
A Differentiable Logical Operators

T-norms (>) and t-conorms (?) are fuzzy versions of conjunction (^) and disjunction (_), respectively.
Fuzzy operators can be applied to vectors of continuous values within a certain range, e.g., [0, 1]d,
depending on the chosen fuzzy logic, and are executed as algebraic operations which makes them
differentiable. Different fuzzy logics implement different t-norms and t-conorms. In this work,
we experiment with two such logics: product logic and Gödel (min) logic. In the product logic,
conjunction C, disjunction D, and negation N are modeled as follows:

C(x,y) = x� y

D(x,y) = x+ y � x� y

N (x) = 1� x

where inputs x,y 2 [0, 1]d are d-dimensional vectors with values in the range [0, 1], � is the
element-wise multiplication, and 1 is the universe vector of all ones.

In the Gödel logic, conjunction C and disjunction D are modeled as min and max, respectively:

C(x,y) = min(x,y)

D(x,y) = max(x,y)

For GNN-QE we employ solely the product logic for end-to-end training on all types of complex
queries. For NodePiece-QE and its inference-only mechanism based on CQD-Beam, we may select
the best performing logic for each query type based on the validation set. The chosen operators for
NodePiece-QE are reported in Table 13 in Appedix D.

B Benchmarking Datasets Details

We sampled 9 datasets (used in Section 5.2 and Section 5.3) from the original FB15k-237 [29] with
already added inverse edges for ensuring reachability and connectedness of the underlying graph for
the subsequent query sampling. Creation details are provided in the Section 5.1 and statistics on the
sampled graphs are presented in Table 4. Varying the ratio of entities in the inference graph to the
training graph Einf/Etrain, we aim at measuring inductive capabilities of proposed strategies in the
out-of-distribution size generalization scenario. To measure scalability of inductive query answering
approaches, we create WikiKG-QE, an inductive split of the originally transductive OGB WikiKG
2 [16], following the same sampling strategy as for 9 Freebase datasets.

Table 4: Sampled graphs statistics for various ratios Einf/Etrain. Originally inverse triples are included
in all graphs except WikiKG-QE. R - number of unique relation types, E - number of entities in
various splits, T - number of triples. Validation and Test splits contain an inference graph (Einf, Tinf)
which is a superset of the training graph with new nodes, and missing edges to predict Tpred.

Ratio, % R Etotal

Training Graph Validation Graph Test Graph

Etrain Ttrain Eval

inf
T val

inf
T val

pred
E test

inf
T test

inf
T test

pred

106% 466 14,512 13,091 493,425 13,801 551,336 10,219 13,802 538,896 8,023
113% 468 14,442 11,601 401,677 13,022 491,518 15,849 13,021 486,068 14,893
122% 466 14,444 10,184 298,879 12,314 413,554 20,231 12,314 430,892 23,289
134% 466 14,305 8,634 228,729 11,468 373,262 25,477 11,471 367,810 24,529
150% 462 14,333 7,232 162,683 10,783 311,462 26,235 10,782 331,352 29,755
175% 436 14,022 5,560 102,521 9,801 265,412 28,691 9,781 266,494 28,891
217% 446 13,986 4,134 52,455 9,062 227,284 30,809 9,058 212,386 28,177
300% 412 13,868 2,650 24,439 8,252 178,680 27,135 8,266 187,156 28,657
550% 312 13,438 1,084 5,265 7,247 136,558 22,981 7,275 133,524 22,503

WikiKG-QE

133% 512 2,492,122 1,494,033 5,824,868 1,992,739 9,466,319 638,389 1,993,416 10,510,906 824,713

15

In all datasets, entities and relations are anonymized and only have an integer ID. Furthermode,
inference graphs at validation and test time are supersets of the respective training graph with new
nodes and edges. The amount of new unique nodes is simply the difference Einf � Etrain between
entities in those graphs, e.g., for the dataset of ratio 175%, the validation inference graph contains
4, 241 new nodes and test inference graph contains 4, 221 news nodes. Note that those 4, 241 and
4, 221 nodes are unique for each graph and do not overlap. That is, validation inference and test
inference graphs are disconnected except sharing the same core training graph.

Then, for each created inductive dataset, we sample queries of 14 query patterns following the
BetaE [24] procedure. That is, training queries are sampled from the training graph Gtrain and have
only easy answers reachable by simple edge traversal. Validation and test queries are sampled from
the respective splits, e.g., validation queries are sampled from the validation graph Gval using entities
from the validation inference graph Eval

inf
(which, in turn, are a union of training nodes and new, unseen

validation nodes Etrain [Eval), and at least one edge in each query belongs to T val

pred
and has to be

predicted during query execution. Queries might have easy answers that are directly reachable by
traversing edges T val

inf
in the validation inference graph, whereas hard answers are only reachable after

predicting missing edges from the set T val

pred
. Final evaluation metrics are computed only based on the

hard answers. Following the literature [24], we only retain queries that have less than 1000 answers.
Table 5 summarizes the statistics on the sampled queries for each dataset ratio, each graph, and query
type that we use in Section 5.2 for evaluating inductive query answering performance. In graphs
with smaller inference graphs and smaller number of missing triples, we sample fewer queries with
negation (2in, 3in, inp, pin, pni) for validation and test splits. For WikiKG-QE, due to its size, we
only sample 10k EPFO queries to be executed in the inference-only regime without training (at the
moment, CQD-Beam does not support queries with negation). We use those queries in Section 5.5 to
evaluate scalability of NodePiece-QE and prediction quality in the inference-only mode.

Table 5: Statistics on sampled queries for each dataset ratio and query type. For WikiKG-QE, we
only sample EPFO queries without negation.

Ratio Graph 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

106%
training 135,613 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 40,000 50,000 50,000 50,000

validation 6,582 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 1,000 1,000 1,000 1,000 1,000
test 5,446 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 1,000 1,000 1,000 1,000 1,000

113%
training 115,523 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 40,000 50,000 50,000 50,000

validation 10,256 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 1,000 1,000 1,000 1,000 1,000
test 9,782 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 1,000 1,000 1,000 1,000 1,000

122%
training 91,228 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 40,000 50,000 50,000 50,000

validation 12,696 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 5,000 5,000 5,000 5,000 5,000
test 14,458 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 5,000 5,000 5,000 5,000 5,000

134%
training 75,326 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 40,000 50,000 50,000 50,000

validation 15,541 50,000 50,000 50,000 50,000 50,000 50,000 20,000 20,000 5,000 5,000 5,000 5,000 5,000
test 15,270 50,000 50,000 50,000 50,000 50,000 50,000 20,000 20,000 5,000 5,000 5,000 5,000 5,000

150%
training 56,114 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 40,000 50,000 50,000 50,000

validation 16,229 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 5,000 5,000 5,000 5,000 5,000
test 17,683 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 5,000 5,000 5,000 5,000 5,000

175%
training 38,851 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 40,000 50,000 50,000 50,000

validation 17,235 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 10,000 10,000 10,000 10,000 10,000
test 17,476 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 10,000 10,000 10,000 10,000 10,000

217%
training 22,422 30,000 30,000 50,000 50,000 50,000 50,000 50,000 50,000 30,000 30,000 50,000 50,000 50,000

validation 18,168 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 10,000 10,000 10,000 10,000 10,000
test 16,902 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 10,000 10,000 10,000 10,000 10,000

300%
training 11,699 15,000 15,000 40,000 40,000 50,000 50,000 50,000 50,000 15,000 15,000 50,000 40,000 50,000

validation 16,189 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 10,000 10,000 10,000 10,000 10,000
test 17,105 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 10,000 10,000 10,000 10,000 10,000

550%
training 3,284 15,000 15,000 40,000 40,000 50,000 50,000 50,000 50,000 10,000 10,000 30,000 30,000 30,000

validation 13,616 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 10,000 10,000 10,000 10,000 10,000
test 13,670 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 10,000 10,000 10,000 10,000 10,000

WikiKG-QE

133%
training 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 - - - - -

validation 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 - - - - -
test 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 - - - - -

Furthermore, for the experiment in Section 5.3 to measure the abilities of inductive models to find
new answers of known queries, we take the created training queries and find their easy answers in
the validation inference Gval

inf
= (Eval

inf
, T val

inf
) and test inference G test

inf
= (E test

inf
, T test

inf
) graphs. That is,

those new answers do not require predicting missing edges in the inference graphs and only require a
model to execute edge traversal to find (if any) new correct answers involving new, unseen entities
and edges. For the validation (test) split, we only count such training queries q whose answer set in

16

Table 6: Statistics on training EPFO queries that have a different (often, larger) answer set when
executed against validation and test inference graphs. We list the original number of training queries,
number of those queries with new easy answers in the validation (In val) and test graphs (In test), as
well as their percentage ratio to the total number. Most queries (except 2i,3i) have new answer sets.

Ratio Graph 1p 2p 3p 2i 3i pi ip 2u up
#Q % #Q % #Q % #Q % #Q % #Q % #Q % #Q % #Q %

106%
Train 135,613 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 14,079 10.4 32,220 64.4 40,860 81.7 7,598 15.2 4,416 8.8 16,485 33.0 29,290 58.6 33,507 67.0 41,671 83.3
In test 11,560 8.5 31,894 63.8 40,547 81.1 7,313 14.6 4,175 8.4 16,204 32.4 28,778 57.6 32,978 66.0 41,167 82.3

113%
Train 115,523 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 17,792 15.4 36,499 73.0 43,473 86.9 10,517 21.0 6,394 12.8 20,556 41.1 33,599 67.2 37,955 75.9 44,318 88.6
In test 17,576 15.2 36,721 73.4 43,541 87.1 10,552 21.1 6,303 12.6 20,382 40.8 33,726 67.5 38,107 76.2 44,501 89.0

122%
Train 91,228 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 20,281 22.2 38,642 77.3 44,654 89.3 11,695 23.4 5,851 11.7 22,662 45.3 35,935 71.9 40,356 80.7 45,672 91.3
In test 20,418 22.4 38,706 77.4 44,688 89.4 11,847 23.7 6,185 12.4 22,524 45.0 35,768 71.5 40,395 80.8 45,684 91.4

134%
Train 75,326 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 18,909 25.1 39,893 79.8 45,253 90.5 14,256 28.5 8,655 17.3 24,619 49.2 37,835 75.7 41,899 83.8 46,114 92.2
In test 19,372 25.7 39,762 79.5 45,325 90.7 14,082 28.2 8,790 17.6 24,212 48.4 37,527 75.1 41,494 83.0 46,210 92.4

150%
Train 56,114 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 17,434 31.1 40,666 81.3 45,832 91.7 14,103 28.2 8,011 16.0 25,106 50.2 38,499 77.0 42,587 85.2 46,754 93.5
In test 18,566 33.1 41,202 82.4 46,092 92.2 14,575 29.2 8,193 16.4 25,782 51.6 38,932 77.9 43,101 86.2 46,791 93.6

175%
Train 38,851 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 14,063 36.2 41,290 82.6 46,214 92.4 15,645 31.3 9,222 18.4 27,205 54.4 40,161 80.3 44,128 88.3 47,366 94.7
In test 14,214 36.6 41,143 82.3 46,061 92.1 15,731 31.5 9,391 18.8 27,207 54.4 40,297 80.6 43,980 88.0 47,319 94.6

217%
Train 22,422 100.0 30,000 100.0 30,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 10,437 46.5 24,659 82.2 26,760 89.2 13,784 27.6 7,807 15.6 24,884 49.8 39,107 78.2 43,496 87.0 46,112 92.2
In test 10,257 45.7 24,344 81.1 26,579 88.6 14,055 28.1 7,962 15.9 24,962 49.9 38,966 77.9 43,092 86.2 45,850 91.7

300%
Train 11,699 100.0 15,000 100.0 15,000 100.0 40,000 100.0 40,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 5,830 49.8 12,366 82.4 13,230 88.2 12,833 32.1 7,911 19.8 27,920 55.8 40,800 81.6 43,516 87.0 46,453 92.9
In test 6,061 51.8 12,477 83.2 13,309 88.7 13,291 33.2 8,284 20.7 28,447 56.9 41,214 82.4 43,966 87.9 46,668 93.3

550%
Train 3,284 100.0 15,000 100.0 15,000 100.0 40,000 100.0 40,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 1,885 57.4 11,484 76.6 12,575 83.8 11,119 27.8 6,617 16.5 23,126 46.3 39,243 78.5 38,129 76.3 45,173 90.3
In test 1,883 57.3 11,597 77.3 12,654 84.4 11,244 28.1 6,795 17.0 23,575 47.2 39,630 79.3 37,508 75.0 45,412 90.8

Table 7: Statistics on training negation queries that have a different (often, larger) answer set when
executed against validation and test inference graphs. We list the original number of training queries,
number of those queries with new easy answers in the validation (In val) and test graphs (In test), as
well as their percentage ratio to the total number. Most queries have new answer sets.

Ratio Graph 2in 3in pin pni inp
#Q % #Q % #Q % #Q % #Q %

106%
Train 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 25,318 50.6 18,232 36.5 37,857 75.7 27,572 55.1 37,497 75.0
In test 25,111 50.2 18,237 36.5 37,441 74.9 27,535 55.1 37,176 74.4

113%
Train 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 31,216 62.4 24,620 49.2 42,015 84.0 33,011 66.0 41,980 84.0
In test 31,437 62.9 24,665 49.3 42,255 84.5 33,115 66.2 42,296 84.6

122%
Train 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 34,722 69.4 26,700 53.4 44,104 88.2 36,361 72.7 44,070 88.1
In test 35,028 70.1 27,105 54.2 44,089 88.2 36,398 72.8 44,074 88.1

134%
Train 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 38,096 76.2 31,631 63.3 45,672 91.3 39,641 79.3 45,491 91.0
In test 37,469 74.9 31,224 62.4 45,521 91.0 38,971 77.9 45,418 90.8

150%
Train 50,000 100.0 40,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 39,836 79.7 26,534 66.3 46,561 93.1 40,733 81.5 46,496 93.0
In test 40,127 80.3 26,968 67.4 46,832 93.7 41,100 82.2 46,811 93.6

175%
Train 50,000 100.0 40,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 42,418 84.8 29,083 72.7 47,666 95.3 42,987 86.0 47,606 95.2
In test 42,379 84.8 29,170 72.9 47,749 95.5 42,941 85.9 47,557 95.1

217%
Train 30,000 100.0 30,000 100.0 50,000 100.0 50,000 100.0 50,000 100.0
In val 26,202 87.3 21,751 72.5 47,879 95.8 43,958 87.9 47,688 95.4
In test 26,080 86.9 21,591 72.0 47,655 95.3 43,837 87.7 47,417 94.8

300%
Train 15,000 100.0 15,000 100.0 50,000 100.0 40,000 100.0 50,000 100.0
In val 13,595 90.6 11,996 80.0 48,693 97.4 36,427 91.1 48,279 96.6
In test 13,659 91.1 12,098 80.7 48,791 97.6 36,507 91.3 48,440 96.9

550%
Train 10,000 100.0 10,000 100.0 30,000 100.0 30,000 100.0 30,000 100.0
In val 9,232 92.3 8,071 80.7 29,484 98.3 27,975 93.3 29,393 98.0
In test 9,137 91.4 8,053 80.5 29,510 98.4 27,839 92.8 29,218 97.4

17

this split is different from the answer set in the training graph, e.g., Aval

q 6= Atrain

q . We summarize the
statistics of identified new answer sets in all datasets in Table 6 (for EPFO queries) and Table 7 (for
queries with negations). We find that in most query patterns across all dataset ratios, training queries
indeed have new answer sets when executed against validation or test inference graphs.

C More Experimental Results

Here, we present a detailed breakdown of query answering performance measured in Sections 5.2
and 5.3 by query type. Fig. 5 and Table 8 contain detailed results from Section 5.2 of executing test
queries with new, unseen entities over inference graphs of various ratios of new entities.

Figure 5: Hits@10 results on answering test inductive FOL queries on all ratios Einf/Etrain.

18

Table 8: Test Hits@3 and Hits@10 results (%) on answering test inductive FOL queries on all ratios
Einf/Etrain. avgp is the average on EPFO queries (^, _). avgn is the average on queries with negation.

Ratio Model Metric avgp avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

550%

Edge-type Heuristic Hits@3 5.0 2.3 5.9 4.7 5.2 5.3 7.0 5.1 4.3 2.8 4.5 1.5 1.7 4.9 2.0 1.4
Hits@10 11.7 5.1 15.8 10.4 11.5 13.4 16.4 12.2 9.7 6.3 9.2 3.4 3.7 11.2 3.9 3.4

NodePiece-QE Hits@3 4.3 7.3 4.0 4.1 4.3 4.5 3.8 3.6 3.4 3.3
Hits@10 9.6 16.3 8.4 8.8 10.8 11.5 8.8 7.7 6.8 7.0

NodePiece-QE w/ GNN Hits@3 5.4 9.2 4.1 3.1 6.8 7.4 5.1 4.5 5.4 3.4
Hits@10 11.1 20.1 8.3 6.2 14.0 15.5 10.5 8.7 10.3 6.6

GNN-QE Hits@3 24.2 9.7 28.3 15.8 10.1 37.7 60.9 31.3 14.4 10.1 8.8 9.0 16.5 9.8 7.7 5.6
Hits@10 33.1 15.8 37.7 23.4 17.0 50.7 74.9 43.3 20.4 15.1 15.4 13.4 26.3 17.2 13.7 8.6

300%

Edge-type Heuristic Hits@3 5.5 2.7 10.3 5.1 5.4 5.0 6.3 5.0 4.8 2.7 5.1 1.6 1.9 4.8 2.5 2.5
Hits@10 12.2 5.8 20.9 10.9 11.6 12.1 14.8 11.6 10.8 6.4 10.3 3.6 4.1 11.2 5.1 5.0

NodePiece-QE Hits@3 5.4 12.0 4.7 4.6 4.9 5.2 4.2 4.6 3.9 4.0
Hits@10 10.7 19.6 9.5 9.5 11.0 12.0 9.7 9.5 7.5 8.3

NodePiece-QE w/ GNN Hits@3 9.7 18.9 7.3 4.1 13.1 15.0 9.1 7.3 7.2 5.5
Hits@10 17.9 31.5 13.7 8.2 24.3 27.0 18.0 13.7 13.8 10.6

GNN-QE Hits@3 31.8 13.5 41.5 21.0 16.1 51.7 66.7 37.2 25.2 13.5 13.3 11.7 21.3 14.0 12.7 7.7
Hits@10 42.6 22.4 50.9 32.1 26.4 65.4 78.1 49.5 35.7 21.7 23.4 19.3 33.1 24.6 21.3 13.7

217%

Edge-type Heuristic Hits@3 5.5 2.4 10.3 4.8 4.8 5.1 7.2 5.4 4.7 2.1 4.6 1.2 2.3 4.3 2.2 2.2
Hits@10 11.5 5.4 18.8 9.9 10.2 12.1 16.1 11.9 9.8 4.8 9.4 2.9 4.7 10.2 4.5 4.6

NodePiece-QE Hits@3 5.9 13.9 4.8 4.4 5.8 6.7 5.3 5.1 3.4 4.0
Hits@10 11.7 22.3 9.3 8.8 12.9 15.5 11.5 10.0 7.1 7.8

NodePiece-QE w/ GNN Hits@3 13.6 25.7 8.8 5.3 18.7 24.8 12.9 10.3 8.9 6.9
Hits@10 23.5 41.0 16.0 10.4 32.5 40.8 23.7 17.7 16.9 12.6

GNN-QE Hits@3 37.9 19.2 50.6 24.4 19.3 58.6 76.2 45.1 31.4 19.7 16.0 17.6 32.6 18.3 14.0 13.6
Hits@10 49.2 30.1 61.3 36.1 29.8 72.6 86.8 58.4 42.5 29.3 25.8 26.7 47.4 30.3 22.7 23.3

175%

Edge-type Heuristic Hits@3 4.7 1.7 8.4 3.8 4.8 4.5 5.6 4.3 4.0 2.5 4.2 1.0 1.2 3.3 1.8 1.0
Hits@10 10.1 4.1 17.7 8.2 9.9 10.7 13.0 9.8 8.2 5.3 8.5 2.6 2.9 8.4 3.8 2.7

NodePiece-QE Hits@3 5.6 14.2 4.1 4.1 5.6 6.2 4.5 4.6 3.5 3.3
Hits@10 11.2 25.5 8.2 8.4 12.4 13.9 9.9 8.7 7.0 6.8

NodePiece-QE w/ GNN Hits@3 17.2 30.7 10.7 5.9 24.4 31.2 17.2 13.1 14.2 7.3
Hits@10 28.6 45.9 19.2 11.5 39.9 48.8 29.4 22.6 25.3 14.6

GNN-QE Hits@3 38.5 20.5 52.8 24.1 20.6 59.8 73.3 43.2 30.0 24.4 17.9 18.9 32.2 17.8 15.3 18.2
Hits@10 50.7 33.6 65.4 36.3 31.6 73.8 84.3 56.5 41.5 39.3 28.0 33.3 46.4 29.2 24.9 34.0

150%

Edge-type Heuristic Hits@3 4.4 1.9 9.2 3.6 4.0 4.3 5.3 3.9 3.5 1.8 3.8 1.3 1.5 3.5 2.1 1.1
Hits@10 9.6 4.4 17.4 7.9 8.7 10.4 12.7 9.0 7.7 4.5 8.0 2.8 3.6 8.7 4.2 2.5

NodePiece-QE Hits@3 5.4 14.0 4.5 4.1 5.0 5.5 4.0 4.6 3.0 3.8
Hits@10 10.8 22.8 8.9 8.5 11.7 12.9 9.1 9.1 6.3 7.7

NodePiece-QE w/ GNN Hits@3 15.7 33.1 9.7 4.6 22.3 26.9 14.8 11.4 12.3 6.5
Hits@10 25.9 48.9 17.2 9.1 36.6 43.1 25.1 19.7 21.1 12.2

GNN-QE Hits@3 37.3 18.1 56.6 23.6 18.9 58.6 69.8 39.6 27.3 23.2 18.0 16.9 25.7 16.6 16.2 15.4
Hits@10 49.3 30.3 69.1 35.7 29.7 73.1 81.3 52.9 38.7 34.3 28.7 28.3 40.1 27.8 27.7 27.7

133%

Edge-type Heuristic Hits@3 4.0 1.9 8.6 3.5 3.2 4.3 4.9 3.4 3.5 1.8 3.2 1.2 1.6 2.7 2.0 1.1
Hits@10 9.0 4.2 17.7 7.3 7.1 10.1 11.8 8.0 7.5 4.3 7.0 2.6 2.9 7.4 3.8 2.5

NodePiece-QE Hits@3 5.1 15.4 4.8 3.5 4.4 4.1 2.9 4.8 2.6 3.4
Hits@10 10.2 24.8 9.3 7.7 10.1 9.9 7.4 9.3 5.6 7.5

NodePiece-QE w/ GNN Hits@3 19.4 38.0 12.6 5.2 27.0 32.3 17.9 16.0 16.7 8.7
Hits@10 29.6 52.1 20.6 9.4 42.3 49.2 29.3 24.3 25.5 14.2

GNN-QE Hits@3 38.8 21.4 56.3 25.6 19.8 59.3 68.5 40.6 30.6 28.4 19.8 23.0 25.9 16.4 18.3 23.6
Hits@10 51.4 34.1 69.2 38.7 31.1 73.4 79.9 53.8 43.7 42.2 30.4 35.6 40.3 27.8 28.6 38.1

121%

Edge-type Heuristic Hits@3 4.3 1.5 14.7 3.0 3.2 3.0 3.9 2.8 2.8 1.5 3.3 0.9 1.0 2.6 1.7 1.2
Hits@10 8.6 3.7 23.3 6.5 6.9 7.6 9.5 6.7 6.4 3.7 6.9 2.2 2.4 7.2 3.5 3.0

NodePiece-QE Hits@3 4.6 16.0 3.2 2.7 3.7 4.3 3.1 3.5 2.1 2.8
Hits@10 9.6 28.0 6.5 6.1 9.2 10.7 7.8 7.1 4.9 6.0

NodePiece-QE w/ GNN Hits@3 18.4 39.7 10.6 4.8 24.8 30.6 16.4 13.9 16.8 7.8
Hits@10 27.9 53.6 17.1 8.4 38.0 45.9 26.7 21.9 26.1 13.9

GNN-QE Hits@3 35.3 18.9 62.0 21.1 17.9 50.0 59.5 36.8 26.7 27.4 16.6 20.2 23.4 15.4 13.8 21.5
Hits@10 46.2 29.1 74.2 31.1 27.2 63.4 70.5 48.1 37.3 38.3 25.4 30.5 35.2 25.5 21.8 32.6

113%

Edge-type Heuristic Hits@3 3.1 1.0 8.5 1.8 2.3 3.3 4.5 2.5 1.9 1.3 2.1 0.5 1.3 1.5 1.2 0.4
Hits@10 7.0 2.4 15.2 4.3 5.5 8.2 10.4 6.4 4.4 3.4 5.1 1.1 2.4 4.2 2.9 1.6

NodePiece-QE Hits@3 4.0 13.6 3.2 3.2 3.4 3.8 2.4 2.6 1.7 2.7
Hits@10 8.1 21.5 6.4 6.4 7.8 8.6 5.9 5.9 3.8 6.3

NodePiece-QE w/ GNN Hits@3 18.1 39.1 10.2 3.8 25.9 31.0 17.2 13.8 15.8 6.4
Hits@10 27.2 53.6 16.0 7.3 39.2 46.7 26.2 21.1 24.0 11.0

GNN-QE Hits@3 38.1 22.7 58.6 24.5 22.3 53.0 62.1 39.0 28.4 33.4 21.7 26.4 24.5 13.6 20.2 28.5
Hits@10 49.4 33.9 71.7 34.9 31.3 67.5 74.7 50.7 38.9 44.3 30.9 36.8 39.5 23.7 29.6 39.8

106%

Edge-type Heuristic Hits@3 2.8 1.3 7.1 1.9 1.7 3.5 4.2 1.8 1.4 1.4 1.9 1.6 1.2 1.2 1.1 1.4
Hits@10 6.4 3.0 14.5 4.3 4.4 8.1 9.7 4.8 3.7 3.1 4.7 2.8 2.2 4.4 2.6 2.9

NodePiece-QE Hits@3 4.0 11.9 3.6 4.0 3.6 4.0 1.8 2.1 1.5 3.3
Hits@10 7.7 19.2 5.9 7.6 8.1 9.2 4.3 4.5 4.1 6.1

NodePiece-QE w/ GNN Hits@3 22.1 39.6 14.8 5.1 30.1 35.6 19.6 19.6 24.5 9.9
Hits@10 31.7 54.3 21.6 7.8 44.2 51.6 28.4 27.7 35.2 14.0

GNN-QE Hits@3 40.6 28.3 58.1 28.5 24.1 54.7 62.3 38.7 33.1 40.3 25.6 31.7 30.4 17.0 22.4 40.1
Hits@10 50.4 37.7 71.9 37.0 32.4 67.9 73.7 48.2 41.8 48.0 32.7 39.6 43.2 25.3 31.1 49.4

19

Fig. 6 and Table 9 contain detailed results from the experiment in Section 5.3 about executing training
queries over the original training and extended test inference graphs.

Figure 6: Hits@10 results on answering training queries executed over the original train (solid line)
and test inference (dashed line) graphs. NodePiece-QE models are inference-only and were trained
on 1p queries, GNN-QE is end-to-end trainable on all complex queries.

20

Table 9: Hits@10 results (%) of training queries executed over the original training graph and
extended test inference graph. All ratios Einf/Etrain. avgp is the average on EPFO queries (^, _). avgn
is the average on queries with negation. NodePiece-QE models are inference-only and were trained
on 1p queries, GNN-QE is end-to-end trainable on all complex queries.

Ratio Model Graph avgp avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

550%

Edge-type Heuristic test 25.4 10.5 19.2 21.3 23.4 36.1 29.4 18.9 23.6 27.3 29.2 7.0 4.6 23.1 10.4 7.4

NodePiece-QE train 79.1 76.9 70.7 65.2 93.8 94.4 80.0 70.2 89.6 70.8
test 48.2 49.8 36.1 28.7 72.7 81.7 56.4 34.0 46.9 27.8

NodePiece-QE w/ GNN train 80.0 84.9 68.9 45.9 96.7 96.3 85.5 77.6 93.1 71.4
test 55.7 60.8 37.3 23.0 84.8 86.1 60.1 46.6 66.2 36.7

GNN-QE train 99.9 99.7 100.0 99.9 99.8 100.0 100.0 100.0 100.0 100.0 99.8 99.7 100.0 99.6 99.6 99.8
test 95.4 92.1 99.5 94.8 83.9 99.9 100.0 99.1 93.0 99.3 89.5 95.8 98.1 87.4 87.3 92.1

300%

Edge-type Heuristic test 25.4 13.0 27.1 25.1 30.8 21.3 27.6 20.6 27.7 12.2 36.0 10.2 5.5 20.2 14.0 15.2

NodePiece-QE train 62.6 68.3 55.3 54.6 68.3 76.0 62.2 58.5 58.2 62.0
test 41.0 51.8 30.1 28.4 56.3 66.5 42.1 30.7 31.7 31.1

NodePiece-QE w/ GNN train 85.5 96.9 81.3 49.9 97.5 98.2 89.5 86.0 91.4 78.7
test 64.3 82.2 51.9 33.1 86.4 90.5 67.8 55.9 62.8 47.9

GNN-QE train 99.9 99.4 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.8 99.1 99.6 99.4 99.2 99.6
test 96.2 89.7 100.0 95.9 94.6 100.0 100.0 97.3 91.3 96.7 90.3 90.8 95.5 95.0 84.6 82.8

217%

Edge-type Heuristic test 21.9 11.1 24.3 22.2 24.6 20.8 30.0 21.4 18.9 9.3 25.6 7.4 9.9 16.0 10.3 12.1

NodePiece-QE train 59.7 68.6 51.4 43.3 70.4 79.6 62.0 52.8 55.8 53.3
test 45.0 55.3 34.3 28.0 61.6 73.3 48.4 35.0 35.6 33.3

NodePiece-QE w/ GNN train 83.9 96.9 77.9 46.6 97.8 98.9 90.1 83.6 90.0 72.9
test 71.0 87.6 59.0 37.5 91.0 95.2 76.4 65.6 72.2 54.9

GNN-QE train 99.9 98.7 100.0 99.9 99.7 100.0 100.0 100.0 99.9 100.0 99.8 98.6 99.2 98.7 98.3 98.5
test 98.3 93.9 100.0 97.6 96.9 100.0 100.0 99.0 96.8 98.5 96.2 95.5 95.6 96.1 91.8 90.5

175%

Edge-type Heuristic test 20.0 9.8 23.4 18.4 25.5 17.7 23.6 18.7 17.6 9.6 25.5 6.7 6.5 16.0 9.3 10.3

NodePiece-QE train 50.1 65.8 42.0 40.7 54.2 62.1 47.1 43.1 49.0 47.0
test 40.2 57.6 30.8 29.1 47.9 57.4 38.6 31.8 35.5 33.0

NodePiece-QE w/ GNN train 91.0 99.9 94.1 51.7 99.9 99.9 96.3 96.8 98.4 82.2
test 81.8 95.8 76.2 43.4 97.3 98.7 87.4 84.3 88.5 64.6

GNN-QE train 100.0 99.6 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 99.9 99.6 99.6 99.5 99.4 99.6
test 99.1 93.9 100.0 99.8 98.9 100.0 99.9 98.6 98.7 98.1 97.6 95.3 94.1 95.5 93.5 91.0

150%

Edge-type Heuristic test 19.7 9.8 27.0 19.1 24.8 16.6 23.6 17.6 15.9 8.4 24.7 6.2 7.7 15.1 9.2 10.6

NodePiece-QE train 41.3 57.8 37.3 36.3 40.7 48.7 36.8 34.0 39.1 41.3
test 34.8 52.5 29.1 28.1 36.9 46.0 31.4 27.2 30.2 31.6

NodePiece-QE w/ GNN train 88.5 99.7 89.7 44.9 99.6 99.8 93.9 94.1 97.7 76.6
test 79.6 95.0 74.3 38.3 96.2 98.3 86.0 81.7 85.6 61.1

GNN-QE train 99.9 98.8 100.0 99.9 99.8 100.0 100.0 99.9 99.9 100.0 99.9 98.6 98.8 98.9 98.7 99.1
test 98.8 94.1 100.0 99.6 98.5 99.9 99.9 99.2 98.4 96.5 97.4 94.6 95.5 94.9 92.9 92.3

133%

Edge-type Heuristic test 19.8 10.2 25.0 19.8 25.5 15.6 21.3 17.8 17.3 8.7 26.8 6.8 7.5 15.0 10.4 11.5

NodePiece-QE train 32.9 52.0 32.0 34.1 25.0 27.7 26.0 29.9 31.9 37.4
test 29.2 49.0 27.5 29.4 22.9 26.0 23.0 25.8 27.0 32.1

NodePiece-QE w/ GNN train 89.7 99.9 92.0 47.6 99.9 99.9 94.1 96.0 99.2 78.8
test 84.2 97.3 82.0 43.0 97.8 98.9 89.3 88.5 92.4 69.0

GNN-QE train 100.0 99.7 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 99.9 99.8 99.8 99.6 99.5 99.8
test 99.2 96.8 100.0 99.1 98.9 99.9 99.8 99.0 98.5 98.6 98.7 97.5 97.0 97.7 95.8 95.8

121%

Edge-type Heuristic test 17.9 8.6 22.9 16.6 23.9 14.6 20.7 15.8 14.0 7.9 24.3 5.4 5.9 13.8 8.6 9.2

NodePiece-QE train 38.4 56.4 33.8 32.5 37.0 43.6 34.5 32.3 36.6 38.6
test 35.0 53.5 29.7 28.7 35.1 42.2 31.2 28.4 32.4 33.8

NodePiece-QE w/ GNN train 87.8 100.0 89.2 42.1 99.9 99.9 92.3 94.1 98.5 74.4
test 84.8 98.0 83.9 39.6 98.6 99.4 89.2 90.3 94.3 69.7

GNN-QE train 100.0 99.4 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 99.9 99.4 99.5 99.1 99.3 99.7
test 99.3 97.3 100.0 99.2 99.2 100.0 100.0 99.3 98.3 99.2 98.6 97.9 98.3 97.8 96.5 96.2

113%

Edge-type Heuristic test 18.3 9.0 26.8 17.9 23.9 13.9 18.8 15.2 14.6 8.2 25.0 5.7 6.7 13.6 9.1 9.8

NodePiece-QE train 31.8 52.5 29.4 30.3 27.0 30.5 25.5 26.7 30.8 33.9
test 30.2 51.0 27.6 28.4 25.9 29.6 24.1 25.0 28.6 31.8

NodePiece-QE w/ GNN train 87.4 100.0 88.4 40.4 99.9 99.9 91.9 94.0 99.6 72.4
test 85.1 98.8 83.9 38.6 99.0 99.5 89.9 90.7 97.2 67.9

GNN-QE train 100.0 98.8 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 98.7 99.0 98.7 98.5 99.2
test 99.9 97.8 100.0 100.0 99.7 100.0 100.0 99.8 99.9 100.0 99.9 98.2 98.4 98.1 97.3 97.1

106%

Edge-type Heuristic test 17.1 8.3 24.1 16.1 23.6 13.2 17.4 14.4 13.5 7.8 23.9 5.4 5.5 13.5 8.2 9.0

NodePiece-QE train 24.1 45.4 22.9 27.6 16.1 16.8 17.0 20.1 22.1 28.7
test 23.6 44.9 22.3 27.0 15.8 16.6 16.6 19.5 21.5 27.9

NodePiece-QE w/ GNN train 86.0 99.9 84.9 38.0 99.9 99.9 90.8 92.3 99.2 68.8
test 84.9 99.4 82.8 37.1 99.5 99.8 89.8 90.7 98.1 66.6

GNN-QE train 100.0 99.0 100.0 100.0 99.9 100.0 100.0 100.0 99.9 100.0 99.9 98.8 99.0 98.9 98.9 99.4
test 99.9 98.4 100.0 100.0 99.8 100.0 100.0 100.0 99.8 100.0 99.7 98.4 98.5 98.3 98.1 98.8

21

D Hyperparameters

Both NodePiece-QE and GNN-QE models are implemented with PyTorch [22] (MIT License).
In particular, NodePiece-QE models employ PyG [12] (MIT License) and PyKEEN [2] (MIT
License) for training link prediction models. GNN-QE is implemented based on the official NBFNet
repository 7 (MIT License) and TorchDrug [41] library (Apache 2.0).

For all inductive experiments in Sections 5.2 and 5.3, Table 10 lists best hyperparameters for
NodePiece-QE models without GNN encoder, Table 11 contains hyperparameters for GNN-enabled
NodePiece-QE models. The GNN-free models use only relation-based tokenization where each entity
e is represented with two fixed-size sets: a set of k unique incoming ri and a set of k unique outgoing

ro relation types. Looking up their d-dimensional vectors, we obtain:

e =
h
[ri1, ri2, . . . , rik][ro1, ro2, . . . , rok]

i
2 R2⇥k⇥d

If, for some entity, the number of unique relations of a certain kind is less than k, we pad the
set with auxiliary [PAD] tokens. Entity representations are built as a function of the two sets
f(e) : R2⇥k⇥d ! Rd:

he = MLP
⇣

RANDOMPROJ(
kX

j=0

rij) + RANDOMPROJ(
kX

j=0

roj)
⌘

Particularly, we first sum up tokens of the same direction, pass them through a random projection
layer RANDOMPROJ (we found that making this projection learnable does not improve results), sum
up representations of incoming and outgoing parts, and pass the resulting vector through a learnable
MLP. This way, the number of learnable encoder parameters does not depend on the sequence length
k, i.e., the number of chosen tokens per node.

The GNN-enabled models employ a slightly different Concat + MLP encoder where each node is
tokenized with a sample of k incident relations. Then, we concatenate d-dimensional embeddings
of those tokens ti into a single long vector Rkd, and then use a 2-layer MLP to project it to a model
dimension d, i.e., f(e) : Rkd ! Rd:

he = MLP
⇣
[t0; t1; . . . ; tk]

⌘

For the large-scale experiment on WikiKG-QE in Section 5.5, we employ the Concat + MLP encoder.
Instead of separating incoming and outgoing relation types, we first tokenize each node with 20
nearest anchors (pre-selected in advance using the default NodePiece strategy [13]) and add a sample
of k unique incident relations. NodePiece-QE w/ GNN employs a 3-layer CompGCN with the
RotatE interaction function during message computation and sum aggregator. Due to high memory
consumption, we train the 50d model for 2 epochs on 2 x RTX 8000 (48 GB) GPUs.

The overall tokens vocabulary consists of 20,000 anchor nodes, 1,024 relation types (including inverse
relations) and one [PAD] token. All hyperparameters for this experiments are listed in Table 12.

Having trained the link predictors, we tune CQD-Beam hyperparameters on the validation set varying
the t-norms, t-conorms, and scores normalization. Table 13 lists best options for each EPFO query
type. For all experiments, we used a beam size k = 32 except for queries on WikiKG-QE where we
used k = 8 due to the memory-expensive need of maintaining a beam over 2M entities.

Table 14 lists hyperparameters for GNN-QE models for all inductive splits. We found this architecture
is quite stable under various configurations and eventually employed the same set of hyperparameters
across all datasets.

BetaE (as a transductive baseline for the reference 175% dataset) was configured with 400d embedding
dimension, batch size 512, 32 negative samples, learning rate 0.0005, margin � 60, and trained on 10
query patterns {1p,2p,3p,2i,3i,2in,3in,inp,pin,pni} for 200k steps.

7https://github.com/DeepGraphLearning/NBFNet

22

https://github.com/DeepGraphLearning/NBFNet

Table 10: NodePiece-QE hyperparameters for all inductive splits.

Hyperparameter Dataset Einf/Etrain Ratios
106 113 133 134 150 175 217 300 550

Vocab size 472 466 460 458 450 438 442 402 346
Tokens per node 20 20 20 20 20 20 20 20 10
Vocab dim 400 400 400 400 400 400 400 400 1000
Scoring function ComplEx [30]

Encoder RandomProj + MLP
Encoder dim 400 400 400 400 400 400 400 400 1000
Encoder layers 2

Batch size 256
Epochs 400 400 400 1000 1000 2000 2000 2000 3000
Learning rate 1e-4
Optimizer Adam
Loss function BCE
Adv. temperature 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.2 1.0
negatives 128 128 128 128 128 128 128 128 128

parameters 699k 694k 689k 688k 681k 671k 675k 643k 2.7M
Training time (hrs) 15 12 10 9 6 9 9 5 1

Table 11: NodePiece-QE with GNN hyperparameters for all inductive splits.

Hyperparameter Dataset Einf/Etrain Ratios
106 113 133 134 150 175 217 300 550

Vocab size 472 466 460 458 450 438 442 402 346
Tokens per node 20 10
Vocab dim 200 400
Scoring function ComplEx [30]

Encoder Concat + MLP
Encoder dim 200 400
Encoder layers 2

GNN encoder CompGCN [31] + RotatE [27] message function
GNN layers 5 5 5 5 5 3 3 3 3
GNN dim 200 400

Batch size 256
Epochs 600 1000 1000 1000 1000 1000 3000 4000 4000
Learning rate 5e-4
Optimizer Adam
Loss function BCE
Adv. temperature 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0
negatives 128 128 128 128 128 128 128 128 128

parameters 2.8M 2.8M 2.8M 2.8M 2.8M 2.4M 2.4M 2.3M 5.7M
Training time (hrs) 30 30 19 20 14 15 8 5 1

23

Table 12: NodePiece-QE hyperparameters for WikiKG-QE (133%).
Hyperparameter NodePiece-QE NodePiece-QE w/ GNN
Vocab size 20,000 anchors + 1024 relation types
Anchor tokens per node 20 15
Relation tokens per node 20 10
Vocab dim 100 50
Scoring function ComplEx [30]

Encoder Concat + MLP
Encoder dim 200 100
Encoder layers 2 2

GNN - CompGCN
GNN dim - 50
GNN layers - 3

Batch size 512 1024
Epochs 40 (⇡ 1M steps) 2
Learning rate 1e-4
Optimizer Adam
Loss function BCE
Adversarial temp. 1.0
negatives 64 512

parameters 2,922,900 1,211,950
Training time (hrs) 40 16

Table 13: CQD-Beam t-norm hyperparameters for all splits and both link predictors, NodePiece-QE
and NodePiece-QE w/ GNN, when answering EPFO queries. The default beam size k = 32, prod +
� is product t-norm with sigmoid score normalization. Details on t-norms are in Appendix A.

Ratio Link predictor 1p 2p 3p 2i 3i pi ip 2u up

106% NodePiece-QE prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + �NodePiece-QE w/ GNN

113% NodePiece-QE prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + �NodePiece-QE w/ GNN

122% NodePiece-QE prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + �NodePiece-QE w/ GNN

134% NodePiece-QE prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + �NodePiece-QE w/ GNN

150% NodePiece-QE prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + �NodePiece-QE w/ GNN

175% NodePiece-QE prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + �NodePiece-QE w/ GNN

217% NodePiece-QE prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + �NodePiece-QE w/ GNN

300% NodePiece-QE prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + �NodePiece-QE w/ GNN

550% NodePiece-QE prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + � prod + �NodePiece-QE w/ GNN

133% NodePiece-QE (WikiKG-QE) prod + � for all query types

24

Table 14: Hyperparameters of GNN-QE on different datasets. All the hyperparameters are selected
by the performance on the validation set.

Hyperparameter All splits

GNN
#layers 4
hidden dim. 32
composition DistMult [33]
aggregation PNA [10]

MLP #layer 2
hidden dim. 64

Traversal Dropout probability 0.5
Logical Operator t-norm product

Learning

batch size 64
sample weight uniform across queries
loss BCE
negatives 32
optimizer Adam
learning rate 5e-3
iterations (#batch) 10,000
adv. temperature 0.1

E Edge-type Heuristic

We consider Edge-type Heuristic as a trivial baseline for inductive complex query. Given a query
Q = (C,RQ,G), Edge-type Heuristic finds all entities e 2 E that satisfy the relations in the last
hop of RQ on the inference graph Ginf. In other words, this baseline filters out entities that are not
consistent with the query according to the edge types, which is a necessary condition for the answers
when the inference graph is reasonably dense. Since Edge-type Heuristic only distinguishes the
entities into two classes, we randomly shuffle the entities in each class to create a ranking.

Edge-type Heuristic can be easily implemented as GNN-QE with a special relation projection. Given
an inference graph Ginf, we first preprocess a relation-to-entity mapping M , where Mr,t means there
exists a head entity h and an edge (h, r, t) for tail entity t. Then the relation projection of relation r
can be implemented by looking up the row Mr. Note that the Edge-type Heuristic only filters entities
according to the edge type, and hence the head entity (or the distribution of head entity) is ignored in
the relation projection.

25

	Introduction
	Related Work
	Preliminaries and Problem Definition
	Method
	NodePiece-QE: Inductive Node Representation
	GNN-QE: Inductive Relational Structure Representation

	Experiments
	Setup & Dataset
	Complex Query Answering over Unseen Entities on Differently Sized Inference Graphs
	Predicting New Answers for Training Queries on Larger Inference Graphs
	Ranking of Easy and Hard Answers
	Scaling to Millions of Nodes on WikiKG-QE

	Limitations and Future Work
	Differentiable Logical Operators
	Benchmarking Datasets Details
	More Experimental Results
	Hyperparameters
	Edge-type Heuristic

