊆[n]

yS,T f(S ∩ T) subject to X ⪯
∑

S,T⊆[n]

1

2
yS,T (1S1

⊤
T + 1T1

⊤
S) and

∑
S,T⊆[n]

yS,T = 1.

As before, we convert the primal to a minimization problem:

max
Z⪰0,b∈R

{−Tr(X⊤Z)− b} subject to
1

2
Tr((1S1

⊤
T + 1T1

⊤
S)Z) + b ≤ f(S ∩ T) for S, T ⊆ [n].

First, we will standardize the formulation by converting the inequality constraints into equality
constraints. This can be achieved by adding a positive slack variable dS,T to each constraint such that

1

2
Tr((1S1

⊤
T + 1T1

⊤
S)Z) + b+ dS,T = f(S ∩ T).

In matrix notation this is done by introducing the positive diagonal slack matrix D to the decision
variable Z, and extending the symmetric matrices in each constraint

Z′ =

[
Z 0
0 D

]
, X′ =

[
X 0
0 0

]
, A′

S,T =

[
1
2 (1S1

⊤
T + 1T1

⊤
S) 0

0 diag(eS,T)

]
,

where diag(eS,T) is a diagonal matrix where all diagonal entries are zero except at the diagonal
entry corresponding to the constraint on S, T which has a 1. Using this reformulation, we obtain an
equivalent SDP in standard form:

max
Z′⪰0,b∈R

{−Tr(X′⊤Z′)− b} subject to Tr(A′
S,TZ

′) + b = f(S ∩ T) for S, T ⊆ [n].

Next, we form the Lagrangian which features a decision variable yS,T for each inequality, and a dual
matrix variable Λ. We have

L(Z′, b, yS,T ,Λ) = −Tr(X′⊤Z′)− b−
∑

S,T⊆[n]

yS,T

(
2f(S ∩ T)− Tr(A′

S,TZ
′)− b

)
− Tr(ΛZ′)

= Tr

((
∑

S,T⊆[n]

yS,TA
′
S,T)−X′ −Λ)Z′

+ b(
∑

S,T⊆[n]

yS,T − 1)−
∑

S,T⊆[n]

yS,T f(S ∩ T)

For the solution to the primal p∗, we have

p∗ = min
Z′,b

max
Λ,yS,T

L(Z′, b, yS,T ,Λ)

≥ max
Λ,yS,T

min
Z′,b

L(Z′, b, yS,T ,Λ) (weak duality)

= d∗.

13

For our Lagrangian we have the dual function

min
Z′,b

L(Z′, b, yS,T ,Λ) =

{
0, if Λ ⪰ 0,

−∞, otherwise .

Thus, the dual function min
Z′,b

L(Z′, b, yS,T ,Λ) takes non-infinite values under the conditions

(
∑

S,T⊆[n]

yS,TA
′
S,T)−X′ −Λ = 0,

Λ ⪰ 0,

and
∑

S,T⊆[n]

yS,T − 1 = 0.

The first two conditions imply the linear matrix inequality (LMI)∑
S,T⊆[n]

yS,TA
′
S,T −X′ ⪰ 0. (Λ ⪰ 0)

From the definition of A′
S,T we know that its additional diagonal entries will correspond to the

variables yS,T . Combined with the conditions above, we arrive at the constraints of the dual
yS,T ≥ 0,∑

S,T⊆[n]

1

2
yS,T (1S1

⊤
T + 1T1

⊤
S) ⪰ X,

∑
S,T⊆[n]

yS,T = 1.

This leads us to the dual formulation

max
yS,T≥0

−
∑

S,T⊆[n]

yS,T f(S ∩ T) subject to
∑

S,T⊆[n]

1

2
yS,T (1S1

⊤
T + 1T1

⊤
S) ⪰ X and

∑
S,T⊆[n]

yS,T = 1.

Then, we can obtain our original dual by switching to minimization and negating the objective.

B Scalar Set Function Extensions Have No Bad Minima

In this section we re-state and prove the results from Section 3. The first result concerns the minima
of F, showing that the minimum value is the same as that of f , and no additional minima are added
(besides convex combinations of discrete minimizers). These properties are especially desirable when
using an extension F as a loss function (see Section 5) since it is important that F drive the neural
network NN1 towards producing discrete 1S outputs.
Proposition 4 (Scalar SFEs have no bad minima). If F is a scalar SFE of f then:

1. minx∈X F(x) = minS⊆[n] f(S)

2. argminx∈X F(x) ⊆ Hull
(
argmin1S :S⊆[n] f(S)

)
Proof. The inequality minx∈X F(x) ≤ minS⊆[n] f(S) automatically holds since minS⊆[n] f(S) =
min1S :S⊆[n] F(1S), and {1S : S ⊆ [n]} ⊆ X . So it remains to show the reverse. Indeed, letting
x ∈ X be an arbitrary point we have,

F(x) = ES∼px [f(S)]

=
∑
S⊆[n]

px(S) · f(S)

≥
∑
S⊆[n]

px(S) · min
S⊆[n]

f(S)

= min
S⊆[n]

f(S)

14

where the last equality simply uses the fact that
∑

S⊆[n] px(S) = 1. This proves the first claim.

To prove the second claim, suppose that x minimizes F(x) over x ∈ X . This implies that the
inequality in the above derivation must be tight, which is true if and only if

px(S) · f(S) = px(S) · min
S⊆[n]

f(S) for all S ⊆ [n].

For a given S, this implies that either px(S) = 0 or f(S) = minS⊆[n] f(S). Since x = Epx [1S] =∑
S⊆[n] px(S) · 1S =

∑
S:px(S)>0 px(S) · 1S . This is precisely a convex combination of points 1S

for which f(S) = minS⊆[n] f(S). Since F is a convex combination of exactly this set of points 1S ,
we have the second claim.

C Examples of Vector Set Function Extensions

This section re-defines the vector SFEs given in Section 3.1, and prove that they satisfy the definition
of an SFEs. One of the conditions we must check is that F is continuous. A sufficient condition for
continuity (and almost everywhere differentiability) that we shall use for a number of constructions
is to show that F is Lipschitz. A very simple computation shows that it suffices to show that
x ∈ X 7→ px(S) is Lipschitz continuous.

Lemma 1. If the mapping x ∈ [0, 1]n 7→ px(S) is Lipschitz continuous and f(S) is finite for all S
in the support of px, then F is also Lipschitz continuous. In particular, F is continuous and almost
everywhere differentiable.

Proof. The Lipschitz continuity of F(x) follows directly from definition:∣∣F(x)− F(x′)
∣∣ = ∣∣∣∣ ∑

S⊆[n]

px(S) · f(S)−
∑
S⊆[n]

px′(S) · f(S)
∣∣∣∣

=

∣∣∣∣ ∑
S⊆[n]

(
px(S)− px′(S)

)
· f(S)

∣∣∣∣ ≤
(
2kL max

S⊆[n]
f(S)

)
· ∥x− x′∥,

where L is the maximum Lipschitz constant of x 7→ px(S) over any S in the support of px, and k is
the maximal cardinality of the support of any px.

In general k can be trivially bounded by 2n, so F is always Lipschitz. However in may cases the
cardinality of the support of any px is much smaller than 2n, leading too a smaller Lipschitz constant.
For instance, k = n in the case of the Lovász extension.

C.1 Lovász extension.

Recall the definition: x is sorted so that x1 ≥ x2 ≥ . . . ≥ xd. Then the Lovász extension corresponds
to taking Si = {1, . . . , i}, and letting px(Si) = xi − xi+1, the non-negative increments of x (where
recall we take xn+1 = 0). All other sets have zero probability. For convenience, we introduce the
shorthand notation ai = px(Si) = xi − xi+1

Feasibility. Clearly all ai = xi − xi+1 ≥ 0, and
∑n

i=1 ai =
∑n

i=1(xi − xi+1) = x1 ≤ 1. Any
remaining probability mass is assigned to the empty set: px(∅) = 1− x1, which contributes nothing
to the extension F since f(∅) = 0 by assumption. All that remains is to check that

n∑
i=1

px(Si) · 1Si
= x.

For a given k ∈ [n], note that the only sets Si with non-zero kth coordinate are S1, . . . , Sk, and in
all cases (1Si

)k = 1. So the kth coordinate is precisely
∑k

i=1 px(Si) =
∑k

i=1(xi − xi+1) = xk,
yielding the desired formula.

15

Extension. Consider an arbitrary S ⊆ [n]. Since we assume x = 1S is sorted, it has the form
1S = (1, 1, . . . , 1︸ ︷︷ ︸

k times

, 0, 0, . . . 0)⊤. Therefore, for each j < k we have aj = xj − xj+1 = 1 − 1 = 0

and for each j > k we have aj = xj − xj+1 = 0 − 0 = 0. The only non-zero probability is
ak = xk − xk+1 = 1− 0 = 1. So,

F(1S) =

n∑
i=1

aif(Si) =
∑
i:i ̸=k

aif(Si) + akf(Sk) = 0 + 1 · f(Sk) = f(S)

where the the final equality follows since by definition Sk corresponds exactly to the vector
(1, 1, . . . , 1︸ ︷︷ ︸

k times

, 0, 0, . . . 0)⊤ = 1S and so Sk = S.

Continuity. The Lovász is a well-known extension, whose properties have been carefully studied.
In particular it is well known to be a Lipschitz function Bach (2019). However, for completeness we
provide a simple proof here nonetheless.
Lemma 2. Let px be as defined for the Lovász extension. Then x 7→ px(S) is Lipschitz for all
S ⊆ [n].

Proof. First note that px is piecewise linear, with one piece per possible ordering x1 ≥ x2 ≥ . . . ≥ xn

(so n! pieces in total). Within the interior of each piece px is linear, and therefore Lipschitz. So
in order to prove global Lipschitzness, it suffices to show that px is continuous at the boundaries
between pieces (the Lipschitz constant is then the maximum of the Lipschitz constants for each linear
piece).

Now consider a point x with x1 ≥ . . . ≥ xi = xi+1 ≥ . . . ≥ xn. Consider the perturbed point
xδ = x− δei with δ > 0, and ei denoting the ith standard basis vector. To prove continuity of px it
suffices to show that for any S ∈ Ω we have pxδ

(S) → px(S) as δ → 0+.

There are two sets in the support of px whose probabilities are different under pxδ
, namely: Si =

{1, . . . , i} and Si+1 = {1, . . . , i, i + 1}. Similarly, there are two sets in the support of pxδ
whose

probabilities are different under px, namely: S′
i = {1, . . . , i−1, i+1} and S′

i+1 = {1, . . . , i, i+1} =
Si+1. So it suffices to show the convergence pxδ

(S) → px(S) for these four S. Consider first Si:∣∣pxδ
(Si)− px(Si)

∣∣ = ∣∣0− (xi − xi+1)
∣∣ = 0

where the final equality uses the fact that xi = xi+1. Next consider Si+1 = S′
i+1:∣∣pxδ

(Si+1)−px(Si+1)
∣∣ = ∣∣(x′

i+1−x′
i+2)−(xi+1−xi+2)

∣∣ = ∣∣(x′
i+1−xi+1)−(x′

i+2−xi+2)
∣∣ = 0

Finally, we consider S′
i:∣∣pxδ
(S′

i)− px(S
′
i)
∣∣ = ∣∣(x′

i − x′
i+1)− (xi − xi+1)

∣∣
=
∣∣(x′

i+1 − xi+1)− (x′
i+1 − xi+1)

∣∣
=
∣∣(xi+1 − δ − xi+1)− (x′

i+1 − xi+1)
∣∣

= δ → 0

completing the proof.

C.2 Bounded cardinality Lovaśz extension.

The bounded cardinality extension considers n sets S of cardinality at most k, with n ≥ k ≥ 2. We
collect {Si}ni=1 of subsets of [n] in an n× n matrix S ∈ {0, 1}n×n whose ith column is 1Si

:

S =



k︷ ︸︸ ︷
1 . . . 1 0 0

0
. 0

0 0
. 1

...
...

.
...

0 0 0 0 1


.

16

The matrix will contain k sets of gradually increasing cardinality, from 1 up until k, and n− k sets
of cardinality exactly k. In this notation, the dual LP constraint

∑
S⊆[n] yS1S = x can be written

as Sp = x, where the ith coordinate of p defines px(Si). Then, the bounded cardinality extension
coefficients px(S) are the coordinates of the vector y, where y = S−1x. To calculate the inverse, we
will leverage the fact that S will be triangular Toeplitz by construction. Clearly, its inverse will also
be triangular.
Lemma 3. The entries (i, j) of the inverse are

S−1(i, j) =


1, if (j − i) mod k = 0 and i ≤ j,

−1, if (j − i) mod k = 1 and i ≤ j,

0, otherwise,

for i = 1, 2, . . . , n.

Proof. The proof relies on known results for banded Toeplitz matrices. A banded Toeplitz matrix of
bandwidth r and superdiagonal s is an n× n matrix that has the following form:

Tr,s =



cs+1 cs . . . c1 0

cs+2 cs+1 cs . . .
. . .

...
. c1

cr
.

...
.

...
0 cr cs+1


.

Note here that the (i, j) entry of T, due to its Toeplitz structure, is going to be T(i, j) = ci−j+s+1.
For convenience, we are going to invert S⊤ and the result straightforwardly transfers to S. For S⊤,
we have superdiagonal s = 0 and bandwidth r = k. It is known (Meek, 1983; Trench, 1974) that the
entries gi−j+1 = (S⊤)−1(i, j) of the inverse will obey the following difference equation:

ckgl−k + ck−1gl−k+1 + · · · = 0, l ≥ 3, g1 = 1,

with g0 = g−1 = · · · = g3−k = 0. Considering the conditions above and the fact that c1 = c2 =
· · · = ck = 1, the difference equation simplifies to

k−1∑
t=0

gl−k+t = 0.

As an example, let us compute the case for k = 3, l = 3. We obtain g0 + g1 + g2 = 0, which implies
g2 = −1. It is easy to see that for any k, computing the difference equation for l = 3 yields g2 = −1
since all the negative indices do not contribute to the sum, reducing it to g1 + g2 = 0.

We continue with k = 3, l = 4 and obtain g1 + g2 + g3 = 0, which implies g3 = 0. By incrementing
l, observe that we are shifting the terms in the sum by one, so this straightforwardly implies that l = 5
yields g4 = 1 for k = 3, and so on. Generalizing this observation, we obtain the following cases:

• gt = 1, for t = mk + 1,

• gt = −1, for t = mk + 2,

• gt = 0, otherwise.

Here, m is a non-negative integer. The lemma follows straightforwardly from that observation.

Equivalence to the Lovaśz extension. We want to show that the bounded cardinality extension is
equivalent to the Lovaśz extension when k = n. Let Ti,k = {j | (j− i) mod k = 0, for i ≤ j ≤ n, },
i.e., Ti,k stores the indices where j − i is perfectly divided by k. From the analytic form of the
inverse, observe that the i-th coordinate of y is px(Si) =

∑
j∈Ti,k

(xj − xj+1). For k = n, we have
Ti,n = {j | (j− i) mod n = 0} = {i}, and therefore px(Si) = xi−xi+1, which are the coefficients
of the Lovász extension.

17

Feasibility. The equation y = S−1x guarantees that the constraint x =
∑n

i=1 ySi1Si is obeyed.
Recall that x is sorted in descending order like in the case of the Lovász extension. Then, it is
easy to see that px(Si) =

∑
j∈Ti,k

(xj − xj+1) ≤ xi, because xi − xi+1 is always contained in
the summation for px(Si). Therefore, by restricting x in the probability simplex it is easy to see
that

∑n
i=1 px(Si) ≤

∑n
i=1 xi = 1. To secure tight equality, we allocate the rest of the mass to the

empty set, i.e., px(∅) = 1−
∑n

i=1 px(Si), which does not affect the value of the extension since the
corresponding Boolean is the zero vector.

Extension. To prove the extension property we need to show that F(1S) = f(S) for all S with
|S| ≤ k. Consider any such set S and recall that we have sorted 1S with arbitrary tie breaks, such
that xi = 1 for i ≤ |S| and xi = 0 otherwise. Due to the equivalence with the Lovaśz extension, the
extension property is guaranteed when k = n for all possible sets. For k < n, consider the following
three cases for Ti,k.

• When i > |S|, Ti,k = ∅ because for sorted x of cardinality at most k, we know for the
coordinates that xi = xi+1 = 0. For i > k, this implies that px(Si) = 0.

• When i < |S|,
∑

j∈Ti,k
(xj − xj+1) = 0 because xj = xj+1 = 1 and we have again

px(Si) = 0.

• When i = |S|, observe that
∑

j∈Ti,k
(xj−xj+1) = xi−xi+1 = xi. Therefore, px(Si) = 1.

in that case.

Bringing it all together, F(1S) =
∑n

i=1 pxf(Si) = px(S)f(S) = f(S) since the sum contains only
one nonzero term, the one that corresponds to i = |S|.

Continuity. Similar to the Lovaśz extension, px in the bounded cardinality extension is piecewise
linear and therefore a.e. differentiable with respect to x, where each piece corresponds to an ordering
of the coordinates of x. On the other hand, unlike the Lovaśz extension, the mapping x 7→ px(S) is
not necessarily globally Lipschitz when k < n, because it is not guaranteed to be Lipschitz continuous
at the boundaries.

C.3 Singleton extension.

Feasibility. The singleton extension is not dual LP feasible. However, one of the key reasons why
feasibility is important is that it implies Proposition 1, which show that optimizing F is a reasonable
surrogate to f . In the case of the singleton extension, however, Proposition 1 still holds even without
feasibility for f . This includes the case of the training accuracy loss, which can be viewed as
minimizing the set function f({ŷ}) = −1{yi = ŷ}.

Here we give an alternative proof of Proposition 1 for the singleton extension. Consider the same
assumptions as Proposition 1 with the additional requirement that minS f(S) < 0 (this merely asserts
hat S = ∅ is not a trivial solution to the minimization problem, and that the minimizer of f is unique.
This is true, for example, for the training accuracy objective we consider in Section 5.

18

Proof of Proposition 1 for singleton extension. For x ∈ X = [0, 1]n,

F(x) =

n∑
i=1

px(Si)f(Si)

=

n∑
i=1

(xi − xi+1)f(Si)

≥
n∑

i=1

(xi − xi+1) min
j∈[n]

f(Sj)

≥ (x1 − xn+1) min
j∈[n]

f(Sj)

≥ x1 · min
j∈[n]

f(Sj)

≥ min
j∈[n]

f(Sj)

where the final inequality follows since minj∈[n] f(Sj) < 0. Taking x = (1, 0, 0, . . . , 0)⊤ shows
that all the inequalities can be made tight, and the first statement of Proposition 1 holds. For the
second statement, suppose that x ∈ X = [0, 1]n minimizes F. Then all the inequality in the preceding
argument must be tight. In particular, tightness of the final inequality implies that x1 = 1. Meanwhile,
tightness of the first inequaliity implies that xi−xi+1 = 0 for all i for which f(Si) ̸= minj∈[n] f(Sj),
and tightness of the second inequality implies that xn+1 = 0. These together imply that x = 1⊕0n−1

where 1 is a 1× 1 vector with entry equal to one, and 0n−1 is an all zeros vectors of length n− 1,
and ⊕ denotes concatenation. Since f(S1) = minj∈[n] f(Sj) is the unique minimize we have that
x = 1S1

∈ Hull
(
argmin1Si

:i∈[n] f(Si)
)
, completing the proof.

Extension. Consider an arbitrary i ∈ [n]. Since we assume x = 1{i} is sorted, we are without loss
of generality considering 1{1} = (1, 0, . . . , 0, 0, . . . 0)⊤. Therefore, we have px(S1) = x1 − x2 =
1 − 0 = 1 and for each j > 1 we have px(Sj) = xj − xj+1 = 0 − 0 = 0. The only non-zero
probability is px(S1), and so

F(1{1}) =

n∑
j=1

px(Sj)f(Sj) = f(S1) = f({1}).

Continuity. The proof of continuity of the singleton extension is a simple adaptation of the proof
used for the Lovaśz extension, which we omit.

C.4 Permutations and Involutory Extension.

Feasibility. It is known that every elementary permutation matrix is involutory, i.e., SS = I. Given
such an elementary permutation matrix S, since S(Sx) = Spx = x, the constraint

∑
S⊆[n] yS1S = x

is satisfied. Furthermore,
∑

S⊆[n] yS = 1 can be secured if x is in the simplex, since the sum of the
elements of a vector is invariant to permutations of the entries.

Extension. If the permutation has a fixed point at the maximum element of x, i.e., it maps the
maximum element to itself, then any elementary permutation matrix with such a fixed point yields an
extension on singleton vectors. Without loss of generality, let x = e1, where e1 is the standard basis
vector in Rn. Then Se1 = e1 and therefore px(e1) = 1. This in turn implies F(e1) = 1 · f(e1).
This argument can be easily applied to all singleton vectors.

Continuity. The permutation matrix S can be chosen in advance for each x in the simplex. Since
px = Sx, the probabilities are piecewise-linear and each piece is determined by the fixed point
induced by the maximum element of x. Consequently, px depends continuously on x.

19

C.5 Multilinear extension.

Recall that the multiliniear extension is defined via px(S) =
∏

i∈S xi

∏
i/∈S(1− xi) supported on

all subsets S ⊆ [n] in general.

Feasibility. The definition of px(S) is equivalent to:

px(S) =

n∏
i=1

xyi

i (1− xi)
1−yi

where yi = 1 if i ∈ S and zero otherwise. That is, px(S) is the product of n independent Bernoulli
distributions. So we clearly have px(S) ≥ 0 and

∑
S⊆[n] px(S) = 1. The final feasibility condition,

that
∑

S⊆[n] px(S) · 1S = x can be checked by induction on n. For n = 1 there are only two sets:
{1} and the empty set. And clearly px({1}) · 1{1} = x1(1− x1)

0 = x1, so we have the base case.

Extension. For any S ⊆ [n] we have p1S
(S) =

∏
i∈S xi

∏
i/∈S(1−xi) =

∏
i∈S 1

∏
i/∈S(1−0) = 1.

So F(1S) = ET∼pxf(T) = f(S).

Continuity. Fix and S ⊆ [n]. Again we check Lipschitzness. We use ∂xk
to denote the derivative

operator with respect to xk. If k ∈ S we have

∣∣∂xk
p1S

(S)
∣∣ =
∣∣∣∣∣∣∂xk

∏
i∈S

xi

∏
i/∈S

(1− xi)

∣∣∣∣∣∣ =
∏

i∈S\{k}

xi

∏
i/∈S

(1− xi) ≤ 1.

Similarly, if k /∈ S we have,

∣∣∂xk
p1S

(S)
∣∣ =
∣∣∣∣∣∣∂xk

∏
i∈S

xi

∏
i/∈S

(1− xi)

∣∣∣∣∣∣ =
∣∣∣∣∣∣−
∏
i∈S

xi

∏
i/∈S∪{k}

(1− xi)

∣∣∣∣∣∣ ≤ 1.

Hence the spectral norm of the Jacobian Jpx(S) is bounded, and so x 7→ px(S) is a Lipschitz map.

D Neural Set Function Extensions

This section re-states and proves the results from Section 4. To start, recall the definition of the primal
LP:

max
z,b

{x⊤z+ b}, where (z, b) ∈ Rn × R and 1⊤
S z+ b ≤ f(S) for all S ⊆ [n].

and primal SDP:

max
Z⪰0,b∈R

{Tr(X⊤Z) + b} subject to
1

2
Tr((1S1

⊤
T + 1T1

⊤
S)Z) + b ≤ f(S ∩ T) for S, T ⊆ [n].

Proposition. (Containment of LP in SDP) For any x ∈ [0, 1]n, define X =
√
x
√
x
⊤ with the

square-root taken entry-wise. Then, for any (z, b) ∈ Rn
+×R that is primal LP feasible, the pair (Z, b)

where Z = diag(z), is primal SDP feasible and the objective values agree: Tr(X⊤Z) = z⊤x.

Proof. We start with the feasibility claim. Suppose that (z, b) ∈ Rn
+ × R is a feasible solution to the

primal LP. We must show that (Z, b) is a feasible solution to the primal SDP with X =
√
x
√
x
⊤ and

where Z = diag(z).

Recall the general formula for the trace of a matrix product: Tr(AB) =
∑

i,j AijBji. With this in
mind, and noting that the (i, j) entry of 1S1

⊤
T is equal to 1 if i, j ∈ S ∩ T , and zero otherwise, we

20

have for any S, T ⊆ [n] that

1

2
Tr((1S1

⊤
T + 1T1

⊤
S)Z) + b = Tr(1S1

⊤
TZ) + b =

n∑
i,j=1

(1S1
⊤
T)ij · diag(z)ij + b

=
∑

i,j∈S∩T

(1S1
⊤
T)ij · diag(z)ij + b

=
∑

i,j∈S∩T

diag(z)ij + b

=
∑

i∈S∩T

zi + b

= 1⊤
S∩T z+ b

≤ f(S ∩ T)

showing SDP feasibility. That the objective values agree is easily seen since:

Tr(ZX) =

n∑
i,j=1

diag(z)ij ·
√
xi
√
xj =

n∑
i=1

zi ·
√
xi
√
xi = x⊤z.

Next, we provide a proof for the construction of neural extensions. Recall the statement of the main
result.
Proposition. Let px induce a scalar SFE of f . For X ∈ Sn+ with distinct eigenvalues, consider the
decomposition X =

∑n
i=1 λixix

⊤
i and fix

pX(S, T) =

n∑
i=1

λi pxi(S)pxi(T) for all S, T ⊆ [n].

Then, pX defines a neural SFE F at X.

Proof. We begin by showing through the eigendecomposition of X that the F defined by pX(S, T)
is dual SDP feasible. It is clear that

∑
S,T pX(S, T) = 1 as long as

∑n
i=1 λi = 1, which can be

easily enforced by appropriate normalization of X. Recall from the eigendecomposition we have
X =

∑n
i=1 λiviv

⊤
i where we have fixed each vi ∈ [0, 1]n through a sigmoid. Using the scalar SFE

px we may write each vi as a convex combination vi =
∑

S pvi
(S)1S . For each i we may use this

representation to re-express the outer product of vi with itself:

viv
⊤
i =

(∑
S

pvi(S)1S

)(∑
T

pvi(T)1T

)⊤
=
∑
S

pvi
(S)21S1

⊤
S +

∑
S ̸=T

pvi
(S)pvi

(T)(1T1
⊤
S + 1S1

⊤
T)

=
∑

S,T⊆[n]

pvi
(S)pvi

(T)(1S1
⊤
T + 1T1

⊤
S)

Summing over all eigenvectors vi yields the relation X =
∑

S,T⊆[n] pX(S, T)(1S1
⊤
T + 1T1

⊤
S),

proving dual SDP feasibility.

Next, consider an input X = 1S1
⊤
S . In this case, the only eigenvector is 1S with eigenvalue λ = |S|

since X1S = 1S(1
⊤
S 1S) = 1S |S|. That is, pX(T ′, T) = p1S

(T ′)p1S
(T).

For X = 1S1
⊤
S , 1S is clearly an eigenvector with eigenvalue λ = |S| because X1S = 1S(1

⊤
S 1S) =

1S |S|. So, taking 1̄S = 1S/
√
|S| to be the normalized eigenvector of X, we have X = |S|1̄S 1̄

⊤
S =

|S|
(

1S√
|S|

)(
1S√
|S|

)⊤

= pX(S, S)1S1
⊤
S for pX(S, S) = 1. Therefore, the corresponding neural

SFE is

F(1S1
⊤
S) = pX(S, S)f(S ∩ S) = f(S).

21

All that remains is to show continuity of neural SFEs. Since the scalar SFE px is continuous in
x by assumption, all that remains is to show that the map sending X to its eigenvector with i-th
largest eigenvalue is continuous. We handle sign flip invariance of eignevectors by assuming a
standard choice for eigenvector signs—e.g., by flipping the sign where necessary to ensure that the
first non-zero coordinate is greater than zero. The continuity of the mapping X 7→ vi follows directly
from Theorem 2 from Yu et al. (2015), which is a variant of the Davis–Kahan theorem. The result
shows that the angle between the i-th eigenspaces of two matrices X and X′ goes to zero in the limit
as X → X′.

E General Experimental Background Information

E.1 Hardware and Software Setup

All training runs were done on a single GPU at a time. Experiments were either run on 1) a server
with 8 NVIDIA RTX 2080 Ti GPUs, or 2) 4 NVIDIA RTX 2080 Ti GPUs. All experiments are run
using Python, specifically the PyTorch (Paszke et al., 2019) framework (see licence here). For GNN
specific functionality, such as graph data batching, use the PyTorch Geometric (PyG) (Fey & Lenssen,
2019) (MIT License).

We shall open source our code with MIT License, and have provided anonymized code as part of the
supplementary material for reviewers.

E.2 Data Details

This paper uses five graph datasets: ENZYMES, PROTEINS, IMDB-BINARY, MUTAG, and COL-
LAB. All data is accessed via the standardized PyG API. In the case of COLLAB, which has 5000
samples available, we subsample the first 1000 graphs only for training efficiency. All experiments
Use a train/val/test split ratio of 60/30/10, which is done in exactly one consistent way across all
experiments for each dataset.

F Unsupervised Neural Combinatorial Optimization Experiments

All methods use the same GNN backbone: a combination of GAT Veličković et al. (2018) and
Gated Graph Convolution layer (Yujia et al., 2016). We use the Adam optimizer Kingma & Ba
(2014) with initial lr = 10−4 and default PyTorch settings for other parameters Paszke et al. (2019).
We use grid search HPO over batch size {4, 32, 64}, number of GNN layers {6, 10, 16} network
width {64, 128, 256}. All models are trained for 200 epochs. For the model with the best validation
performance, we report the test performance and the standard deviation of performance over test
graphs as a measure of method reliability.

F.1 Discrete Objectives

Maximum Clique. For the maximum clique problem, we could simply take f to compute the
clique size (with the size being zero if S is not a clique). However, we found that this objective led to
poor results and unstable training dynamics. So, instead, we select a discrete objective that yielded
the much more stable results across datasets. It is defined for a graph G = ([n], E) as,

fMaxClique(S;G) = w(S)qc(S),

where w is a measure of size of S and q measures the density of edges within S (i.e., distance from
being a clique). The scalar c is a constant, taken to be c = 2 in all cases except REINFORCE for
which c = 2 proved ineffective, so we use c = 4 instead. Specifically, w(S) =

∑
i,j∈S 1{(i, j) ∈ E}

simply counts up all the edges between nodes in S, and q(S) = −2w(S)/(|S|2 − |S|) is the ratio
(with a sign flip) between the number of edges in S, and the number of undirected edges (|S|2−|S|)/2
there would be in a clique of size |S|. If G were directed, simply remove the factor of 2. Note that
this f is minimized when S is a maximum clique.

Maximum Independent Set. Similarly for maximum independent set we use the discrete objective,

fMIS(S;G) = w(S)qc(S),

22

https://github.com/pytorch/pytorch/blob/master/LICENSE

where w is a measure of size of S and q measures the number of edges between nodes in S (the number
should be zero for an independent set), and c = 2 as before. Specifically, we take w(S) = |S|/n, and
q(s) = 2

∑
i,j∈S 1{(i, j) ∈ E}/(|S|2 − |S|), as before.

F.2 Neural SFE details.

All Neural SFEs, unless otherwise stated, use the top k = 4 eigenvectors corresponding to the largest
eigenvalues. This is an important efficiency saving step, since with k = n, i.e., using all eigenvectors,
the resulting Neural Lovaśz extension requires O(n2) set function evaluations, compared to O(n)
for the scalar Lovaśz extension. By only using the top k we reduce the number of evaluations to
O(kn). Wall clock runtime experiments given in Figure 3 show that the runtime of the Neural Lovaśz
extension is around ×k its scalar counterpart, and that the performance of the neural extension
gradually increases then saturates when k gets large. To minimize compute overheads we pick the
smallest k at which performance saturation approximately occurs.

Instead of calling the pre-implemented PyTorch eigensolver torch.linalg.eigh, which calls
LAPACK routines, we use the power method to approximate the first k eignevectors of X. This
is because we found the PyTorch function to be too numerically unstable in our case. In contrast,
we found the power method, which approximates eigenvectors using simple recursively defined
polynomials of X, to be significantly more reliable. In all cases we run the power method for 5
iterations, which we found to be sufficient for convergence.

F.3 Baselines.

This section discusses various implementation details of the baseline methods we used. The basic
training pipeline is kept identical to SFEs, unless explicitly said otherwise. Namely, we use nearly
identical model architectures, identical data loading, and identical HPO parameter grids.

REINFORCE. We compared with REINFORCE (Williams (1992)) which enables backpropagation
through (discrete) black-box functions. We opt for a simple instantiation for the score estimator

ĝREINFORCE = f(S)
∂

∂θ
log p(S|θ),

where p(S|θ) =
∏

i∈S pi
∏

j /∈S(1− pj), i.e., each node is selected independently with probability
pi = gθ(y) for i = 1, 2, . . . , n, where gθ is a neural network and y some input attributes. We
maximize the expected reward, i.e.,

LREINFORCE(θ) = ES∼θ[ĝREINFORCE].

For all experiments with REINFORCE, the expected reward is computed over 250 sampled actions S
which is approximately the number of function evaluations of neural SFEs in most of the datasets.
Here, f is taken to be the corresponding discrete objective of each problem (as described earlier in
section F.1). For maximum clique, we normalize rewards f(S) by removing the mean and dividing by
the standard deviation. For the maximum independent set, the same strategy led to severe instability
during training. To alleviate the issue, we introduced an additional modification to the rewards:
among the sampled actions S, only the ones that achieved higher than average reward were retained
and the rewards of the rest were set to 0. This led to more stable results in most datasets, with the
exception of COLLAB were the trick was not sufficient.

These issues highlight the instability of the score function estimator in this kind of setting. Addi-
tionally, we experimented by including simple control variates (baselines). These were: i) a simple
greedy baseline obtained by running a greedy algorithm on each input graph ii) a simple uniform
distribution baseline, where actions S were sampled uniformly at random. Unfortunately, we were
not able to obtain any consistent boost in either performance or stability using those techniques.
Finally, to improve stability, the architectures employed with REINFORCE were slightly modified
according to the problem. For example, for the independent set we additionally applied a sigmoid to
the outputs of the final layer.

Erdos Goes Neural. We compare with recent work on unsupervised combinatorial optimization
(Karalias & Loukas, 2020). We use the probabilistic methodology described in the paper to obtain a

23

0 100 200
Epochs

0.0
0.2
0.4
0.6
0.8
1.0Singleton Extension

0 100 200
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Cross Entropy

0 100 200
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Exponential

0 100 200
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 MSE

0 100 200
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Hinge

train loss
train error

singleton
 (ours)

exp hinge MSE xent

SVHN

94

95

96

97

ac
cu

ra
cy

 (%
)

singleton
 (ours)

exp hinge MSE xent

CIFAR10

91

92

93

94

95

96

singleton
 (ours)

exp hinge MSE xent

tinyImageNet

0

20

40

60

Figure 6: Top: Additional experimental results on the tinyImageNet dataset. Bottom: test accuracies
of different losses. The singleton extension performs broadly comparably to other losses.

loss function for each problem. For the MaxClique, we use the loss provided in the paper, where for
an input graph G = ([n], E) and learned probabilities p it is calculated by

LClique(p;G) = (β + 1)
∑

(i,j)∈E

wijpipj +
β

2

∑
vi ̸=vj

pipj .

We omit additive constants as in practice they not affect the optimization. For the maximum
independent set, we follow the methodology from the paper to derive the following loss:

LIndepSet(p;G) = β
∑

(i,j)∈E

wijpipj −
∑
vi∈V

pi.

β was tuned through a simple line search over a few possible values in each case. Following the
implementation of the original paper, we use the same simple decoding algorithm to obtain a discrete
solution from the learned probabilities.

Straight Through Estimator. We also compared with the Straight-Through gradient estimator
(Bengio et al., 2013). This estimator can be used to pass gradients through sampling and thresholding
operations, by assuming in the backward pass that the operation is the identity. In order to obtain a
working baseline with the straight-through estimator, we generate level sets according to the ranking
of elements in the output vector x of the neural network. Specifically, given x ∈ [0, 1]n outputs from
a neural network, we generate indicator vectors 1Sk

, where Sk = {j| xj ≥ xk} for k = 1, 2, . . . , n.
Then our loss function was computed as

LST (x;G) =
1

n

n∑
k=1

f(1Sk
),

where f is the corresponding discrete objective from section F.1. At inference, we select the set that
achieves the best value in the objective while complying with the constraints.

Ground truths. We obtain the maximum clique size and the maximum independent set size s
for each graph by expressing it as a mixed integer program and using the Gurobi solver (Gurobi
Optimization, LLC, 2021).

F.4 k-Clique Constraint Satisfaction

Ground truths. As before, we obtain the maximum clique size s for each graph by expressing it
as a mixed integer program and using the Gurobi solver (Gurobi Optimization, LLC, 2021). This is
converted into a binary label 1{s ≥ k} indicating if there is a clique of size k or bigger.

Implementation details. The training pipeline, including HPO, is identical to the MaxClique setup.
The only difference comes in the evaluation—at test time the GNN produces an embedding x, and the
largest clique S in the support of px is selected. The model prediction for the constraint satisfaction

24

problem is then 1{|S| ≥ k}, indicating whether the GNN found a clique of size k or more. Since
this problem is. binary classification problem we compute the F1-score on a validation set, and report
as the final result the F1-score of that same model on the test set.

G Training error as an objective

Recall that for a K-way classifier h : X → RK with ŷ(x) = argmaxk=1,...,K h(x)k, we consider
the training error 1

n

∑n
i=1 1{yi ̸= ŷ(xi)} calculated over a labeled training dataset {(xi, yi)}ni=1 to

be a discrete non-differentiable loss. The set function in question is y 7→ 1{yi ̸= y}, which we relax
using the singleton method described in Section 3.1.

Training details. For all datasests we use a standard ResNet-18 backbone, with a final layer to
output a vector of the correct dimension depending on the number of classes in the dataset. CIFAR10
and tinyImageNet models are trained for 200 epochs, while SVHN uses 100 (which is sufficient for
convergence). We use SGD with momentum mom = 0.9 and weight decay wd = 5× 10−4 and a
cosine learning rate schedule. We tune the learning rate for each loss via a simple grid search of the
values lr ∈ {0.01, 0.05, 0.1, 0.2}. For each loss we select the learning rate with highest accuracy on
a validation set, then display the training loss and accuracy for this run.

H Pseudocode: A forward pass of Scalar and Neural SFEs

To illustrate the main conceptual steps in the implementation of SFEs, we include two torch-like
pseudocode examples for SFEs, one for scalar and one for neural SFEs. The key to the practical
implementation of SFEs within PyTorch is that it is only necessary to define the forward pass.
Gradients are then handled automatically during the backwards pass.

Observe that in both Algorithm, 1 and Algorithm 2, there are two key functions that have to be
implemented: i) getSupportSets, which generates the sets on which the extension is supported. ii)
getCoeffs, which generates the coefficients of each set. Those depend on the choice of the extension
and have to be implemented from scratch whenever a new extension is designed. The sets of the
neural extension and their coefficients can be calculated from the corresponding scalar ones, using
the definition of the Neural SFE and Proposition 3.

Algorithm 1: Scalar set function extension
def ScalarSFE(setFunction, x):

x: n x 1 tensor of embeddings, the output of a neural network
n: number of items in ground set (e.g. number of nodes in graph)
setsScalar = getSupportSetsScalar(x) # n x n, i-th column is Si.
coeffsScalar = getCoeffsScalar(x) # 1 x n: coefficients ySi

.
extension = (coeffsScalar*setFunction(setsScalar)).sum()
return extension

I Further Discussion

I.1 Limitations and Future Directions

Our SFEs have proven useful for learning solvers for a number of combinatorial optimization
problems. However there remain many directions for improvement. One direction of particular
interest is to scale our methods to instances with very large n. This could include simply considering
larger graphs, or problems with larger ground sets—e.g., selecting paths. We believe that a promising
approach to this would be to develop localized extensions that are supported on sets corresponding to
suitably chosen sub-graphs, which would enable us to build in additional task-specific information
about the problem.

25

Algorithm 2: Neural set function extension
def NeuralSFE(setFunction, X):

X: n x d tensor of embeddings, the output of a neural network
n: number of items in ground set (e.g. number of nodes in graph)
d: embedding dimension
X = normalize(X, dim=1)
Gram = X @ X.T # n x n
eigenvalues, eigenvectors = powerMethod(Gram)
extension = 0 # initialize variable
for (eigval,eigvec) in zip(eigenvalues,eigenvectors):

Compute scalar extension data.
setsScalar = getSupportSetsScalar(eigvec)
coeffsScalar = getCoeffsScalar(eigvec)
Compute neural extension data from scalar extension data.
setsNeural = getSupportSetsNeural(setsScalar)
coeffsNeural = getCoeffsNeural(coeffsScalar)
extension += eigval*((coeffsNeural*setFunction(setsNeural)).sum())

return extension

I.2 Broader Impact

Our work focuses on a core machine learning methodological goal of designing neural networks that
are able to learn to simulate algorithmic behavior. This program may lead to a number of promising
improvements in neural networks such as making their generalization properties more reliable (as
with classical algorithms) and more interpretable decision making mechanisms. As well as injecting
algorithmic properties into neural network models, our work studies the use of neural networks
for solving combinatorial problems. Advances in neural network methods may lead to advances in
numerical computing more widely. Numerical computing in general—and combinatorial optimization
in particular—impacts a wide range of human activities, including scientific discovery and logistics
planning. Because of this, the methodologies developed in this paper and any potential further
developments in this line of work are intrinsically neutral with respect to ethical considerations; the
main responsibility lies in their ethical application in any given scenario.

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information Fusion, 76:243–297, 2021.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in Neural Information Processing Systems,
32:9562–9574, 2019.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An
unsupervised differentiable approach. In International Conference on Learning Representations,
2018.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query answering
with neural link predictors. In International Conference on Learning Representations, 2020.

Federico Ardila, Carolina Benedetti, and Jeffrey Doker. Matroid polytopes and their volumes.
Discrete & Computational Geometry, 43(4):841–854, 2010.

26

Francis Bach. Submodular functions: from discrete to continuous domains. Mathematical Program-
ming, 175(1):419–459, 2019.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new features and speed
improvements. arXiv preprint arXiv:1211.5590, 2012.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

Jeff Bilmes. Submodularity in machine learning and artificial intelligence. arXiv preprint
arXiv:2202.00132, 2022.

G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set function subject to a
matroid constraint. SIAM J. Computing, 40(6), 2011.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. arXiv preprint
arXiv:2102.09544, 2021a.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. In Zhi-Hua
Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pp. 4348–4355. International Joint Conferences on Artificial Intelligence Organization,
8 2021b. doi: 10.24963/ijcai.2021/595. URL https://doi.org/10.24963/ijcai.2021/595.
Survey Track.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Ching-An Cheng, Xinyan Yan, and Byron Boots. Trajectory-wise control variates for variance
reduction in policy gradient methods. In Conference on Robot Learning, pp. 1379–1394. PMLR,
2020.

Gustave Choquet. Theory of capacities. In Annales de l’institut Fourier, volume 5, pp. 131–295,
1954.

Andreea-Ioana Deac, Petar Veličković, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang,
and Mladen Nikolic. Neural algorithmic reasoners are implicit planners. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 15529–15542. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
82e9e7a12665240d13d0b928be28f230-Paper.pdf.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

27

https://doi.org/10.24963/ijcai.2021/595
https://proceedings.neurips.cc/paper/2021/file/82e9e7a12665240d13d0b928be28f230-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/82e9e7a12665240d13d0b928be28f230-Paper.pdf

Andrew Dudzik and Petar Veličković. Graph neural networks are dynamic programmers. arXiv
preprint arXiv:2203.15544, 2022.

Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Optimiza-
tion—Eureka, You Shrink!, pp. 11–26. Springer, 2003.

Marwa El Halabi. Learning with structured sparsity: From discrete to convex and back. Technical
report, EPFL, 2018.

Marwa El Halabi and Stefanie Jegelka. Optimal approximation for unconstrained non-submodular
minimization. In International Conference on Machine Learning, pp. 3961–3972. PMLR, 2020.

Marwa El Halabi, Francis Bach, and Volkan Cevher. Combinatorial penalties: Which structures
are preserved by convex relaxations? In International Conference on Artificial Intelligence and
Statistics, pp. 1551–1560. PMLR, 2018.

James E Falk and Karla R Hoffman. A successive underestimation method for concave minimization
problems. Mathematics of operations research, 1(3):251–259, 1976.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
ICLR (Workshop on Representation Learning on Graphs and Manifolds), volume 7, 2019.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. In International
Conference on Learning Representations, 2018.

M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid algorithm and its consequences in combina-
torial optimization. Combinatorica, 1:499–513, 1981.

S Gu, T Lillicrap, Z Ghahramani, RE Turner, and S Levine. Q-prop: Sample-efficient policy gradient
with an off-policy critic. In 5th International Conference on Learning Representations, ICLR
2017-Conference Track Proceedings, 2017.

Allal Guessab. Generalized barycentric coordinates and approximations of convex functions on
arbitrary convex polytopes. Computers & Mathematics with Applications, 66(6):1120–1136, 2013.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.
gurobi.com.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding logical
queries on knowledge graphs. Advances in neural information processing systems, 31, 2018.

Kai Hormann. Barycentric interpolation. In Approximation Theory XIV: San Antonio 2013, pp.
197–218. Springer, 2014.

Takayuki Iguchi, Dustin G Mixon, Jesse Peterson, and Soledad Villar. On the tightness of an sdp
relaxation of k-means. arXiv preprint arXiv:1505.04778, 2015.

Rishabh Iyer, Stefanie Jegelka, and Jeff Bilmes. Monotone closure of relaxed constraints in submod-
ular optimization: Connections between minimization and maximization: Extended version. In
UAI, 2014.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In Int.
Conf. on Learning Representations (ICLR), 2017.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. In NeurIPS, 2020.

Marc C Kennedy and Anthony O’Hagan. Bayesian calibration of computer models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464, 2001.

28

https://www.gurobi.com
https://www.gurobi.com

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI magazine, 13(1):32–32,
1992.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Yujia Li, Felix Gimeno, Pushmeet Kohli, and Oriol Vinyals. Strong generalization and efficiency in
neural programs. arXiv preprint arXiv:2007.03629, 2020.

Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-dependent
control variates for policy optimization via stein identity. In International Conference on Learning
Representations, 2018.

László Lovász. Submodular functions and convexity. In Mathematical programming the state of the
art, pp. 235–257. Springer, 1983.

László Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0–1 optimization.
SIAM journal on optimization, 1(2):166–190, 1991.

C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous relaxation of discrete
random variables. In Int. Conf. on Learning Representations (ICLR), 2017.

J-L Marichal. An axiomatic approach of the discrete choquet integral as a tool to aggregate interacting
criteria. IEEE transactions on fuzzy systems, 8(6):800–807, 2000.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

D.S. Meek. The inverses of toeplitz band matrices. Linear Algebra and its Applications, 49:
117–129, 1983. ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(83)90097-6. URL
https://www.sciencedirect.com/science/article/pii/0024379583900976.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Kazuo Murota. Discrete convex analysis. Mathematical Programming, 83(1):313–371, 1998.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: Backpropagating through
discrete exponential family distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 14567–14579. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper/2021/file/7a430339c10c642c4b2251756fd1b484-Paper.pdf.

Guillaume Obozinski and Francis Bach. Convex Relaxation for Combinatorial Penalties. PhD thesis,
INRIA, 2012.

Guillaume Obozinski and Francis Bach. A unified perspective on convex structured sparsity: Hierar-
chical, symmetric, submodular norms and beyond. 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Anselm Paulus, Michal Rolinek, Vit Musil, Brandon Amos, and Georg Martius. Comboptnet: Fit the
right np-hard problem by learning integer programming constraints. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 8443–8453. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/paulus21a.html.

29

https://www.sciencedirect.com/science/article/pii/0024379583900976
https://proceedings.neurips.cc/paper/2021/file/7a430339c10c642c4b2251756fd1b484-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7a430339c10c642c4b2251756fd1b484-Paper.pdf
https://proceedings.mlr.press/v139/paulus21a.html

Max B Paulus, Chris J Maddison, and Andreas Krause. Rao-blackwellizing the straight-through
gumbel-softmax gradient estimator. In International Conference on Learning Representations,
2020a.

Max Benedikt Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison. Gradient
estimation with stochastic softmax tricks. In NeurIPS 2020, 2020b.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differenti-
ation of blackbox combinatorial solvers. In International Conference on Learning Representations,
2019.

Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. In International Conference on Learning Representations,
2019.

Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis. Cambridge
university press, 2004.

Mohit Tawarmalani and Nikolaos V Sahinidis. Convex extensions and envelopes of lower semi-
continuous functions. Mathematical Programming, 93(2):247–263, 2002.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maximum
constraint satisfaction. Frontiers in artificial intelligence, 3:98, 2021.

William F Trench. Inversion of toeplitz band matrices. Mathematics of computation, 28(128):
1089–1095, 1974.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. In International Conference on Learning Representations, 2019.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021.
ISSN 2666-3899.

J. Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model.
In Symposium on Theory of Computing (STOC), 2008.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning, pp. 6545–6554. PMLR, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. In International Conference on Learning Representations, 2018.

Hao Xu, Ka-Hei Hui, Chi-Wing Fu, and Hao Zhang. Tilingnn: learning to tile with self-supervised
graph neural network. ACM Transactions on Graphics (TOG), 39(4):129–1, 2020.

30

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In International Conference on Learning Representations,
2019.

Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi. Neural
execution engines: Learning to execute subroutines. Advances in Neural Information Processing
Systems, 33, 2020.

Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2015.

Li Yujia, Tarlow Daniel, Brockschmidt Marc, Zemel Richard, et al. Gated graph sequence neural
networks. In International Conference on Learning Representations, 2016.

31

	Introduction
	Problem Setup
	Scalar Set Function Extensions
	Constructing Scalar Set Function Extensions

	Neural Set Function Extensions
	Lifting Set Function Extensions to Higher Dimensions
	Constructing Neural Set Function Extensions

	Experiments
	Unsupervised Neural Combinatorial Optimization
	Constraint Satisfaction Problems
	Training Error as a Classification Objective
	Ablations

	Related Work
	Conclusion
	Acknowledgements
	Optimization programs: extended discussion
	LP formulation: Derivation of the dual.
	Connections to submodularity, related linear programs, and possible alternatives.
	SDP formulation: The geometric intuition of extensions and deriving the dual.

	Scalar Set Function Extensions Have No Bad Minima
	Examples of Vector Set Function Extensions
	Lovász extension.
	Bounded cardinality Lovaśz extension.
	Singleton extension.
	Permutations and Involutory Extension.
	Multilinear extension.

	Neural Set Function Extensions
	General Experimental Background Information
	Hardware and Software Setup
	Data Details

	Unsupervised Neural Combinatorial Optimization Experiments
	Discrete Objectives
	Neural SFE details.
	Baselines.
	k-Clique Constraint Satisfaction

	Training error as an objective
	Pseudocode: A forward pass of Scalar and Neural SFEs
	Further Discussion
	Limitations and Future Directions
	Broader Impact

