
Neural Set Function Extensions:
Learning with Discrete Functions in High Dimensions

Nikolaos Karalias∗
EPFL

nikolaos.karalias@epfl.ch

Joshua Robinson∗

MIT CSAIL
joshrob@mit.edu

Andreas Loukas
Prescient Design, Genentech, Roche
andreas.loukas@roche.com

Stefanie Jegelka
MIT CSAIL

stefje@csail.mit.edu

Abstract

Integrating functions on discrete domains into neural networks is key to develop-
ing their capability to reason about discrete objects. But, discrete domains are
(I) not naturally amenable to gradient-based optimization, and (II) incompatible
with deep learning architectures that rely on representations in high-dimensional
vector spaces. In this work, we address both difficulties for set functions, which
capture many important discrete problems. First, we develop a framework for
extending set functions onto low-dimensional continuous domains, where many
extensions are naturally defined. Our framework subsumes many well-known
extensions as special cases. Second, to avoid undesirable low-dimensional neural
network bottlenecks, we convert low-dimensional extensions into representations
in high-dimensional spaces, taking inspiration from the success of semidefinite
programs for combinatorial optimization. Empirically, we observe benefits of our
extensions for unsupervised neural combinatorial optimization, in particular with
high-dimensional representations.

1 Introduction

While neural networks are highly effective at solving tasks grounded in basic perception (Chen et al.,
2020; Vaswani et al., 2017), discrete algorithmic and combinatorial tasks such as partitioning graphs,
and finding optimal routes or shortest paths have proven more challenging. This is, in part, due to the
difficulty of integrating discrete operations into neural network architectures (Battaglia et al., 2018;
Bengio et al., 2021; Cappart et al., 2021a). One immediate difficulty with functions on discrete spaces
is that they are not amenable to standard gradient-based training. Another is that discrete functions
are typically expressed in terms of scalar (e.g., Boolean) variables for each item (e.g., node, edge to
be selected), in contrast to the high-dimensional and continuous nature of neural networks’ internal
representations. A natural approach to addressing these challenges is to carefully choose a function
on a continuous domain that extends the discrete function, and can be used as a drop-in replacement.

There are several important desiderata that such an extension should satisfy in order to be suited to
neural network training. First, an extension should be valid, i.e., agree with the discrete function
on discrete points. It should also be amenable to gradient-based optimization, and should avoid
introducing spurious minima. Beyond these requirements, there is one additional critical consideration.
In both machine learning and optimization, it has been observed that high-dimensional representations
can make problems “easier”. For instance, neural networks rely on high-dimensional internal

∗Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

representations for representational power and to allow information to flow through gradients, and
performance suffers considerably when undesirable low-dimensional bottlenecks are introduced into
network architectures (Belkin et al., 2019; Veličković & Blundell, 2021). In optimization, lifting
to higher-dimensional spaces can make the problem more well-behaved (Goemans & Williamson,
1995; Shawe-Taylor et al., 2004; Du et al., 2018). Therefore, extending discrete functions to high-
dimensional domains may be critical to the effectiveness of the resulting learning process, yet remains
largely an open problem.

With those considerations in mind, we propose a framework for constructing extensions of discrete
set functions onto high-dimensional continuous spaces. The core idea is to view a continuous point x
in space as an expectation over a distribution (that depends on x) supported on a few carefully chosen
discrete points, to retain tractability. To evaluate the discrete function at x, we compute the expected
value of the set function over this distribution. The method resulting from a principled formalization
of this idea is computationally efficient and addresses the key challenges of building continuous
extensions. Namely, our extensions allow gradient-based optimization and address the dimensionality
concerns, allowing any function on sets to be used as a computation step in a neural network.

First, to enable gradient computations, we present a method based on a linear programming (LP)
relaxation for constructing extensions on continuous domains where exact gradients can be computed
using standard automatic differentiation software (Abadi et al., 2016; Bastien et al., 2012; Paszke
et al., 2019). Our approach allows task-specific considerations (e.g., a cardinalilty constraint) to
be built into the extension design. While our initial LP formulation handles gradients, and is a
natural formulation for explicitly building extensions, it replaces discrete Booleans with scalars in the
unit interval [0, 1], and hence does not yet address potential dimensionality bottlenecks. Second, to
enable higher-dimensional representations, we take inspiration from classical SDP relaxations, such
as the celebrated Goemans-Williamson maximum cut algorithm (Goemans & Williamson, 1995),
which recast low-dimensional problems in high-dimensions. Specifically, our key contribution is to
develop an SDP analog of our original LP formulation, and show how to lift LP-based extensions
into a corresponding high-dimensional SDP-based extensions. Our general procedure for lifting
low-dimensional representations into higher dimensions aligns with the neural algorithmic reasoning
blueprint (Veličković & Blundell, 2021), and suggests that classical techniques such as SDPs may be
effective tools for combining deep learning with algorithmic processes more generally.

2 Problem Setup

Consider a ground set [n] = {1, . . . , n} and an arbitrary function f : 2[n] → R ∪ {∞} defined on
subsets of [n]. For instance, f could determine if a set of nodes or edges in a graph has some structural
property, such as being a path, tree, clique, or independent set (Bello et al., 2016; Cappart et al.,
2021a). Our aim is to build neural networks that use such discrete functions f as an intermediate layer
or loss. In order to produce a model that is trainable using standard auto-differentiation software, we
consider a continuous domain X onto which we would like to extend f , with sets embedded into
X via an injective map e : 2[n] → X . For instance, when X = [0, 1]n we may take e(S) = 1S , the
Boolean vector whose ith entry is 1 if i ∈ S, and 0 otherwise. Our approach is to design an extension

F : X → R

of f and consider the neural network NN2 ◦ F ◦ NN1 (if f is used as a loss, NN2 is simply the
identity). To ensure that the extension is valid and amenable to automatic differentiation, we require
that 1) it agrees with f on all discrete points: F(e(S)) = f(S) for all S ⊆ [n] with f(S) < ∞, and
2) F is continuous.

There is a rich existing literature on extensions of functions on discrete domains, particularly in the
context of discrete optimization (Lovász, 1983; Grötschel et al., 1981; Calinescu et al., 2011; Vondrák,
2008; Bach, 2019; Obozinski & Bach, 2012; Tawarmalani & Sahinidis, 2002). These works provide
promising tools to reach our goal of neural network training. Building on these, our method is the
first to use semi-definite programming (SDP) to combine neural networks with set functions. There
are, however, different considerations in the neural network setting as compared to optimization.
The optimization literature often focuses on a class of set functions and aims to build extensions
with desirable optimization properties, particularly convexity. We do not focus on convexity, aiming
instead to develop a formalism that is as flexible as possible. Doing so maximizes the applicability of
our method, and allows extensions adapted to task-specific desiderata (see Section 3.1).

2

Figure 1: SFEs: Fractional points x are reinterpreted as expectations x = ES∼px [1S] over the
distribution px(S) on sets. A value is assigned at x by exchanging the order of f and the expectation:
F(x)S∼px [f(S)]. Unlike f , the extension F is amenable to gradient-based optimization.

3 Scalar Set Function Extensions

We start by presenting a general framework for extending set functions onto X = [0, 1]n, where a set
S ⊆ [n] is viewed as the Boolean indicator vector e(S) = 1S ∈ {0, 1}n whose ith entry is 1 if i ∈ S
and 0 otherwise. We call extensions onto [0, 1]n scalar since each item i is represented by a single
scalar value—the ith coordinate of x ∈ X . These scalar extensions will become the core building
blocks in developing high-dimensional extensions in Section 4.

A classical approach to extending discrete functions on sets represented as Boolean indicator vectors
1S is by computing the convex-envelope, i.e., the point-wise supremum over linear functions that
lower bound f (Falk & Hoffman, 1976; Bach, 2019). Doing so yields a convex function whose value
at a point x ∈ [0, 1]n is the solution of the following linear program (LP):

F̃(x) = max
z,b∈Rn×R

{x⊤z+ b} subject to 1⊤
S z+ b ≤ f(S) for all S ⊆ [n]. (primal LP)

The set Pf of all feasible solutions (z, b) is known as the (canonical) polyhedron of f (Obozinski
& Bach, 2012) and can be seen to be non-empty by taking the coordinates of z to be sufficiently
small (possibly negative). Variants of this optimization program are frequently encountered in the
theory of matroids and submodular functions (Edmonds, 2003) where Pf is commonly known as the
submodular polyhedron (see Appendix A for an extended discussion). By strong duality, we may
solve the primal LP by instead solving its dual:

F̃(x) = min
{yS≥0}S⊆[n]

∑
S⊆[n]

ySf(S) subject to
∑
S⊆[n]

yS1S = x,
∑
S⊆[n]

yS = 1, for all S ⊆ [n],

(dual LP)

whose optimal value is the same as the primal LP. The dual LP is always feasible (see e.g., the Lovász
extension in Section 3.1). However, F̃ does not necessarily agree with f on discrete points in general,
unless the function is convex-extensible (Murota, 1998).

To address this important missing piece, we relax our goal from solving the dual LP to instead seeking
a feasible solution to the dual LP that is an extension of f . Since the dual LP is defined for a fixed
x, a feasible solution must be a function yS = px(S) of x. If px were to be continuous and a.e.
differentiable in x then the value

∑
S px(S)f(S) attained by the dual LP would also be continuous

and a.e. differentiable in x since gradients flow through the coefficients yS = px(S), while f(S) is
treated as a constant in x. This leads us to the following definition:
Definition (Scalar SFE). A scalar SFE F of f is defined at a point x ∈ [0, 1]n by coefficients px(S)
such that yS = px(S) is a feasible solution to the dual LP. The extension value is given by

F(x) ≜
∑
S⊆[n]

px(S)f(S)

3

and we require the following properties to hold for all S ⊆ [n]: 1) px(S) is a continuous function of
x and 2) F(1S) = f(S) for all S ⊆ [n].

Efficient evaluation of F requires that px(S) is supported on a small collection of carefully chosen
sets S. This choice is a key inductive bias of the extension, and Section 3.1 gives many examples
with only O(n) non-zero coefficients. Examples include well-known extensions, such as the Lovász
extension, as well as a number of novel extensions, illustrating the versatility of the SFE framework.

Thanks to the constraint
∑

S yS = 1 in the dual LP, scalar SFEs have a natural probabilistic
interpretation. An SFE is defined by a probability distribution px such that fractional points x can
be written as an expectation ES∼px [1S] = x over discrete points using px. The extension itself can
be viewed as arising from exchanging f and the expectation operation: F(x) = ES∼px [f(S)]. This
interpretation is summarized in Figure 1.

Scalar SFEs also enjoy the property of not introducing any spurious minima. That is, the minima of
F coincide with the minima of f up to convex combinations. This property is especially important
when training models of the form f ◦ NN1 (i.e., f is a loss function) since F will guide the network
NN1 towards the same solutions as f .

Proposition 1 (Scalar SFEs have no bad minima). If F is a scalar SFE of f then:

1. minx∈X F(x) = minS⊆[n] f(S)

2. argminx∈X F(x) ⊆ Hull
(
argmin1S :S⊆[n] f(S)

)
See Appendix B for proofs.

Obtaining set solutions. Given an architecture F ◦ NN1 and input problem instance G, we often
wish to produce sets as outputs at inference time. To do this, we simply compute x = NN1(G), and
select the set S in suppS{px(S)} with the smallest value f(S). This can be done efficiently if, as is
typically the case, the cardinality of suppS{px(S)} is small.

3.1 Constructing Scalar Set Function Extensions

A key characteristic of scalar SFEs is that there are many potential extensions of any given f . In
this section, we provide examples of scalar SFEs, illustrating the capacity of the SFE framework for
building knowledge about f into the extension. See Appendix C for all proofs and further discussion.

Lovász extension. Re-indexing the coordinates of x so that x1 ≥ x2 . . . ≥ xn, we define px to
be supported on the sets S1 ⊆ S2 ⊆ · · · ⊆ Sn with Si = {1, 2, . . . , i} for i = 1, 2, . . . , n. The
coefficient are defined as ySi

= px(Si) := xi − xi+1 and px(S) = 0 for all other sets. The resulting
Lovász extension—known as the Choquet integral in decision theory (Choquet, 1954; Marichal,
2000)—is a key tool in combinatorial optimization due to a seminal result: the Lovász extension is
convex if and only if f is submodular (Lovász, 1983), implying that submodular minimization can be
solved in polynomial-time (Grötschel et al., 1981).

Bounded cardinality Lovász extension. A collection {Si}ni=1 of subsets of [n] can be encoded in
an n × n matrix S ∈ {0, 1}n×n whose ith column is 1Si

. In this notation, the dual LP constraint∑
S⊆[n] yS1S = x can be written as Sp = x, where the ith coordinate of p defines px(Si). The

bounded cardinality extension generalizes the Lovász extension to focus only on sets of cardinality at
most k ≤ n. Again, re-index x so that x1 ≥ x2 . . . ≥ xn. Use the first k sets S1 ⊆ S2 ⊆ · · · ⊆ Sk,
where Si = {1, 2, . . . , i}, to populate the first k columns of matrix S. We add further n − k sets:
Sk+i = {j+ i | j ∈ Sk} for i = 1, . . . , n− k, to fill the rest of S. Finally, px(Si) can be analytically
calculated from p = S−1x, where S is invertible since it is a Toeplitz banded upper triangular matrix.

Permutations and involutory extensions. We use the same S,p notation. Let S be an elementary
permutation matrix. Then it is involutory, i.e., SS = I, and we may easily determine p = Sx given
S and x. Note that px(Si) = pi must be non-negative since x and S are non-negative entry-wise.
Finally, restricting x to the n-dimensional Simplex guarantees that ∥p∥1 ≤ 1, which ensures px is a
probability distribution (any remaining mass is placed on the empty set). The extension property can
be guaranteed on singleton sets as long as the chosen permutation admits a fixed point at the argmax
of x. Any elementary permutation matrix S with such a fixed point yields a valid SFE.

4

Singleton extension. Consider a set function f for which f(S) = ∞ unless S has cardinality one.
To ensure F is finite valued, px must be supported only on the sets Si = {i}, i = 1, . . . , n. Assuming
x is sorted so that x1 ≥ x2 . . . ≥ xn, define px(Si) = xi − xi+1. It is shown in Appendix C that this
defines a scalar SFE, except for the dual LP feasibility. However, when using F as a loss function,
minimization drives x towards the minima minx F(x) which are dual feasible. So dual infeasibility
is benign in this instance and we approach the feasible set from the outside.

Multilinear extension. The multilinear extension, widely used in combinatorial optimization
(Calinescu et al., 2011), is supported on all sets with coefficients px(S) =

∏
i∈S xi

∏
i/∈S(1− xi),

the product distribution. In general, evaluating the multilinear extension exactly requires 2n calls to
f , but for several interesting set functions, e.g., graph cut, set cover, and facility location, it can be
computed efficiently in Õ(n2) time (Iyer et al., 2014).

4 Neural Set Function Extensions

This section builds on the scalar SFE framework—where each item i in the ground set [n] is
represented by a single scalar—to develop extensions that use high-dimensional embeddings to avoid
introducing low-dimensional bottlenecks into neural network architectures. The core motivation that
lifting problems into higher dimensions can make them easier is not unique to deep learning. For
instance, it also underlies kernel methods (Shawe-Taylor et al., 2004) and the lift-and-project method
for integer programming (Lovász & Schrijver, 1991).

Our method takes inspiration from prior successes of semi-definite programming for combinatorial
optimization (Goemans & Williamson, 1995) by extending onto X = Sn+, the set of n× n positive
semi-definite (PSD) matrices. With this domain, each item is represented by a vector, not a scalar.

4.1 Lifting Set Function Extensions to Higher Dimensions

We embed sets into Sn+ via the map e(S) = 1S1
⊤
S . To define extensions on this matrix domain, we

translate the linear programming approach of Section 3 into an analogous SDP formulation:

max
Z⪰0,b∈R

{Tr(X⊤Z) + b} subject to
1

2
Tr((1S1

⊤
T + 1T1

⊤
S)Z) + b ≤ f(S ∩ T) for S, T ⊆ [n],

(primal SDP)

where we switch from lower case letters to upper case since we are now using matrices. Next,
we show that this choice of primal SDP is a natural analog of the original LP that provides the
right correspondences between vectors and matrices by proving that primal LP feasible solutions
correspond to primal SDP feasible solutions with the same objective value (see Appendix A for a
discussion on the SDP and its dual). To state the result, note that the embedding e(S) = 1S1

⊤
S is a

particular case of the correspondence x ∈ [0, 1]n 7→
√
x
√
x
⊤.

Proposition 2. (Containment of LP in SDP) For any x ∈ [0, 1]n, define X =
√
x
√
x
⊤ with the

square-root taken entry-wise. Then, for any (z, b) ∈ Rn
+×R that is primal LP feasible, the pair (Z, b)

where Z = diag(z), is primal SDP feasible and the objective values agree: Tr(X⊤Z) = z⊤x.

Proposition 2 establishes that the primal SDP feasible set is a spectrahedral lift of the positive primal
LP feasible set, i.e., feasible solutions of the primal LP lead to feasible solutions of the primal SDP.
As with scalar SFEs, to define neural SFEs we consider the dual SDP:

min
{yS,T≥0}

∑
S,T⊆[n]

yS,T f(S ∩ T) subject to X ⪯
∑

S,T⊆[n]

1

2
yS,T (1S1

⊤
T + 1T1

⊤
S) and

∑
S,T⊆[n]

yS,T = 1

(dual SDP)

We demonstrate that for suitable X this SDP has feasible solutions via an explicit construction in
Section 4.2. This leads us to define a neural SFE which, as with scalar SFEs, is given by a feasible
solution to the dual SDP that satisfies the extension property whose coefficients are continuous in X:
Definition (Neural SFE). A neural set function extension of f at a point X ∈ Sn+ is defined as

F(X) ≜
∑

S,T⊆[n]

pX(S, T)f(S ∩ T),

5

where yS,T = pX(S, T) is a feasible solution to the dual SDP and for all S, T ⊆ [n]: 1) pX(S, T) is
continuous at X and 2) it is valid, i.e., F(1S1

⊤
S) = f(S) for all S ⊆ [n].

4.2 Constructing Neural Set Function Extensions

We constructed a number of explicit examples of scalar SFEs in Section 3.1. For neural SFEs we
employ a different strategy. Instead of providing individual examples of neural SFEs, we develop a
single recipe for converting any scalar SFE into a corresponding neural SFE. Doing so allows us to
build on the variety of scalar SFEs and provides an additional connection between scalar and neural
SFEs. In Section 5 we show the empirical superiority of neural SFEs over their scalar counterparts.

Our construction is given in the following proposition:
Proposition 3. Let px induce a scalar SFE of f . For X ∈ Sn+, consider a decomposition X =∑n

i=1 λixix
⊤
i and fix

pX(S, T) =

n∑
i=1

λi pxi
(S)pxi

(T) for all S, T ⊆ [n].

Then, pX defines a neural SFE F at X.

See Appendix D for proof. The choice of decomposition will give rise to different extensions. Here,
we instantiate our neural extensions using the eigendecomposition of X. Since eigenvectors may not
belong to [0, 1]n we reparameterize by first applying a sigmoid function before computing the scalar
extension distribution px. In practice we found that neural SFEs work just as well even without this
sigmoid function—i.e., allowing scalar SFEs to be evaluated outside of [0, 1]n. The continuity of
the neural SFE F when using the eigendecomposition follows from a variant of the Davis–Kahan
theorem (Yu et al., 2015), which requires the additional assumption that the eigenvalues of x are
distinct. For efficiency, in practice we do not use all n eigenvectors, and use only the k with largest
eigenvalue. This is justified by Figure 3, which shows that in practical applications X often has a
rapidly decaying spectrum.

Evaluating a neural SFE requires an accessible closed-form expression, the precise form of which de-
pends on the underlying scalar SFE. Further, from the definition of Neural SFEs we see that if a scalar
SFE is supported on sets with a property that is closed under intersection (e.g., bounded cardinality),
then the supporting sets of the corresponding neural SFE will also inherit that property. This implies
that the neural counterparts of the Lovász, bounded cardinality Lovász, and singleton/permutation
extensions have the same support as their scalar counterparts. An immediate corollary is that we can
easily compute the neural counterpart of the Lovász extension which has a simple closed form:
Corollary 1. For X ∈ Sn+ consider the eigendecomposition X =

∑n
i=1 λixix

⊤
i . Let pxi be as in the

Lovász extension: pxi(Sij) = σ(xi,j)− σ(xi,j+1), where σ is the sigmoid function, and xi is sorted
so xi,1 ≥ . . . ≥ xi,n and Sij = {1, . . . , j}, with pxi

(S) = 0 for all other sets. Then, the neural
Lovász extension is:

F(X) =
n∑

i,j=1

λipxi
(Sij) ·

(
pxi

(Sij) + 2
∑
ℓ:ℓ>j

pxi
(Siℓ)

)
· f(Sij).

Complexity and obtaining sets as solutions. In general, the neural SFE relies on all pairwise
intersections S ∩ T of the scalar SFE sets, requiring O(m2) evaluations of f when the scalar SFE
is supported on m sets. However, when the scalar SFE is supported on a family of sets that is
closed under intersection—e.g., the Lovász and singleton extensions—the corresponding neural SFE
requires only O(m) function evaluations. Discrete solutions can be obtained efficiently by returning
the best set out of all scalar SFEs pxi

.

5 Experiments

We experiment with SFEs as loss functions in neural network pipelines on discrete objectives arising
in combinatorial and vision tasks. For combinatorial optimization, SFEs network training with a
continuous version of the objective without supervision. For supervised image classification, they
allow us to directly relax the training error instead of optimizing a proxy like cross entropy.

6

Maximum Clique
ENZYMES PROTEINS IMDB-Binary MUTAG COLLAB

Straight-through (Bengio et al., 2013) 0.725±0.268 0.722±0.26 0.917±0.253 0.965±0.162 0.856±0.221

Erdős (Karalias & Loukas, 2020) 0.883±0.156 0.905±0.133 0.936±0.175 1.000±0.000 0.852±0.212

REINFORCE (Williams, 1992) 0.751±0.301 0.725±0.285 0.881±0.240 1.000±0.000 0.781±0.316

Lovász scalar SFE 0.723±0.272 0.778±0.270 0.975±0.125 0.977±0.125 0.855±0.225

Lovász neural SFE 0.933±0.148 0.926±0.165 0.961±0.143 1.000±0.000 0.864±0.205

Maximum Independent Set
ENZYMES PROTEINS IMDB-Binary MUTAG COLLAB

Straight-through (Bengio et al., 2013) 0.505±0.244 0.430±0.252 0.701±0.252 0.721±0.257 0.331±0.260

Erdős (Karalias & Loukas, 2020) 0.821±0.124 0.903±0.114 0.515±0.310 0.939±0.069 0.886±0.198

REINFORCE (Williams, 1992) 0.617±0.214 0.579±0.340 0.899±0.275 0.744±0.121 0.053±0.164

Lovász scalar SFE 0.311±0.289 0.462±0.260 0.716±0.269 0.737±0.154 0.302±0.238

Lovász neural SFE 0.775±0.155 0.729±0.205 0.679±0.287 0.854±0.132 0.392±0.253

Table 1: Unsupervised neural combinatorial optimization: Approximation ratios for combinatorial
problems. Values closer to 1 are better (↑). Neural SFEs are competitive with other methods, and
consistently improve over vector SFEs.

5.1 Unsupervised Neural Combinatorial Optimization

We begin by evaluating the suitability of neural SFEs for unsupervised learning of neural solvers
for combinatorial optimization problems on graphs. We use the ENZYMES, PROTEINS, IMDB,
MUTAG, and COLLAB datasets from the TUDatasets benchmark (Morris et al., 2020), using a
60/30/10 split for train/test/val. We test on two problems: finding maximum cliques, and maximum
independent sets. We compare with three neural network based methods. We compare to two common
approaches for backpropogating through discrete functions: the REINFORCE algorithm (Williams,
1992), and the Straight-Through estimator (Bengio et al., 2013). The third is the recently proposed
probabilistic penalty relaxation (Karalias & Loukas, 2020) for combinatorial optimization objectives.
All methods use the same GNN backbone, comprising a single GAT layer (Veličković et al., 2018)
followed by multiple gated graph convolution layers Li et al. (2015).

In all cases, given an input graph G = (V,E) with |V | = n nodes, a GNN produces an embedding
for each node: X ∈ Rn×d. For scalar SFEs d = 1, while for neural SFEs we consider XX⊤ in
order to produce an n × n PSD matrix, which is passed as input to the SFE F. The set function
f used is problem dependent, which we discuss below. Finally, see Appendix F for training and
hyper-parameter optimization details, and Appendix E for details on data, hardware, and software.

Maximum Clique. A set S ⊆ V is a clique of G = (V,E) if (i, j) ∈ E for all i, j ∈ S. The
MaxClique problem is to find the largest set S that is a clique: i.e., f(S) = |S| · 1{S a clique}.

Maximum Independent Set (MIS). A set S ⊆ V is an independent set of G = (V,E) if (i, j) /∈ E
for all i, j ∈ S. The goal is to find the largest S in the graph that is independent, i.e., f(S) =
|S| · 1{S an ind. set}. MIS differs significantly from MaxClique due to its high heterophily.

Results. Table 1 displays the mean and standard deviation of the approximation ratio f(S)/f(S∗) of
the solver solution S and an optimal S∗ on the test set graphs. The neural Lovaśz extension outper-
forms its scalar counterpart in 8 out of 10 cases, often by significant margins, for instance improving
a score of 0.778 on PROTEINS MaxClique to 0.926. The neural SFE proved effective at boosting
poor scalar SFE performance, e.g., 0.311 on ENZYMES MIS, to the competitive performance of
0.775. Neural Lovaśz outperformed or equalled and straight-through in 9 out of 10 cases, and the
method of Karalias & Loukas (2020) in 6 out of 10.

5.2 Constraint Satisfaction Problems

Constraint satisfaction problems ask if there exists a set satisfying a given set of conditions (Kumar,
1992; Cappart et al., 2021b). In this section, we apply SFEs to the k-clique problem: given a graph,
determine if it contains a clique of size k or more. We test on the ENZYMES and PROTEINS
datasets. Since satisfiability is a binary classification problem we evaluate using F1 score.

7

k− Lovász Lovász REINFORCE
PROTEINS (k=3)

0.4

0.6

0.8

1.0

F1
-s

co
re

k− Lovász Lovász REINFORCE
ENZYMES (k=3)

0.4

0.6

0.8

1.0

F1
-s

co
re

k− Lovász Lovász REINFORCE
PROTEINS (k=4)

0.3
0.4
0.5
0.6
0.7

F1
-s

co
re

k− Lov ́asz Lov ́asz REINFORCE

ENZYMES (k=4)
0.3
0.4
0.5
0.6
0.7

F1
-s

co
re

Figure 2: k-clique constraint satisfaction: higher F1-score is better. The k-bounded cardinality
Lovasz extension is better aligned with the task and significantly improves over the Lovász extension.

1 2 3 4 5 6
Number of Eigenvectors

0.6

0.8

1.0

Ap
pr

ox
. R

at
io ENZYMES

Approx. Ratio
Neural Lovasz
Lovasz
REINFORCE

0

10

20

se
c

/ E
po

ch
sec / Epoch

Neural Lovasz
Lovasz
REINFORCE

10−5 10−4 10−3 10−2 10−1 100

Eigenvalue Size

Fr
eq

ue
nc

y

ENZYMES

1 2 3 4 5 6
Number of Eigenvectors

0.6

0.8

1.0

Ap
pr

ox
. R

at
io PROTEINS

Approx. Ratio
Neural Lovasz
Lovasz
REINFORCE

0

20

se
c

/ E
po

ch

sec / Epoch
Neural Lovasz
Lovasz
REINFORCE

10−5 10−4 10−3 10−2 10−1 100

Eigenvalue Size

Fr
eq

ue
nc

y

PROTEINS

Figure 3: Left: Runtime and performance of neural SFEs on MaxClique using different numbers of
eigenvectors. Right: Histogram of spectrum of matrix X, outputted by a GNN trained on MaxClique.

Results. Figure 2 shows that by specifically searching over sets of size k using the cardinality
constrained Lovász extension from Section 3.1, we significantly improve performance compared to
the Lovász extension, and REINFORCE. This illustrates the value of SFEs in allowing task-dependent
considerations (in this case a cardinality constraint) to be built into extension design.

5.3 Training Error as a Classification Objective

0.0 0.2 0.4 0.6 0.8 1.0M
ax

C
liq

ue

Neural Lovász
Lovász (multiple)
Lovász

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

ENZYMES

M
IS

0.0 0.2 0.4 0.6 0.8 1.0

PROTEINS

Figure 4: Neural SFEs outperform a naive
alternative high-dimensional extension.

During training the performance of a classifier
h is typically assessed using the training error
1
n

∑n
i=1 1{yi ̸= h(xi)}. Since training error itself is

non-differentiable, it is standard to train h to optimize
a differentiable surrogate such as the cross-entropy
loss. Here we offer an alternative training method by
continuously extending the non-differentiable map-
ping ŷ 7→ 1{yi ̸= ŷ}. This map is a set function
defined on single item sets, so we use the singleton
extension (definition in Section 3.1). Our goal is to
demonstrate that the resulting differentiable loss func-
tion closely tracks the training error, and can be used
to minimize it. We do not focus on test time gener-
alization. Figure 6 shows the results. The singleton
extension loss (left plot) closely tracks the true train-
ing error at the same numerical scale, unlike other common loss functions (see Appendix G for setup
details). While we leave further consideration to future work, training error extensions may be useful
for model calibration (Kennedy & O’Hagan, 2001) and uncertainty estimation (Abdar et al., 2021).

5.4 Ablations

Number of Eigenvectors. Figure 3 compares the runtime and performance of neural SFEs using only
the top-k eigenvectors from the eigendecomposition X =

∑n
i=1 λixix

⊤
i with k ∈ {1, 2, 3, 4, 5, 6}

on the maximum clique problem. For both ENZYMES and PROTEINS, performance increases
with k—easily outperforming scalar SFEs and REINFORCE—until saturation around k = 4, while
runtime grows linearly with k. Histograms of the eigenvalues produced by trained networks show a
rapid decay in the spectrum, suggesting that the smaller eigenvalues have little effect on F.

Comparison to Naive High-Dimensional Extension. We compare neural SFEs to a naive high-
dimensional alternative which, given an n×d matrix X simply computes a scalar SFE on each column
independently and sums them up. This naive function design is not an extension, and the dependence
on the d dimensions is linearly separable, in contrast to the complex non-linear interactions between
columns of X in neural SFEs. Figure 4 shows that this naive extension, whilst improving over
one-dimensional extensions, performs considerably worse than neural SFEs.

8

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0Singleton Extension

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Cross Entropy

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Exponential

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 MSE

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Hinge

train loss
train error

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0Singleton Extension

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Cross Entropy

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Exponential

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 MSE

0 50 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0 Hinge

train loss
train error

Figure 5: Top: CIFAR10. Bottom: SVHN. The singleton extension loss (left) is the only loss that
approximates the true non-differentiable training error at the same numerical scale.

6 Related Work

Neural combinatorial optimization Our experimental setup largely follows recent work on un-
supervised neural combinatorial optimization (Karalias & Loukas, 2020; Schuetz et al., 2022; Xu
et al., 2020; Toenshoff et al., 2021; Amizadeh et al., 2018), where continuous relaxations of discrete
objectives are utilized. In that context, it is important to take into account the key conceptual and
methodological differences of our approach. For instance, in the unsupervised Erdős goes neural
(EGN) framework from Karalias & Loukas (2020), the probabilistic relaxation and the proposed
choice of distribution can be viewed as instantiating a multilinear extension. As explained earlier,
this extension is costly in the general case (since f must be evaluated 2n times, and summed) but can
be computed efficiently in closed form in certain cases. On the other hand, our extension framework
offers multiple options for efficiently computable extensions without imposing any further conditions
on the set function. For example, one could efficiently (linear time in n) compute the scalar and
neural Lovász extensions of any set function with only black-box access to the function. This renders
our framework more broadly applicable. Furthermore, EGN incorporates the problem constraints
additively in the loss function. In contrast to that, our extension framework does not require any
commitment to a specific formulation in order to obtain a differentiable loss. This provides more flex-
ibility in modelling the problem, as we can combine the cost function and the constraints in various
other ways (e.g., multiplicatively). For general background on neural combinatorial optimization, we
refer the reader to the surveys (Bengio et al., 2021; Cappart et al., 2021a; Mazyavkina et al., 2021).

Lifting to high-dimensional spaces. Neural SFEs are heavily inspired by the Goemans-Williamson
(Goemans & Williamson, 1995) algorithm and other SDP techniques (Iguchi et al., 2015), which lift
problems onto higher dimensional spaces, solve them, and then project back down. Our approach
to lifting set functions to high dimensions is motivated by the algorithmic alignment principle (Xu
et al., 2019): neural networks whose computations emulate classical algorithms often generalize
better with improved sample complexity (Yan et al., 2020; Li et al., 2020; Xu et al., 2019). Emulating
algorithmic and logical operations is the focus of Neural Algorithmic Reasoning (Veličković et al.,
2019; Dudzik & Veličković, 2022; Deac et al., 2021) and work on knowledge graphs (Hamilton et al.,
2018; Ren et al., 2019; Arakelyan et al., 2020), which also emphasize operating in higher dimensions.

Extensions. Scalar SFEs use an LP formulation of the convex closure (El Halabi, 2018, Def. 20), a
classical approach for defining convex extensions of discrete functions (Murota, 1998, Eq. 3.57). See
Bach (2019) for a study of extensions of submodular functions. The constraints of our dual LP arise
in contexts from global optimization (Tawarmalani & Sahinidis, 2002) to barycentric approximation
and interpolation schemes in computer graphics (Guessab, 2013; Hormann, 2014). Convex extensions
have also been used for combinatorial penalties with structured sparsity (Obozinski & Bach, 2012,
2016), and general minimization algorithms for set functions (El Halabi & Jegelka, 2020).

Stochastic gradient estimation. SFEs produce gradients for f requiring only black-box access.
There is a wide literature on sampling-based approaches to gradient estimation, for instance the
REINFORCE algorithm (Williams, 1992) (i.e., score function estimator). However, sampling
introduces noise which can cause unstable training and convergence issues, prompting significant

9

study of variance reducing control variates (Gu et al., 2017; Liu et al., 2018; Grathwohl et al., 2018;
Wu et al., 2018; Cheng et al., 2020). SFEs can avoid sampling (and noise) all-together, as our
extensions are differentiable and can be computed deterministically. A closely related, yet distinct,
task is to produce gradients through sampling operations, which introduce non-differentiable nodes in
neural network computation graphs. The Straight-Through Estimator (Bengio et al., 2013), arguably
the simplest solution, treats sampling as the identity map in the backward pass, yielding biased
gradient estimates. The Gumbel-Softmax trick (Maddison et al., 2017; Jang et al., 2017), provides an
alternative method to sample from categorical distributions (also benefiting from variance reduction
(Paulus et al., 2020a)). The trick can be seen through the lens of the more general Perturb-and-MAP
framework that treats sampling as a perturbed optimization program. This framework has since been
used to generalize the trick to more complex distributions (Paulus et al., 2020b) and to differentiate
through the parameters of exponential families for learning and combinatorial tasks (Niepert et al.,
2021). Broadly, these techniques relax a discrete distribution into a continuous one by utilizing a
noise distribution and assuming access to a continuous loss function. SFEs are complementary to this
setup, addressing the problem of designing continuous extensions.

Differentiating through convex programs and algorithms. Recent years have seen a surge of
interest in combining neural networks with solvers (e.g., LP solvers) and/or algorithms in differen-
tiable end to end pipelines (Agrawal et al., 2019; Amos & Kolter, 2017; Paulus et al., 2021; Pogančić
et al., 2019; Wang et al., 2019). Whilst sharing the algorithmic alignment motivation of SFEs, the
convex programming connection is mostly cosmetic: these works directly embed solvers into network
architectures, while SFEs use convex programs as an analytical tool, without requiring solver access.

7 Conclusion

We introduced Neural Set Function Extensions, a framework that enables evaluating set functions on
continuous and high dimensional representations. We showed how to construct such extensions and
demonstrated their viability in a range of tasks including combinatorial optimization and image clas-
sification. Notably, neural extensions deliver good results and improve over their scalar counterparts,
further affirming the benefits of problem-solving in high dimensions.

8 Acknowledgements

NK would like to thank Marwa El Halabi, Mario Sanchez, Mehmet Fatih Sahin, and Volkan Cevher
for the feedback and fruitful discussions. NK and AL would like to thank the Swiss National Science
Foundation for supporting this work in the context of the project “Deep Learning for Graph-Structured
Data” (grant number PZ00P2179981). SJ and JR acknowledge support from NSF CAREER award
1553284, NSF award 1717610, and the NSF AI Institute TILOS.

10

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information Fusion, 76:243–297, 2021.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in Neural Information Processing Systems,
32:9562–9574, 2019.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An
unsupervised differentiable approach. In International Conference on Learning Representations,
2018.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query answering
with neural link predictors. In International Conference on Learning Representations, 2020.

Federico Ardila, Carolina Benedetti, and Jeffrey Doker. Matroid polytopes and their volumes.
Discrete & Computational Geometry, 43(4):841–854, 2010.

Francis Bach. Submodular functions: from discrete to continuous domains. Mathematical Program-
ming, 175(1):419–459, 2019.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new features and speed
improvements. arXiv preprint arXiv:1211.5590, 2012.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

Jeff Bilmes. Submodularity in machine learning and artificial intelligence. arXiv preprint
arXiv:2202.00132, 2022.

G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set function subject to a
matroid constraint. SIAM J. Computing, 40(6), 2011.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. arXiv preprint
arXiv:2102.09544, 2021a.

11

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. In Zhi-Hua
Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pp. 4348–4355. International Joint Conferences on Artificial Intelligence Organization,
8 2021b. doi: 10.24963/ijcai.2021/595. URL https://doi.org/10.24963/ijcai.2021/595.
Survey Track.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Ching-An Cheng, Xinyan Yan, and Byron Boots. Trajectory-wise control variates for variance
reduction in policy gradient methods. In Conference on Robot Learning, pp. 1379–1394. PMLR,
2020.

Gustave Choquet. Theory of capacities. In Annales de l’institut Fourier, volume 5, pp. 131–295,
1954.

Andreea-Ioana Deac, Petar Veličković, Ognjen Milinkovic, Pierre-Luc Bacon, Jian Tang,
and Mladen Nikolic. Neural algorithmic reasoners are implicit planners. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 15529–15542. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
82e9e7a12665240d13d0b928be28f230-Paper.pdf.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Andrew Dudzik and Petar Veličković. Graph neural networks are dynamic programmers. arXiv
preprint arXiv:2203.15544, 2022.

Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Optimiza-
tion—Eureka, You Shrink!, pp. 11–26. Springer, 2003.

Marwa El Halabi. Learning with structured sparsity: From discrete to convex and back. Technical
report, EPFL, 2018.

Marwa El Halabi and Stefanie Jegelka. Optimal approximation for unconstrained non-submodular
minimization. In International Conference on Machine Learning, pp. 3961–3972. PMLR, 2020.

Marwa El Halabi, Francis Bach, and Volkan Cevher. Combinatorial penalties: Which structures
are preserved by convex relaxations? In International Conference on Artificial Intelligence and
Statistics, pp. 1551–1560. PMLR, 2018.

James E Falk and Karla R Hoffman. A successive underestimation method for concave minimization
problems. Mathematics of operations research, 1(3):251–259, 1976.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
ICLR (Workshop on Representation Learning on Graphs and Manifolds), volume 7, 2019.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. In International
Conference on Learning Representations, 2018.

M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid algorithm and its consequences in combina-
torial optimization. Combinatorica, 1:499–513, 1981.

S Gu, T Lillicrap, Z Ghahramani, RE Turner, and S Levine. Q-prop: Sample-efficient policy gradient
with an off-policy critic. In 5th International Conference on Learning Representations, ICLR
2017-Conference Track Proceedings, 2017.

12

https://doi.org/10.24963/ijcai.2021/595
https://proceedings.neurips.cc/paper/2021/file/82e9e7a12665240d13d0b928be28f230-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/82e9e7a12665240d13d0b928be28f230-Paper.pdf

Allal Guessab. Generalized barycentric coordinates and approximations of convex functions on
arbitrary convex polytopes. Computers & Mathematics with Applications, 66(6):1120–1136, 2013.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.
gurobi.com.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding logical
queries on knowledge graphs. Advances in neural information processing systems, 31, 2018.

Kai Hormann. Barycentric interpolation. In Approximation Theory XIV: San Antonio 2013, pp.
197–218. Springer, 2014.

Takayuki Iguchi, Dustin G Mixon, Jesse Peterson, and Soledad Villar. On the tightness of an sdp
relaxation of k-means. arXiv preprint arXiv:1505.04778, 2015.

Rishabh Iyer, Stefanie Jegelka, and Jeff Bilmes. Monotone closure of relaxed constraints in submod-
ular optimization: Connections between minimization and maximization: Extended version. In
UAI, 2014.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In Int.
Conf. on Learning Representations (ICLR), 2017.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. In NeurIPS, 2020.

Marc C Kennedy and Anthony O’Hagan. Bayesian calibration of computer models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464, 2001.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI magazine, 13(1):32–32,
1992.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Yujia Li, Felix Gimeno, Pushmeet Kohli, and Oriol Vinyals. Strong generalization and efficiency in
neural programs. arXiv preprint arXiv:2007.03629, 2020.

Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-dependent
control variates for policy optimization via stein identity. In International Conference on Learning
Representations, 2018.

László Lovász. Submodular functions and convexity. In Mathematical programming the state of the
art, pp. 235–257. Springer, 1983.

László Lovász and Alexander Schrijver. Cones of matrices and set-functions and 0–1 optimization.
SIAM journal on optimization, 1(2):166–190, 1991.

C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous relaxation of discrete
random variables. In Int. Conf. on Learning Representations (ICLR), 2017.

J-L Marichal. An axiomatic approach of the discrete choquet integral as a tool to aggregate interacting
criteria. IEEE transactions on fuzzy systems, 8(6):800–807, 2000.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

D.S. Meek. The inverses of toeplitz band matrices. Linear Algebra and its Applications, 49:
117–129, 1983. ISSN 0024-3795. doi: https://doi.org/10.1016/0024-3795(83)90097-6. URL
https://www.sciencedirect.com/science/article/pii/0024379583900976.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

13

https://www.gurobi.com
https://www.gurobi.com
https://www.sciencedirect.com/science/article/pii/0024379583900976

Kazuo Murota. Discrete convex analysis. Mathematical Programming, 83(1):313–371, 1998.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: Backpropagating through
discrete exponential family distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 14567–14579. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper/2021/file/7a430339c10c642c4b2251756fd1b484-Paper.pdf.

Guillaume Obozinski and Francis Bach. Convex Relaxation for Combinatorial Penalties. PhD thesis,
INRIA, 2012.

Guillaume Obozinski and Francis Bach. A unified perspective on convex structured sparsity: Hierar-
chical, symmetric, submodular norms and beyond. 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Anselm Paulus, Michal Rolinek, Vit Musil, Brandon Amos, and Georg Martius. Comboptnet: Fit the
right np-hard problem by learning integer programming constraints. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 8443–8453. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/paulus21a.html.

Max B Paulus, Chris J Maddison, and Andreas Krause. Rao-blackwellizing the straight-through
gumbel-softmax gradient estimator. In International Conference on Learning Representations,
2020a.

Max Benedikt Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison. Gradient
estimation with stochastic softmax tricks. In NeurIPS 2020, 2020b.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differenti-
ation of blackbox combinatorial solvers. In International Conference on Learning Representations,
2019.

Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. In International Conference on Learning Representations,
2019.

Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis. Cambridge
university press, 2004.

Mohit Tawarmalani and Nikolaos V Sahinidis. Convex extensions and envelopes of lower semi-
continuous functions. Mathematical Programming, 93(2):247–263, 2002.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maximum
constraint satisfaction. Frontiers in artificial intelligence, 3:98, 2021.

William F Trench. Inversion of toeplitz band matrices. Mathematics of computation, 28(128):
1089–1095, 1974.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

14

https://proceedings.neurips.cc/paper/2021/file/7a430339c10c642c4b2251756fd1b484-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7a430339c10c642c4b2251756fd1b484-Paper.pdf
https://proceedings.mlr.press/v139/paulus21a.html

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. In International Conference on Learning Representations, 2019.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021.
ISSN 2666-3899.

J. Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model.
In Symposium on Theory of Computing (STOC), 2008.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning, pp. 6545–6554. PMLR, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. In International Conference on Learning Representations, 2018.

Hao Xu, Ka-Hei Hui, Chi-Wing Fu, and Hao Zhang. Tilingnn: learning to tile with self-supervised
graph neural network. ACM Transactions on Graphics (TOG), 39(4):129–1, 2020.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In International Conference on Learning Representations,
2019.

Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi. Neural
execution engines: Learning to execute subroutines. Advances in Neural Information Processing
Systems, 33, 2020.

Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2015.

Li Yujia, Tarlow Daniel, Brockschmidt Marc, Zemel Richard, et al. Gated graph sequence neural
networks. In International Conference on Learning Representations, 2016.

15

	Introduction
	Problem Setup
	Scalar Set Function Extensions
	Constructing Scalar Set Function Extensions

	Neural Set Function Extensions
	Lifting Set Function Extensions to Higher Dimensions
	Constructing Neural Set Function Extensions

	Experiments
	Unsupervised Neural Combinatorial Optimization
	Constraint Satisfaction Problems
	Training Error as a Classification Objective
	Ablations

	Related Work
	Conclusion
	Acknowledgements
	Optimization programs: extended discussion
	LP formulation: Derivation of the dual.
	Connections to submodularity, related linear programs, and possible alternatives.
	SDP formulation: The geometric intuition of extensions and deriving the dual.

	Scalar Set Function Extensions Have No Bad Minima
	Examples of Vector Set Function Extensions
	Lovász extension.
	Bounded cardinality Lovaśz extension.
	Singleton extension.
	Permutations and Involutory Extension.
	Multilinear extension.

	Neural Set Function Extensions
	General Experimental Background Information
	Hardware and Software Setup
	Data Details

	Unsupervised Neural Combinatorial Optimization Experiments
	Discrete Objectives
	Neural SFE details.
	Baselines.
	k-Clique Constraint Satisfaction

	Training error as an objective
	Pseudocode: A forward pass of Scalar and Neural SFEs
	Further Discussion
	Limitations and Future Directions
	Broader Impact

