
Supplement to: Drawing out of Distribution with
Neuro-Symbolic Generative Models

A Dataset Details

All dataset images are scaled to 50x50 in grayscale, with dataset-specific configuration list below.

MNIST, KMNIST: we use the original split of with 60k images for training, 10k for tests. Each
image belongs to 1 of the 10 classes.

EMNIST: we use the “balanced” split of the dataset with 112,800 training images and 18,800 testing
images, separated into 47 classes.

QuickDraw: we use the 10-category version of dataset, where each has 4k/1k training/testing
samples, as found on https://github.com/XJay18/QuickDraw-pytorch.

Omniglot: we use the original split [24], with inverted black and white pixels. For one-shot classifi-
cation (§ 3.2), we use the original task-split, as found on https://github.com/brendenlake/
omniglot. It has 20 episodes, each a 20-way, 1-shot, within-alphabet classification task.

B Model Details

B.1 Differentiable Renderer

Bézier curves are parametric curves commonly used in computer graphics to define smooth, continu-
ous curves. The renderer outputs a greyscale, pixel-based image when takes in a stroke s̃t defined as
an array of control-point coordinates for a Bézier curve. It has three parameters (σt, ωt

0, ω1); the first
two are per-stroke and ω1 is per-character. It renders a stroke through two steps: 1) compute a sample
curve based on the control points; 2) rasterize the output image from the sample curve as described
below.

With (D + 1) control points, s̃t = [ptd]
D
d=0, each with their x, y coordinates, a sample curve with S

sample points can be computed using the explicit definition of Bézier curves, where n is one of the S
numbers ranging [0, 1]:

bt
n =

D∑
d=0

(
D

d

)
(1− n)D−jndpd (10)

In our case, we use S = 100 samples spaced evenly between [0, 1].

With S points [bt
n]

S
n=1, an image ˜̃xt, with pixels indexed by indexed by h ∈ [0, H−1], w ∈ [0,W−1]

where H,W are image dimensions, can be rasterized. Its pixel intensity ˜̃xthw is given by:

˜̃xthw =
∑
n

(h− bt
n,x)

2(w − bt
n,y)

2

(σt)2
(11)

where bt
n,x,b

t
n,y stands for the x, y coordinates of the sample point bt

n, and σt is the renderer
parameter roughly in control of the blur of the rendering output.

As an effect of this rasterizing procedure, the pixel intensity can be arbitrarily large. To normalize it
to be always inside [0, 1], we apply a max-normalization followed by a parametrized tanh function
to get per-stroke renderings xt (this corresponds to the xt introduced in the Rendering Module of
§ 2.1):

¯̄xt = maxnorm(˜̃xt) =
˜̃xt

max(˜̃xt)
(12)

xthw = normalize_stroke(¯̄xthw;ω
t
0) = tanh

(
¯̄xthw
ωt
0

)
(13)

12

https://github.com/XJay18/QuickDraw-pytorch
https://github.com/brendenlake/omniglot
https://github.com/brendenlake/omniglot

The max-normalization divides each image’s pixel values by the highest pixel value of that image,
normalizing all pixels to the range [0, 1]. Both steps here are important because with just the max-
norm, the maximum pixel value of each image is always 1, which is usually not preferred. Conversely,
with just the tanh-normalization, ωt

0 would be required to vary in a much greater range for the output
image to look as intended, as max(˜̃x) can range from tens to thousands.

B.2 Compositing Module

With the image pixel value of an individual stroke being in [0, 1], an element-wise sum of all strokes’
rendering could still be larger than 1. Hence, another parametrized tanh function is used to get the
canvas-so-far at time t′ ∈ [1, . . . , T ′] (using t′ to index the per-stroke-renderings from Eq. (13) to
avoid clashes):

x≤t =
t⊗

t′=1

xt′ (14)

x≤t
hw = normalize_canvas([xt

′

hw]
t
t′=1;ω1) = tanh

(∑t
t′=1 x

t′

hw

ω1

)
(15)

where x0 is the initial blank canvas.

This is an implementation detail underneath the simplified description of the compositing procedure,
x≤t = x<t ⊗ xt, appeared in § 2.1; This eschews an accumulative brightening effect that happens
when the tanh normalization is applied to the canvas-so-far multiple times (once at every step), as
would be required in the procedure in the simplified description.

B.3 Neural Network Configurations

DooD and AIR in our experiments share the overall neural components.

Convolutional neural nets (CNN) are used as feature extractors for images (one for canvas-so-far,
attention window, target, another for residual and its counterparts). Each CNN is equipped 2 Conv2d
layers with 3x3 kernel and stride 1 followed by a 1-layer MLP that outputs 256-dim features. The
Conv2d layers goes from 1 to 8, then to 16 channels. Notably, we don’t use any Max Pooling layer to
avoid the spatial-invariant property.

All the prior, posterior distribution parameters are output by their respective MLP (results in 6 separate
MLPs). Despite varying input, output dimensions, they share the main architecture: 2 256-dim hidden-
layers with tanh non-linearity. The renderer parameters as detailed in Appendix B.1 are predicted
by another MLP of the same form, but not modelled as latent variables in our implementation. As a
result, DooD employs 7 MLPs. For AIR, An MLP is used as the decoder (i.e., renderer) for AIR,
with the same configurations as above.

On top of these, GRUs[5] with 256-dim hidden states are employed for the layout and stroke RNNs.

B.4 Token Model

To fit our model naturally into the hierarchical Bayesian formulation of the character-conditioned
generation and the one-shot classification task, we inserted a plug-and-play token model to our
generative model. With the learned generative and recognition model, we can regard the learned
prior p(o, l, s) as a high level type model p(ψ) and incorporate a token model p(z|ψ), where ψ, z
denote (o, l, s), (o, l, s′), respectively (only potentially different in s vs. s′). We can then consider
the learned variational posterior q(o, l, s|x) to be directly on the type variable ψ, i.e. q(ψ|x). The
token model p(z|ψ) captures the plausible structural variability of various instances of a character
(including affine transformations, motor noise; all embodied in s′ given s). This can either be learned
or set by heuristics.
In our experiment, we simply leverage a uniform distribution over a range of affine transformations
and a spherical normal distribution for motor-noise. Note that the flexibility of doing this is thanks to
the symbolic latent representation that DooD has, while models with distributed latent representations
lack. In detail, the motor noise model has a standard Gaussian distribution with mean centered on the

13

control points and scale 1e− 3. The affine model uses uniform distribution and has x, y shift value
ranging [−.2, .2], x, y scale [.8, 1.2], rotation [−.25π, .25π], x, y shear [−.25π, .25π]

14

C Training Details

C.1 Hyperparameters

The model is trained with the Adam [21] optimizer with a learning rate of 1e-3 for the parameters
whose gradients are estimated with NVIL [28] and 1e-4 for the rest, neither with weight decay. The
intermediate canvas-so-far x≤t for t ̸= T and residual ∆xt produced at each step are detached for
both DooD and AIR from the gradient graph for training stability, effectively making them not act as
a medium for backpropagation-through-time.

β settings. For DooD and it’s ablations, β = 4 is used in the loss function, whereas β = 5 is
used on AIR, both tuned on the MNIST-trained across-dataset generalization task. More specifically,
starting from β = 1, different β’s with +1 increments up to β = 6 are experimented with models
on MNIST, with their behaviors changing from using all steps to using fewer strokes than sufficient
to reconstruct the image. The values above are chosen from this range by assessing the marginal
likelihood, and qualitatively, whether it’s using a sufficient yet parsimonious number of strokes.

NN Parameter initialization. The initial parameters of the last layer of the l MLPs are set to
predict identity transformations as per [20]. For the Omniglot dataset only, the initial weights for o
MLP’s last layer is zeroed and the initial bias is set to a high value (e.g. 8) before passing through a
sigmoid function for normalization, because otherwise the model would quickly go to using no steps
due to the greater difficulty in joint learning and inference on Omniglot.

Variable initialization. At t = 0, variables are initialized to fixed values: hl0, h
s
0, o0, s0, l0, x0

are assigned vectors of 0’s of different dimensions. In other words, these initial variables are not
sampled and not accounted in the joint distribution. This initialization is used in all of the training
and evaluation.

C.2 Stochastic Gradient Estimators

One way of learning the parameters of the generative model θ and the inference network ϕ is by
jointly maximizing the lower bound of the marginal likelihood of an image x, denoting the joint
latent variables by z:

log pθ(x) = log

∫
dzpθ(x, z) = log

∫
dzqϕ(z|x)

pθ(x, z)

qϕ(z|x)

= logEqϕ

[
pθ(x, z)

qϕ(z|x)

]
≥ Eqϕ

[
log

pθ(x, z)

qϕ(z|x)

]
= Eqϕ [log pθ(z)] + Eqϕ [log pθ(x|z)]− Eqϕ [log qϕ(z|x)] =: L(θ, ϕ) (16)

A Monte Carlo gradient estimator for ∂
∂θL is relatively easy to compute by drawing z ∼ qϕ(·|x) and

computing ∂
∂θ log pθ(x, z) as the model is differentiable w.r.t. its parameters.

Estimating the gradient for ∂
∂ϕL is more involved as the parameters ϕ are also used when drawing

samples from qϕ. To address this, for each step t, denote ωt all the parameters of the distribution on
variables at t, zt. The full gradient can therefore be obtained via chain rule: ∂L

∂ϕ =
∑

t
∂L
∂ωt

∂ωt

∂ϕ .

Define ℓ(ϕ, θ, z) := log pθ(x,z)
qϕ(z|x) , we can write the loss as L(θ, ϕ) = Eqϕ [ℓ(ϕ, θ, z)], and let zt be

either the continuous or the discrete subset of latent variables in (lt, st, ot). How to proceed with
computing ∂L

∂ωt depends on whether zt is discrete or continuous.

Continuous. For continuous random variable zt, we can use the reparametrization trick to back-
propagate through zt [22, 31]. The trick suggest that for many continuous random variables, drawing
a sample zt from the distribution parametrized by ωt yields an equivalent result as taking the output
of a deterministic function inputting some random noise variable ξ and parameter ωt, zt = f(ξ, ωt)
where ξ is sampled from some fixed noise distribution p(ξ). This results in the estimator: ∂L

∂ωt ≈
∂ℓ(ϕ,θ,z)

∂zt
∂f
∂ωt .

15

Discrete. For discrete variables such as ot, the reparametrization trick can’t be applied. Instead,
we resort to the REINFORCE estimator [28, 31], with a Monte Carlo estimate of the gradient:
∂L
∂ωt ≈ ∂ log qϕ(z|x)

∂ωt ℓ(ϕ, θ, z).

This can be derived as follows (denote ℓ(ϕ, θ, z) by ℓ(z) and qϕ(z|x) by qϕ(z) to simplify notation):

∂L
∂ωt

=
∂

∂ωt

∫
qϕ(z)ℓ(z)dz

=

∫ (
∂

∂ωt
log qϕ(z)

)
qϕ(z)ℓ(z)dz

= Eqϕ(z)

[
∂

∂ωt
log qϕ(z)ℓ(z)

]
≈ ∂ log qϕ(z)

∂ωt
ℓ(z) (17)

This basic form usually results in a high variance, and we can significantly reduce it by using only
local learning signals and a structured neural baseline[28]. The former suggests that we can remove
the terms in ℓ(z) that don’t depend on ωt without affecting the result, this allows us to substitute
ℓ(z) with ℓt(z) := log pθ(x|z)pθ(zt:T)/qϕ(zt:T) such that it only uses learning signals dependent
on ωt. The latter suggests subtracting a control variate b(z<t, x), which takes in x and the previous
variables z<t detached from the gradient graph, from ℓt(·). It is trained by minimizing the mean
squared error between ℓt(·) and b(z<t, x), i.e., Lb := Eqϕ [(ℓ

t(z) − b(z<t, x))2]. This yields an

lower-variance estimator used in learning ∂L
∂ωt ≈ ∂qϕ(z

t)
∂ωt (ℓt(z)− b(z<t, x)). Finally, the learning

signal, (ℓt(z)− b(z<t, x)), is centered and smoothed as in [28]. And the final loss function can be
written as L̂ = L+ Lb.

D Evaluation Details

D.1 More across-dataset generalization results

Fig. 3 demonstrates each model’s performance when trained on MNIST. Here we show an instance
of Fig. 3 with additional results for models trained on each of the 5 datasets (except for the baseline
that didn’t work on that particular dataset). We further present a Fig. 4-style confusion matrix for
DooD-EG.

16

D.1.1 EMNIST-trained models

(a
)

E
M

N
IS

T
→

M
N

IS
T

K
M

N
IS

T
Q

ui
ck

D
ra

w
O

m
ni

gl
ot

x

DooD AIR DooD-EG

Fi
gu

re
9:

E
M

N
IS

T-
tr

ai
ne

d
m

od
el

ge
ne

ra
liz

e
to

ot
he

rd
at

as
et

s.

17

D.1.2 KMNIST-trained models

(a
)

K
M

N
IS

T
→

M
N

IS
T

E
M

N
IS

T
Q

ui
ck

D
ra

w
O

m
ni

gl
ot

x

DooD AIR DooD-EG

Fi
gu

re
10

:K
M

N
IS

T-
tr

ai
ne

d
m

od
el

ge
ne

ra
liz

e
to

ot
he

rd
at

as
et

s.

18

D.1.3 MNIST-trained models

(a
)

M
N

IS
T

→
E

M
N

IS
T

K
M

N
IS

T
Q

ui
ck

D
ra

w
O

m
ni

gl
ot

x

DooD AIR DooD-EG

Fi
gu

re
11

:M
N

IS
T-

tr
ai

ne
d

m
od

el
ge

ne
ra

liz
e

to
ot

he
rd

at
as

et
s.

19

D.1.4 Omniglot-trained models

(a
)

O
m

ni
gl

ot
→

M
N

IS
T

E
M

N
IS

T
K

M
N

IS
T

Q
ui

ck
D

ra
w

x

DooD AIR

Fi
gu

re
12

:O
m

ni
gl

ot
-t

ra
in

ed
m

od
el

ge
ne

ra
liz

e
to

ot
he

rd
at

as
et

s.

20

D.1.5 QuickDraw-trained models

(a
)

Q
ui

ck
D

ra
w

→
M

N
IS

T
E

M
N

IS
T

K
M

N
IS

T
O

m
ni

gl
ot

x

DooD AIR DooD-EG

Fi
gu

re
13

:Q
ui

ck
D

ra
w

-t
ra

in
ed

m
od

el
ge

ne
ra

liz
e

to
ot

he
rd

at
as

et
s.

21

D.1.6 Ablation marginal likelihood evaluation

Figure 14: DooD-SP (DooD without sequential prior) and DooD-EG (DooD without execution
guidance) cross-dataset log-marginal-likelihood evaluation.

22

D.2 More across-task generalization results

D.2.1 Unconditional generation

Additional unconditional samples from DooD are shown in Fig. 15. In generating these samples, we
also make use of the common low-temperature sampling technique [15].

MNIST EMNIST KMNIST QuickDraw Omniglot

Figure 15: Additional Unconditional generation results from DooD.

23

D.2.2 Character-conditioned generation

Additional character-conditioned samples from QuickDraw- and Omniglot-trained DooD are shown
in Fig. 16 and Fig. 17.

Figure 16: Additional Character-conditioned generation results from QuickDraw-trained DooD.

24

Figure 17: Additional Character-conditioned generation results from Omniglot-trained DooD.

25

D.2.3 One-shot classification

DooD performs one-shot classification as follows. When given a support image x(c) from each class
c = [1, C], and a query image x(T), it classifies which class c it belongs to by computing the Bayesian
score p(x(T)|x(c)) for each c and predicting the c with the highest score. The score is computed by:

p(x(T)|x(c)) =
∫
p(x(T), z(T), ψ(c)|x(c))d(z(T), ψ(c)) (18)

≈
∫
p(x(T)|z(T))p(z(T)|ψ(c))p(ψ(c)|x(c))d(z(T), ψ(c)) (19)

≈
K∑

k=1

πk max
z(T)

p(x(T)|z(T))p(z(T)|ψ(c)
k) (20)

where ψ(c)
k ∼ q(ψ(c)|x(c)), πk ∝ π̃k = p(ψ

(c)
k , x(c)) and

K∑
k=1

πk = 1 (21)

where p(z(T)|ψ(c)) is the plug-and-play token model (as introduced in of Appendix B.4) taking the
potential affine transformation, motor noise into consideration. And the maxz(T) is obtained through
gradient-based optimization, as in [10, 24].

E Limitations

For MNIST-trained DooD in particular, we observe that despite outperforming all baselines in
generalization, as evident by the significantly superior mll (Fig. 4), it has a hard time faithfully
reconstructing in particular the more complex samples. We attribute this to 2 components of our
model that will be investigated in future work, fixing either should significantly improve upon the
current generalization performance.

Primarily, we can attribute this to the s-component not generalizing strongly. When trained on MNIST,
the model rarely sees multiple strokes appearing inside a glimpse. However, this is common in
complex dataset such as QuickDraw. This creates a major train/test discrepancy for the s-component,
causing the model’s malfunction—e.g., trying to cover 2 isolated strokes (a “11”) with 1 stroke in
the middle (a horizontal bar). Despite multiple strokes appearing in glimpses of models trained on
other the datasets. This malfunctioning of s-component does not happen as much because the model
has more robustly learned through its source dataset that it should focus on the center of the given
glimpses during inference. A more robust s-component design should in principle address this issues.

Fundamentally, however, this can be seen to be caused due to constraints in l. By design, l should
perfectly segment out each individual stroke and place it into a canonical reference frame, before
passing it to the s-component—multiple strokes appearing in a single glimpse should not have
happened in the first place. Perhaps more flexible STNs[20] could do this (with shear, skew, etc). We
expect a combination of the bounding-box approach (as in DooD) and a masking approach (e.g., [4])
might work well, where the masking could help the model ignore irrelevant parts of glimpses before
fitting splines to the relevant parts.

26

	Introduction
	Method
	Generative Model
	Recognition Model
	Learning

	Experiments
	Across-Dataset Generalization
	Across-Task Generalization

	Related Work
	Conclusion
	Dataset Details
	Model Details
	Differentiable Renderer
	Compositing Module
	Neural Network Configurations
	Token Model

	Training Details
	Hyperparameters
	Stochastic Gradient Estimators

	Evaluation Details
	More across-dataset generalization results
	EMNIST-trained models
	KMNIST-trained models
	MNIST-trained models
	Omniglot-trained models
	QuickDraw-trained models
	Ablation marginal likelihood evaluation

	More across-task generalization results
	Unconditional generation
	Character-conditioned generation
	One-shot classification

	Limitations

