
Logical Credal Networks
Supplementary Material

Radu Marinescu
IBM Research

radu.marinescu@ie.ibm.com

Haifeng Qian
AWS AI Labs

qianhf@amazon.com

Alexander Gray
IBM Research

alexander.gray@ibm.com

Debarun Bhattacharjya
IBM Research

debarunb@us.ibm.com

Francisco Barahona
IBM Research

barahon@us.ibm.com

Tian Gao
IBM Research

tgao@us.ibm.com

Ryan Riegel
IBM Research

ryan.riegel@ibm.com

Pravinda Sahu
IBM Consulting

pravisah@in.ibm.com

A Bayesian and Credal Networks

A Bayesian network (BN) [13] is defined by a tuple ⟨X,D,P, G⟩, where X = {X1, . . . , Xn} is
a set of variables over multi-valued domains D = {D1, . . . , Dn}, G is a directed acyclic graph
(DAG) over X as nodes, and P = {Pi} where Pi = P (Xi|pa(Xi)) are conditional probability tables
(CPTs) associated with each variable Xi and pa(Xi) are the parents of Xi in G. A belief network
represents a joint probability distribution over X, P (X) =

∏n
i=1 P (Xi|pa(Xi)). An evidence set e

is an instantiated set of variables.

Given evidence e, computing the probability of evidence is given by:

P (e) =
∑
X

n∏
i=1

P (Xi|pa(Xi)) (A.1)

Similarly, the posterior marginal probability of a variable Xj given evidence e is given by:

P (Xj |e) =
1

P (e)
·
∑
X\Xj

n∏
i=1

P (Xi|pa(Xi)) (A.2)

A credal set is a set of probability distributions for a variable X and is typically denoted by K(X) [9].
Credal sets generalize probability intervals and belief functions, thus offering a general framework
for representation and reasoning with imprecise probabilities.

We consider closed convex sets of probability distributions. Given a credal set K(X) and a function
f(X), the lower and upper expectations of f(X) denoted by E[f(X)] and E[f(X)] are defined
respectively as:

E[f(X)] = min
P (X)∈K(X)

EP [f(X)] (A.3)

E[f(X)] = max
P (X)∈K(X)

EP [f(X)] (A.4)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure A.1: A Bayesian network (left) and a credal network (right) with binary variables.

where EP [f(X)] indicates standard expectation. Similarly, the lower probability and upper probabil-
ity of an event A are defined respectively as:

P (A) = min
P (X)∈K(X)

P (A)] (A.5)

P (A) = max
P (X)∈K(X)

P (A)] (A.6)

A set of probability distributions, its convex hull and its vertices produce the same lower and upper
expectations as well as the same lower and upper probabilities.

Conditioning is equated to element-wise application of Bayes rule in a credal set; the posterior credal
set is the union of all posterior probability distributions. A conditional credal set K(X|Y = y)
contains conditional probability distributions P (X|Y = y) for random variables X and Y .

Credal sets are typically specified by listing constraints on probability values. If a credal set is closed
and convex, then it can be described by listing its extreme points (and taking the convex hull). For
example, given a binary variable X , a closed convex credal set K(X) is fully captured by a single
closed interval [P (X = 1), P (X = 1)].

A credal network (CN) [4] is defined by a pair (G,K), where G is a DAG over discrete variables X
and K is a set of conditional credal sets K(Xi|pa(Xi)) each one associated with a variable Xi ∈ X
and its parents pa(Xi) in G. We consider separately specified credal networks where each variable Xi

and each configuration πik of its parents pa(Xi) in G is associated with a closed convex conditional
credal set K(Xi|pa(Xi) = πik) which is specified separately from all others, namely there are no
constraints among distributions in these sets.
Example 1. Figure A.1 (left) shows a Bayesian network with 8 binary variables while Figure A.1
(right) shows a simple credal network with 6 binary variables {A,B,C,D,E, F}. In this case, each
of the conditional credal sets associated with the variables is given by a closed interval. Therefore,
we have that P (a0) ∈ [0.5, 0.6] and P (a1) ∈ [0.4, 0.5], respectively, where a0 and a1 are the values
of variable A in the credal network.

B Exact Inference in LCNs

Consider the following LCN:

0.6 ≤ P (a ∧ b) ≤ 1 (B.1)
0 ≤ P (a | c) ≤ 0.2 (B.2)
0 ≤ P (a | ¬c) ≤ 0.8 (B.3)
0 ≤ P (b | d) ≤ 0.7 (B.4)
0 ≤ P (b | ¬d) ≤ 0.3 (B.5)

2

where τ = True for the sentences. The implied constraints by the Markov condition are: c and d are
independent; a is conditionally independent of d given b and c; b is conditionally independent of c
given a and d.

Define sixteen variables p0,0,0,0, p0,0,0,1, · · · , p1,1,1,1 to represent the probabilities of the sixteen
interpretations, where the four bits in subscript represent the truth values of a, b, c and d respectively.
For example, p0,0,0,0 is the probability that a, b, c and d are all false.

Consider a query on the marginal probability of P (c). We formulate two optimization problems:

pi,j,k,l ≥ 0 , ∀i, j, k, l ∈ {0, 1} (B.6)∑
i,j,k,l∈{0,1}

pi,j,k,l = 1 (B.7)

∑
k,l∈{0,1}

p1,1,k,l ≥ 0.6 (B.8)

∑
j,l∈{0,1}

p1,j,1,l ≤ 0.2 ·
∑

i,j,l∈{0,1}

pi,j,1,l (B.9)

∑
j,l∈{0,1}

p1,j,0,l ≤ 0.8 ·
∑

i,j,l∈{0,1}

pi,j,0,l (B.10)

∑
i,k∈{0,1}

pi,1,k,1 ≤ 0.7 ·
∑

i,j,k∈{0,1}

pi,j,k,1 (B.11)

∑
i,k∈{0,1}

pi,1,k,0 ≤ 0.3 ·
∑

i,j,k∈{0,1}

pi,j,k,0 (B.12)

∑
i,j,l∈{0,1}

pi,j,1,l ·
∑

i,j,k∈{0,1}

pi,j,k,1 =
∑

i,j∈{0,1}

pi,j,1,1 (B.13)

∑
l∈{0,1}

p1,0,0,l ·
∑

i∈{0,1}

pi,0,0,1 = p1,0,0,1 ·
∑

i,l∈{0,1}

pi,0,0,l (B.14)

∑
l∈{0,1}

p1,0,1,l ·
∑

i∈{0,1}

pi,0,1,1 = p1,0,1,1 ·
∑

i,l∈{0,1}

pi,0,1,l (B.15)

∑
l∈{0,1}

p1,1,0,l ·
∑

i∈{0,1}

pi,1,0,1 = p1,1,0,1 ·
∑

i,l∈{0,1}

pi,1,0,l (B.16)

∑
l∈{0,1}

p1,1,1,l ·
∑

i∈{0,1}

pi,1,1,1 = p1,1,1,1 ·
∑

i,l∈{0,1}

pi,1,1,l (B.17)

∑
k∈{0,1}

p0,1,k,0 ·
∑

j∈{0,1}

p0,j,1,0 = p0,1,1,0 ·
∑

j,k∈{0,1}

p0,j,k,0 (B.18)

∑
k∈{0,1}

p0,1,k,1 ·
∑

j∈{0,1}

p0,j,1,1 = p0,1,1,1 ·
∑

j,k∈{0,1}

p0,j,k,1 (B.19)

∑
k∈{0,1}

p1,1,k,0 ·
∑

j∈{0,1}

p1,j,1,0 = p1,1,1,0 ·
∑

j,k∈{0,1}

p1,j,k,0 (B.20)

∑
k∈{0,1}

p1,1,k,1 ·
∑

j∈{0,1}

p1,j,1,1 = p1,1,1,1 ·
∑

j,k∈{0,1}

p1,j,k,1 (B.21)

maximize/minimize
∑

i,j,l∈{0,1}

pi,j,1,l (B.22)

Constraints (B.6)(B.7) ensure that the sixteen variables are a valid probability distribution. (B.8–B.12)
are explicit and linear constraints from the LCN sentences (B.1–B.5). (B.13–B.21) are implicit and
quadratic constraints from the Markov condition, and they have been reduced using techniques from
[1]. By maximizing and minimizing the objective function (B.22), we obtain the upper and lower
bounds for P (c), which are 0.33 and 0 respectively. For another query on the posterior probability of

3

P (a | b), we replace (B.22) with the following objective:∑
k,l∈{0,1} p1,1,k,l∑
i,k,l∈{0,1} pi,1,k,l

(B.23)

and the resulting interval is [0.85, 1]. In some scenarios we may be interested in the model with the
maximum entropy [3] and therefore minimize the following objective instead.∑

i,j,k,l∈{0,1}

pi,j,k,l · log pi,j,k,l (B.24)

Complexity Given an LCN L with n atomic formulas, the corresponding quadratic program P has
N = 2n variables corresponding to all of L’s interpretations. Solving P is NP-hard in general [12],
and therefore the complexity of exact inference in LCNs can be bounded by O(exp(N)), where N is
the number of variables.

C Details of the Mastermind Experiments

C.1 Puzzle Generation

Algorithm C.1 specifies how the puzzles are generated. The reason that we run Knuth’s algorithm
three times is to obtain a longer board and thereby reduce the number of MAP ties that have the same
posterior probabilities. With three, most of the puzzles have a single MAP code to be used as the
ground truth. In the case that there are multiple MAP codes, we consider an inference algorithm
correct if it guesses any one of them.

Algorithm C.1 Generate a Mastermind puzzle.

1: Sample a hidden code from uniform distribution.
2: Sample each P (li) uniformly from [0.3,0.7].
3: Run Knuth’s algorithm 3 times until success or contradiction. Each li is sampled according to

P (li) from step 2. If li = True, uniformly sample a feedback from possible lies.
4: If the hidden code is guessed in any of the 3 runs, exit.
5: Save the board as a puzzle.
6: Compute the exact MAP as the ground truth.

Figure C.1 illustrates one puzzle generated by Algorithm C.1. Each row has two parts: the first is
a guess by Knuth’s algorithm, which is composed of 4 colored pegs out of six possible colors, the
second part is the feedback which may or may not be a lie.

In addition to puzzles, we also need to generate knowledge as in (25-28) and alike. As shown,
the formulas are AND/OR of two consecutive li’s, and they alternate between AND and OR. Note
that we could replace them with arbitrary formulas. For each formula, we first compute the exact
point probability p based on the P (li) values from step 2 of Algorithm C.1. Then we compute the
widest probability interval [x, y] for this formula if P (li) could take any value in [0.3,0.7]: for AND,
x = 0.09 and y = 0.49; for OR, x = 0.51 and y = 0.91. Then we sample a number uniformly from
[x, p] as the lower bound for the formula, and sample a number uniformly from [p, y] as the upper
bound. This ensures that the knowledge in sentences like (25-28) are correct.

C.2 Details on Puzzle Solving

Figure C.2 depicts the structure of the Bayesian network associated with our Mastermind puzzles
with uncertainty. Specifically, variables {h1, h2, h3, h4} correspond to the hidden code and they all
have a domain of size 6 corresponding to the available colors. Variables {e1, e2, . . . , ek} correspond
to the feedback received from the code-maker and they all have a domain of 14 values corresponding
to all possible combinations of black and white feedback pegs. Variables {l1, l2, . . . , lk} are Boolean
variables which indicate whether the code-maker lied or not when he provided the feedback in each
of the rounds. k is 11 for the example of Figure C.1 and it varies for different puzzles.

The parameters of the network are determined as follows. P (li) is sampled uniformly from [0.3, 0.7]
for each puzzle. P (hi) is a uniform distribution such that P (hi = ci) = 1/6 where ci ∈ {1, 2, . . . , 6}

4

Figure C.1: An example Mastermind puzzle.

Figure C.2: The structure of the Bayesian network of the Mastermind puzzle.

5

is one of the 6 colors used. For P (ej |h1, h2, h3, h4, lj) we distinguish 2 cases, depending on the
value of lj .

• If lj = false (i.e., code-maker doesn’t lie) then we have that P (ej = f |h1 = c1, h2 =
c2, h3 = c3, h4 = c4, lj = false) = 1 if the feedback value f is the correct feedback for
the jth guess on the board and with code (c1, c2, c3, c4) as the hidden code; P (ej = f |h1 =
c1, h2 = c2, h3 = c3, h4 = c4, lj = false) = 0 otherwise. For example, in Figure C.1, the
highlighted fifth guess is (green,green,purple,purple), and therefore for the ground truth as
(c1, c2, c3, c4) we would have P (e5 = “1_1”|h1 = blue, h2 = purple, h3 = brown, h4 =
purple, lj = false) = 1 and it is zero for any feedback other than “1_1”.

• If lj = true (i.e., code-maker lies) then we have that P (ej = f |h1 = c1, h2 = c2, h3 =
c3, h4 = c4, lj = true) = 1/L if the feedback value f is a false yet possible feedback for
the jth guess on the board and with code (c1, c2, c3, c4) as the hidden code, and L is the
number of possible lies; P (ej = f |h1 = c1, h2 = c2, h3 = c3, h4 = c4, lj = true) = 0
otherwise. For example, let us consider again the highlighted fifth guess in Figure C.1 and
the ground truth as (c1, c2, c3, c4). Out of all 14 feedbacks, “1_1” is the correct feedback,
“1_3” is an impossible feedback for this guess of (green,green,purple,purple). Therefore
we have L = 14 − 2 = 12 and P (e5 = f |h1 = blue, h2 = purple, h3 = brown, h4 =
purple, lj = true) = 1/12 for any f other than “1_1” and “1_3”.

The inference task of is to compute the hidden code:

argmaxc1,c2,c3,c4
P (h1 = c1, · · · , h4 = c4 | e1, · · · , ek) (C.1)

However, the inference algorithms do not have a complete specification of the Bayesian network
of Figure C.2: rather than having the point values of P (li), they have (25-28) instead. We also
note that we solve (D.1) in a brute-force manner, namely we explicitly enumerate the hidden code
configurations, and for each configuration we solve a marginal inference problem P (q|e1, ..., ek)
where q ≜ q1 ∧ q2 ∧ q3 ∧ q4 such that qj is the color assignment to the jth code variable hj = cj ,
and e1, ..., ek represents the feedback.

LCN(maxent) is an LCN variant that computes a joint distribution P (l1, . . . , lk) of the li variables
with the greatest entropy and uses that to determine P (li) in each round. Specifically, let l1, . . . , lk
denote the lie variables and let pl1..lk denote the variables representing the probabilities of all
interpretations of l1, . . . , lk. Note that we have 2k interpretations (and as many pl1..lk variables).
We then solve a QP to determine the max entropy P (l1, . . . , lk), where the objective is to minimize∑

l1..lk∈{0,1} pl1..lk log pl1..lk subject to the constraints (25)-(28) as well as the constraints ensuring
that the obtained distribution is a proper probability distribution, i.e.,

∑
l1..lk∈{0,1} pl1..lk = 1 and

pl1..lk ≥ 0 ∀l1..lk ∈ {0, 1}. Since we assume that variables li are independent of each other (see
Fig. D.2), it follows that P (l1, . . . , lk) =

∏k
i=1 P (li) and therefore, we obtain each of the marginal

distributions P (li) by marginalizing the joint distribution. Finally, LCN(maxent) determines the most
likely hidden code by solving Equation (D.1) as a standard Marginal MAP task in the Bayesian
network from Figure D.2.

Regarding the MLN formulation, we also note that because each puzzle is sampled from a different
underlying Bayesian network, it is impossible to train the MLN weights.

D Details of the Credit Card Fraud Detection Experiments

We note that when we create the train and test sets for the 10 tasks, we sample accounts rather than
transactions; in other words, transactions from the same account are either all included in a test set or
all excluded from it. Moreover, since the training data contains only single-transaction accounts, the
above logic rules and the quantification of their certainty can only come from human experts. The
task is therefore how to utilize both knowledge from the training data and knowledge from experts to
best detect fraudulent transactions in the test set.

The LCN for credit card fraud detection task is the following. Let X denote the binary Is-Fraud
variable; let Fi denote the ith feature variable in the Naive Bayes classifier, and let fi,j denotes the
jth possible value for Fi; let c0,i,j denote the probability of Fi = fi,j in legitimate transactions in

6

Figure D.1: Bayesian/credal network structure for credit card fraud.

training data, and let c1,i,j denote that for fraudulent ones; let cX denote the fraction of fraudulent
transactions in training data; let A1, A2, A3 denote the antecedents in the three logic rules.

cX ≤ P (X) ≤ cX (D.1)
c0,i,j ≤ P (Fi = fi,j | ¬X) ≤ c0,i,j , ∀i, j (D.2)
c1,i,j ≤ P (Fi = fi,j | X) ≤ c1,i,j , ∀i, j (D.3)

0.65 ≤ P (A′
1) ≤ 0.74 (D.4)

0.31 ≤ P (A′
2) ≤ 0.66 (D.5)

0.44 ≤ P (A′
3) ≤ 0.72 (D.6)

1 ≤ P (X | A1 ∧A′
1) ≤ 1 (D.7)

1 ≤ P (X | A2 ∧A′
2) ≤ 1 (D.8)

1 ≤ P (X | A3 ∧A′
3) ≤ 1 (D.9)

The first three equations (D.1)(D.2)(D.3) are exactly the Naive Bayes model. The latter six equa-
tions use three auxiliary variables A′

1, A
′
2, A

′
3, and the effect is similar to the noisy-OR model in

Bayesian_midpoint and Credal. However, unlike credal/Bayesian networks, LCN does not require
unique-assessment assumption and therefore (D.1) is still allowed. Table 2 shows that this flexibility
of LCN results in substantial performance gains.

We used an MLN encoding of the NaiveBayes model extended with the three logic rules
as follows: if pmid is the midpoint of one of the three probability intervals then we add
antecedent∧consequent with weight log (pmid) and antecedent∧¬consequent with
weight log (1− pmid), respectively. We note that because the training data contains no account
history, it is impossible to train the MLN weights.

Let t = (F1 = f1, · · · , F16 = f16) be a transaction in the test set, where Fi = fi means that feature
Fi takes value fi. We then compute P (X|e), and P (¬X|e), where e is evidence, namely e = {F1 =

7

f1, · · · , F16 = f16, A1, A2, A3}. We label the transaction as fraud if P (X|e) > P (¬X|e). Note
that in this case the maximin and maximax criteria give the same result because the posterior interval
for P (X|e) determines the one for P (¬X|e) (i.e., let [l, u] be the posterior interval for P (X|e), then
[1− u, 1− l] is the posterior interval for P (¬X|e)). Once we label all transaction in the test set, we
compare with the actual labels and subsequently determine the F1 score for the test set. Recall that
the F1 score is:

F1 =
tp

tp+ 1
2 (fp+ fn)

(D.10)

where tp stands for true positives, fp stands for false positive, and fn stands for false negatives.

Figure D.1 depicts the structure of Bayesian/credal network we used in this experiment. The prior
probabilities and intervals for P (Ai) were set to 0.5 and [0, 1], respectively. Furthermore, P (Fi|X)
are derived from equations (D.2) and (D.3), while P (X|A1, A2, A3) is modeled as a standard Noisy-
OR conditional probability distribution. For example P (X|A1, A2, A3) = 1− (1− a1) · (1− a2) ·
(1− a3) where P (X|A1) = a1, P (X|A2) = a2 and P (X|A3) = a3 are estimated from the training
data.

E Additional Related Work

Probabilistic logic combines probabilities with classical logic, thus providing a unified framework
for representation and reasoning with complex concepts and relations under uncertainty. Several
probabilistic logic formalisms have been proposed over the past decades.

Nilsson’s probabilistic logic [10, 11] is perhaps the first system that provides a semantical generaliza-
tion of first-order logic in which the truth values of logical sentences (or formulas) can range between
0 and 1 and are interpreted as the probability of those sentences being true. The formalism allows
computing lower and upper bounds on the probability of a query formula.

Bayesian logic [1] combines probabilistic logic and Bayesian networks in order to capture condi-
tional independence relations among propositions. In addition, there is no need to give a complete
specification or prior and conditional probabilities as it is required for Bayesian networks. The model
allows specifying bounds on conditional probabilities. Nonlinear programming is used to compute a
range of probabilities (interval) for a query formula.

Markov Logic Networks (MLN) [15] is a probabilistic logic which applies the ideas of a Markov
network to first-order logic, enabling uncertain inference. MLNs generalize first-order logic, in the
sense that, in a certain limit, all unsatisfiable statements have a probability of zero, and all tautologies
have probability one. Briefly, an MLN is a collection of formulas from first-order logic, to each
of which is assigned a real number, the weight. The weights are used to define a joint probability
distribution over all possible interpretations of the logic formulas.

Probabilistic Soft Logic (PSL) [7] is a probabilistic logic that combines graphical models (Markov
networks) with soft or real-valued logic (e.g., Lukasiewicz logic). Inference in PSL is formalized as a
convex optimization problem with a hinge-loss objective function.

Probabilistic Logic Programs (PLP) [14] are logic programs in which some of the facts are annotated
with probabilities. In general, a logic program is a set of rules where each rule is a universally
quantified expression of the form h : −b1, b2, ..., bn, where h is an atom and b1, ..., bn are literals.
ProbLog is a well known implementation of PLP.

Probabilistic Logic Networks (PLN) [8] is a kind of probabilistic logic that associates probabilities to
the truth values of the logic formulas. The truth values are represented by intervals and are associated
with a credibility value which is also a real number between 0 and 1. However, the PLN semantics
are different from LCN’s.

Stochastic Logic Programs (SLP) [5] is a probabilistic extension of a normal logic program that
has been proposed as a flexible way of representing complex probabilistic knowledge; generalising,
for example, Hidden Markov Models, Stochastic Context-Free Grammars and Markov networks.
Specifically, an SLP is a logic program where some of the predicates have non-negative numbers
attached to the clauses which make up their definitions.

8

Probabilistic Databases (PDB) [2] are relational databases where each tuple of a relation is associated
with a real value between 0 and 1 indicating the probability that the tuple belongs to the database. The
central problem in PDBs is query evaluation which can be viewed as a counting task on a graphical
model that represents the probabilistic database. Temporal Probabilistic Databases (TP) [6] extend
PDBs with temporal information. Specifically, each tuple in a relation is associated with a probability
value as well as a temporal interval [a, b] where a and b are units of time and a ≤ b (or sometimes
just timestamps). Query evaluation in TPs handles the temporal intervals using a special temporal
algebra and separately from probabilities.

We note that MLN, PSL, PLP, SLP, PDB and TP do not allow specifying probability bounds (i.e.,
lower and upper bounds). More importantly, our proposed LCN is the only method that can solve
effectively the uncertain Mastermind puzzles as well as the credit card fraud detection with uncertain
expert knowledge applications.

References
[1] K. Andersen and J. Hooker. Bayesian logic. Decision Support Systems, 11(2):191–210, 1994.

[2] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In Proceedings of 13th
International Conference on Very Large Data Bases (VLDB), pages 71–81, 1987.

[3] Peter Cheeseman. A method of computing generalized bayesian probability values for expert
systems. In Proceedings of the International Joint Conference on Artificial Intelligence, pages
198–202, 1983.

[4] F. Cozman. Credal networks. Artificial Intelligence, 120(2):199–233, 2000.

[5] J. Cussens. Stochastic logic programs: Sampling, inference and applications. In Uncertainty in
Artificial Intelligence (UAI), pages 115–122, 2000.

[6] Maximilian Dylla, Iris Miliaraki, and Martin Theobald. A temporal-probabilistic database
model for information extraction. In Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB), pages 1810–1821, 2013.

[7] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning (Adaptive Computation
and Machine Learning). MIT Press, 2007.

[8] B. Goertzel, M. Ikle, I. Lyon Freire Goertzel, and A. Heljakka. Probabilistic Logic Networks:
A Comprehensive Conceptual, Mathematical and Computational Framework for Uncertain
Inference. Springer, 2008.

[9] I. Levi. The Enterprise of Knowledge. MIT Press, 1980.

[10] N. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.

[11] N. Nilsson. Probabilistic logic revisited. Artificial Intelligence, 59(1-2):39–42, 1994.

[12] P. Pardalos and S. Vavasis. Quadratic programming with one negative eigenvalue is (strongly)
np-hard. Journal of Global Optimization, 1(1):15–22, 1991.

[13] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[14] L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton. Probabilistic Inductive Logic
Programming - Theory and Applications. Springer, 2008.

[15] M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-2):107–136,
2006.

9

	Bayesian and Credal Networks
	Exact Inference in LCNs
	Details of the Mastermind Experiments
	Puzzle Generation
	Details on Puzzle Solving

	Details of the Credit Card Fraud Detection Experiments
	Additional Related Work

