A Differentiable Logical Operators

T-norms (T) and t-conorms (\perp) are fuzzy versions of conjunction (\wedge) and disjunction (\vee), respectively. Fuzzy operators can be applied to vectors of continuous values within a certain range, e.g., $[0,1]^{d}$, depending on the chosen fuzzy logic, and are executed as algebraic operations which makes them differentiable. Different fuzzy logics implement different t-norms and t-conorms. In this work, we experiment with two such logics: product logic and Gödel (min) logic. In the product logic, conjunction \mathcal{C}, disjunction \mathcal{D}, and negation \mathcal{N} are modeled as follows:

$$
\begin{aligned}
\mathcal{C}(\boldsymbol{x}, \boldsymbol{y}) & =\boldsymbol{x} \odot \boldsymbol{y} \\
\mathcal{D}(\boldsymbol{x}, \boldsymbol{y}) & =\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{x} \odot \boldsymbol{y} \\
\mathcal{N}(\boldsymbol{x}) & =\mathbf{1}-\boldsymbol{x}
\end{aligned}
$$

where inputs $\boldsymbol{x}, \boldsymbol{y} \in[0,1]^{d}$ are d-dimensional vectors with values in the range $[0,1], \odot$ is the element-wise multiplication, and $\mathbf{1}$ is the universe vector of all ones.

In the Gödel logic, conjunction \mathcal{C} and disjunction \mathcal{D} are modeled as \min and max, respectively:

$$
\begin{aligned}
\mathcal{C}(\boldsymbol{x}, \boldsymbol{y}) & =\min (\boldsymbol{x}, \boldsymbol{y}) \\
\mathcal{D}(\boldsymbol{x}, \boldsymbol{y}) & =\max (\boldsymbol{x}, \boldsymbol{y})
\end{aligned}
$$

For GNN-QE we employ solely the product logic for end-to-end training on all types of complex queries. For NodePiece-QE and its inference-only mechanism based on CQD-Beam, we may select the best performing logic for each query type based on the validation set. The chosen operators for NodePiece-QE are reported in Table 13 in Appedix D.

B Benchmarking Datasets Details

We sampled 9 datasets (used in Section 5.2 and Section 5.3) from the original FB15k-237 [29] with already added inverse edges for ensuring reachability and connectedness of the underlying graph for the subsequent query sampling. Creation details are provided in the Section 5.1 and statistics on the sampled graphs are presented in Table 4. Varying the ratio of entities in the inference graph to the training graph $\mathcal{E}_{\text {inf }} / \mathcal{E}_{\text {train }}$, we aim at measuring inductive capabilities of proposed strategies in the out-of-distribution size generalization scenario. To measure scalability of inductive query answering approaches, we create WikiKG-QE, an inductive split of the originally transductive OGB WikiKG 2 [16], following the same sampling strategy as for 9 Freebase datasets.

Table 4: Sampled graphs statistics for various ratios $\mathcal{E}_{\text {inf }} / \mathcal{E}_{\text {train }}$. Originally inverse triples are included in all graphs except WikiKG-QE. \mathcal{R} - number of unique relation types, \mathcal{E} - number of entities in various splits, \mathcal{T} - number of triples. Validation and Test splits contain an inference graph $\left(\mathcal{E}_{\text {inf }}, \mathcal{T}_{\text {inf }}\right)$ which is a superset of the training graph with new nodes, and missing edges to predict $\mathcal{T}_{\text {pred }}$.

Ratio, \%	\mathcal{R}	$\mathcal{E}_{\text {total }}$	Training Graph		Validation Graph			Test Graph		
			$\mathcal{E}_{\text {train }}$	$\mathcal{T}_{\text {train }}$	$\mathcal{E}_{\text {inf }}^{\text {val }}$	$\mathcal{T}_{\text {inf }}^{\text {val }}$	$\mathcal{T}_{\text {pred }}^{\text {val }}$	$\mathcal{E}_{\text {inf }}^{\text {test }}$	$\mathcal{T}_{\text {inf }}^{\text {test }}$	$\mathcal{T}_{\text {pred }}^{\text {test }}$
106\%	466	14,512	13,091	493,425	13,801	551,336	10,219	13,802	538,896	8,023
113\%	468	14,442	11,601	401,677	13,022	491,518	15,849	13,021	486,068	14,893
122\%	466	14,444	10,184	298,879	12,314	413,554	20,231	12,314	430,892	23,289
134\%	466	14,305	8,634	228,729	11,468	373,262	25,477	11,471	367,810	24,529
150\%	462	14,333	7,232	162,683	10,783	311,462	26,235	10,782	331,352	29,755
175\%	436	14,022	5,560	102,521	9,801	265,412	28,691	9,781	266,494	28,891
217\%	446	13,986	4,134	52,455	9,062	227,284	30,809	9,058	212,386	28,177
300\%	412	13,868	2,650	24,439	8,252	178,680	27,135	8,266	187,156	28,657
550\%	312	13,438	1,084	5,265	7,247	136,558	22,981	7,275	133,524	22,503
WikiKG-QE										
133\%	512	2,492,122	1,494,033	5,824,868	1,992,739	9,466,319	638,389	1,993,416	10,510,906	824,713

In all datasets, entities and relations are anonymized and only have an integer ID. Furthermode, inference graphs at validation and test time are supersets of the respective training graph with new nodes and edges. The amount of new unique nodes is simply the difference $\mathcal{E}_{\text {inf }}-\mathcal{E}_{\text {train }}$ between entities in those graphs, e.g., for the dataset of ratio 175%, the validation inference graph contains 4,241 new nodes and test inference graph contains 4,221 news nodes. Note that those 4,241 and 4,221 nodes are unique for each graph and do not overlap. That is, validation inference and test inference graphs are disconnected except sharing the same core training graph.

Then, for each created inductive dataset, we sample queries of 14 query patterns following the BetaE [24] procedure. That is, training queries are sampled from the training graph $\mathcal{G}_{\text {train }}$ and have only easy answers reachable by simple edge traversal. Validation and test queries are sampled from the respective splits, e.g., validation queries are sampled from the validation graph $\mathcal{G}_{\text {val }}$ using entities from the validation inference graph $\mathcal{E}_{\text {inf }}^{\text {val }}$ (which, in turn, are a union of training nodes and new, unseen validation nodes $\mathcal{E}_{\text {train }} \cup \mathcal{E}_{\text {val }}$, and at least one edge in each query belongs to $\mathcal{T}_{\text {pred }}^{\text {val }}$ and has to be predicted during query execution. Queries might have easy answers that are directly reachable by traversing edges $\mathcal{T}_{\text {inf }}^{v a l}$ in the validation inference graph, whereas hard answers are only reachable after predicting missing edges from the set $\mathcal{T}_{\text {pred }}^{\text {val }}$. Final evaluation metrics are computed only based on the hard answers. Following the literature [24], we only retain queries that have less than 1000 answers. Table 5 summarizes the statistics on the sampled queries for each dataset ratio, each graph, and query type that we use in Section 5.2 for evaluating inductive query answering performance. In graphs with smaller inference graphs and smaller number of missing triples, we sample fewer queries with negation (2in, 3in, inp, pin, pni) for validation and test splits. For WikiKG-QE, due to its size, we only sample 10k EPFO queries to be executed in the inference-only regime without training (at the moment, CQD-Beam does not support queries with negation). We use those queries in Section 5.5 to evaluate scalability of NodePiece-QE and prediction quality in the inference-only mode.

Table 5: Statistics on sampled queries for each dataset ratio and query type. For WikiKG-QE, we only sample EPFO queries without negation.

Ratio	Graph	1p	2p	3p	2 i	3 i	pi	ip	2 u	up	2 in	3in	inp	pin	pni
106\%	training	135,613	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	40,000	50,000	50,000	50,000
	validation	6,582	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	1,000	1,000	1,000	1,000	1,000
	test	5,446	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	1,000	1,000	1,000	1,000	1,000
113\%	training	115,523	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	40,000	50,000	50,000	50,000
	validation	10,256	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	1,000	1,000	1,000	1,000	1,000
	test	9,782	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	1,000	1,000	1,000	1,000	1,000
122\%	training	91,228	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	40,000	50,000	50,000	50,000
	validation	12,696	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	5,000	5,000	5,000	5,000	5,000
	test	14,458	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	5,000	5,000	5,000	5,000	5,000
134\%	training	75,326	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	40,000	50,000	50,000	50,000
	validation	15,541	50,000	50,000	50,000	50,000	50,000	50,000	20,000	20,000	5,000	5,000	5,000	5,000	5,000
	test	15,270	50,000	50,000	50,000	50,000	50,000	50,000	20,000	20,000	5,000	5,000	5,000	5,000	5,000
150\%	training	56,114	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	40,000	50,000	50,000	50,000
	validation	16,229	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	5,000	5,000	5,000	5,000	5,000
	test	17,683	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	5,000	5,000	5,000	5,000	5,000
175\%	training	38,851	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	40,000	50,000	50,000	50,000
	validation	17,235	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	10,000	10,000	10,000	10,000	10,000
	test	17,476	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	10,000	10,000	10,000	10,000	10,000
217\%	training	22,422	30,000	30,000	50,000	50,000	50,000	50,000	50,000	50,000	30,000	30,000	50,000	50,000	50,000
	validation	18,168	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	10,000	10,000	10,000	10,000	10,000
	test	16,902	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	10,000	10,000	10,000	10,000	10,000
300\%	training	11,699	15,000	15,000	40,000	40,000	50,000	50,000	50,000	50,000	15,000	15,000	50,000	40,000	50,000
	validation	16,189	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	10,000	10,000	10,000	10,000	10,000
	test	17,105	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	10,000	10,000	10,000	10,000	10,000
550\%	training	3,284	15,000	15,000	40,000	40,000	50,000	50,000	50,000	50,000	10,000	10,000	30,000	30,000	30,000
	validation	13,616	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	10,000	10,000	10,000	10,000	10,000
	test	13,670	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	10,000	10,000	10,000	10,000	10,000
WikiKG-QE															
133\%	training	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	-	-	-	-	-
	validation	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	-	-	-	-	-
	test	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	-	-	-	-	-

Furthermore, for the experiment in Section 5.3 to measure the abilities of inductive models to find new answers of known queries, we take the created training queries and find their easy answers in the validation inference $\mathcal{G}_{\text {inf }}^{\text {val }}=\left(\mathcal{E}_{\text {inf }}^{v a l}, \mathcal{T}_{\text {inf }}^{\text {val }}\right)$ and test inference $\mathcal{G}_{\text {inf }}^{\text {test }}=\left(\mathcal{E}_{\text {inf }}^{\text {test }}, \mathcal{T}_{\text {inf }}^{\text {test }}\right)$ graphs. That is, those new answers do not require predicting missing edges in the inference graphs and only require a model to execute edge traversal to find (if any) new correct answers involving new, unseen entities and edges. For the validation (test) split, we only count such training queries q whose answer set in

Table 6: Statistics on training EPFO queries that have a different (often, larger) answer set when executed against validation and test inference graphs. We list the original number of training queries, number of those queries with new easy answers in the validation (In val) and test graphs (In test), as well as their percentage ratio to the total number. Most queries (except $2 i, 3 i$) have new answer sets.

Ratio	Graph	1p		2p		3p		2 i		3 i		pi		ip		2 u		up	
		\#Q	\%																
106\%	Train	135,613	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	14,079	10.4	32,220	64.4	40,860	81.7	7,598	15.2	4,416	8.8	16,485	33.0	29,290	58.6	33,507	67.0	41,671	83.3
	In test	11,560	8.5	31,894	63.8	40,547	81.1	7,313	14.6	4,175	8.4	16,204	32.4	28,778	57.6	32,978	66.0	41,167	82.3
113\%	Train	115,523	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	17,792	15.4	36,499	73.0	43,473	86.9	10,517	21.0	6,394	12.8	20,556	41.1	33,599	67.2	37,955	75.9	44,318	88.6
	In test	17,576	15.2	36,721	73.4	43,541	87.1	10,552	21.1	6,303	12.6	20,382	40.8	33,726	67.5	38,107	76.2	44,501	89.0
122\%	Train	91,228	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	20,281	22.2	38,642	77.3	44,654	89.3	11,695	23.4	5,851	11.7	22,662	45.3	35,935	71.9	40,356	80.7	45,672	91.3
	In test	20,418	22.4	38,706	77.4	44,688	89.4	11,847	23.7	6,185	12.4	22,524	45.0	35,768	71.5	40,395	80.8	45,684	91.4
134\%	Train	75,326	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	18,909	25.1	39,893	79.8	45,253	90.5	14,256	28.5	8,655	17.3	24,619	49.2	37,835	75.7	41,899	83.8	46,114	92.2
	In test	19,372	25.7	39,762	79.5	45,325	90.7	14,082	28.2	8,790	17.6	24,212	48.4	37,527	75.1	41,494	83.0	46,210	92.4
150\%	Train	56,114	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	17,434	31.1	40,666	81.3	45,832	91.7	14,103	28.2	8,011	16.0	25,106	50.2	38,499	77.0	42,587	85.2	46,754	93.5
	In test	18,566	33.1	41,202	82.4	46,092	92.2	14,575	29.2	8,193	16.4	25,782	51.6	38,932	77.9	43,101	86.2	46,791	93.6
175\%	Train	38,851	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	
	In val	14,063	36.2	41,290	82.6	46,214	92.4	15,645	31.3	9,222	18.4	27,205	54.4	40,161	80.3	44,128	88.3	47,366	94.7
	In test	14,214	36.6	41,143	82.3	46,061	92.1	15,731	31.5	9,391	18.8	27,207	54.4	40,297	80.6	43,980	88.0	47,319	94.6
217\%	Train	22,422	100.0	30,000	100.0	30,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	10,437	46.5	24,659	82.2	26,760	89.2	13,784	27.6	7,807	15.6	24,884	49.8	39,107	78.2	43,496	87.0	46,112	92.2
	In test	10,257	45.7	24,344	81.1	26,579	88.6	14,055	28.1	7,962	15.9	24,962	49.9	38,966	77.9	43,092	86.2	45,850	91.7
300\%	Train	11,699	100.0	15,000	100.0	15,000	100.0	40,000	100.0	40,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	5,830	49.8	12,366	82.4	13,230	88.2	12,833	32.1	7,911	19.8	27,920	55.8	40,800	81.6	43,516	87.0	46,453	92.9
	In test	6,061	51.8	12,477	83.2	13,309	88.7	13,291	33.2	8,284	20.7	28,447	56.9	41,214	82.4	43,966	87.9	46,668	93.3
550\%	Train	3,284	100.0	15,000	100.0	15,000	100.0	40,000	100.0	40,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	
	In val	1,885	57.4	11,484	76.6	12,575	83.8	11,119	27.8	6,617	16.5	23,126	46.3	39,243	78.5	38,129	76.3	45,173	90.3
	In test	1,883	57.3	11,597	77.3	12,654	84.4	11,244	28.1	6,795	17.0	23,575	47.2	39,630	79.3	37,508	75.0	45,412	90.8

Table 7: Statistics on training negation queries that have a different (often, larger) answer set when executed against validation and test inference graphs. We list the original number of training queries, number of those queries with new easy answers in the validation (In val) and test graphs (In test), as well as their percentage ratio to the total number. Most queries have new answer sets.

Ratio	Graph	2 in		3in		pin		pni		inp	
		\#Q	\%								
106\%	Train	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	25,318	50.6	18,232	36.5	37,857	75.7	27,572	55.1	37,497	75.0
	In test	25,111	50.2	18,237	36.5	37,441	74.9	27,535	55.1	37,176	74.4
113\%	Train	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	31,216	62.4	24,620	49.2	42,015	84.0	33,011	66.0	41,980	84.0
	In test	31,437	62.9	24,665	49.3	42,255	84.5	33,115	66.2	42,296	84.6
122\%	Train	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	34,722	69.4	26,700	53.4	44,104	88.2	36,361	72.7	44,070	88.1
	In test	35,028	70.1	27,105	54.2	44,089	88.2	36,398	72.8	44,074	88.1
134\%	Train	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	38,096	76.2	31,631	63.3	45,672	91.3	39,641	79.3	45,491	91.0
	In test	37,469	74.9	31,224	62.4	45,521	91.0	38,971	77.9	45,418	90.8
150\%	Train	50,000	100.0	40,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	39,836	79.7	26,534	66.3	46,561	93.1	40,733	81.5	46,496	93.0
		$40,127$	80.3	26,968	67.4	46,832	93.7	41,100	82.2	46,811	93.6
175\%	Train	50,000	100.0	40,000		50,000					100.0
	In val	42,418	84.8	29,083	72.7	47,666	95.3	42,987	86.0	47,606	95.2
	In test	42,379	84.8	29,170	72.9	47,749	95.5	42,941	85.9	47,557	95.1
217\%	Train	30,000	100.0	30,000	100.0	50,000	100.0	50,000	100.0	50,000	100.0
	In val	26,202	87.3	21,751	72.5	47,879	95.8	43,958	87.9	47,688	95.4
	In test	26,080	86.9	21,591	72.0	47,655	95.3	43,837	87.7	47,417	94.8
300\%	Train	15,000	100.0	15,000	100.0	50,000	100.0	40,000	100.0	50,000	100.0
	In val	13,595	90.6	11,996	80.0	48,693	97.4	36,427	91.1	48,279	96.6
	In test	13,659	91.1	12,098	80.7	48,791	97.6	36,507	91.3	48,440	96.9
550\%	Train	10,000	100.0	10,000	100.0	30,000	100.0	30,000	100.0	30,000	100.0
	In val	$9,232$	92.3	8,071	80.7	$29,484$	98.3	27,975	93.3	29,393	98.0
	In test	9,137	91.4	8,053	80.5	29,510	98.4	27,839	92.8	29,218	97.4

this split is different from the answer set in the training graph, e.g., $\mathcal{A}_{q}^{\text {val }} \neq \mathcal{A}_{q}^{\text {train }}$. We summarize the statistics of identified new answer sets in all datasets in Table 6 (for EPFO queries) and Table 7 (for queries with negations). We find that in most query patterns across all dataset ratios, training queries indeed have new answer sets when executed against validation or test inference graphs.

C More Experimental Results

Here, we present a detailed breakdown of query answering performance measured in Sections 5.2 and 5.3 by query type. Fig. 5 and Table 8 contain detailed results from Section 5.2 of executing test queries with new, unseen entities over inference graphs of various ratios of new entities.

Figure 5: Hits@ 10 results on answering test inductive FOL queries on all ratios $\mathcal{E}_{\text {inf }} / \mathcal{E}_{\text {train }}$.

Table 8: Test Hits@3 and Hits@ 10 results (\%) on answering test inductive FOL queries on all ratios $\mathcal{E}_{\text {inf }} / \mathcal{E}_{\text {train }} . \operatorname{avg}_{p}$ is the average on EPFO queries $(\wedge, \vee) . \operatorname{avg}_{n}$ is the average on queries with negation.

Ratio	Model	Metric	$\mathbf{a v g}_{p}$	$\mathbf{a v g}_{n}$	1 p	2p	3 p	2 i	3 i	pi	ip	2u	up	2 in	3in	inp	pin	pni
550\%	Edge-type Heuristic	Hits@3	5.0	2.3	5.9	4.7	5.2	5.3	7.0	5.1	4.3	2.8	4.5	1.5	1.7	4.9	2.0	1.4
		Hits@10	11.7	5.1	15.8	10.4	11.5	13.4	16.4	12.2	9.7	6.3	9.2	3.4	3.7	11.2	3.9	3.4
	NodePiece-QE	Hits@3	4.3		7.3	4.0	4.1	4.3	4.5	3.8	3.6	3.4	3.3					
		Hits@10	9.6		16.3	8.4	8.8	10.8	11.5	8.8	7.7	6.8	7.0					
	NodePiece-QE w/ GNN	Hits@3	5.4		9.2	4.1	3.1	6.8	7.4	5.1	4.5	5.4	3.4					
		Hits@10	11.1		20.1	8.3	6.2	14.0	15.5	10.5	8.7	10.3	6.6					
	GNN-QE	Hits@3	24.2	9.7	28.3	15.8	10.1	37.7	60.9	31.3	14.4	10.1	8.8	9.0	16.5	9.8	7.7	5.6
		Hits@10	33.1	15.8	37.7	23.4	17.0	50.7	74.9	43.3	20.4	15.1	15.4	13.4	26.3	17.2	13.7	8.6
300\%	Edge-type Heuristic	Hits@3	5.5	2.7	10.3	5.1	5.4	5.0	6.3	5.0	4.8	2.7	5.1	1.6	1.9	4.8	2.5	2.5
		Hits@10	12.2	5.8	20.9	10.9	11.6	12.1	14.8	11.6	10.8	6.4	10.3	3.6	4.1	11.2	5.1	5.0
	NodePiece-QE	Hits@3	5.4		12.0	4.7	4.6	4.9	5.2	4.2	4.6	3.9	4.0					
		Hits@10	10.7		19.6	9.5	9.5	11.0	12.0	9.7	9.5	7.5	8.3					
	NodePiece-QE w/ GNN	Hits@3	9.7		18.9	7.3	4.1	13.1	15.0	9.1	7.3	7.2	5.5					
		Hits@10	17.9		31.5	13.7	8.2	24.3	27.0	18.0	13.7	13.8	10.6					
	GNN-QE	Hits@3	31.8	13.5	41.5	21.0	16.1	51.7	66.7	37.2	25.2	13.5	13.3	11.7	21.3	14.0	12.7	7.7
		Hits@10	42.6	22.4	50.9	32.1	26.4	65.4	78.1	49.5	35.7	21.7	23.4	19.3	33.1	24.6	21.3	13.7
217\%	Edge-type Heuristic	Hits@3	5.5	2.4	10.3	4.8	4.8	5.1	7.2	5.4	4.7	2.1	4.6	1.2	2.3	4.3	2.2	2.2
		Hits@10	11.5	5.4	18.8	9.9	10.2	12.1	16.1	11.9	9.8	4.8	9.4	2.9	4.7	10.2	4.5	4.6
	NodePiece-QE	Hits@3	5.9		13.9	4.8	4.4	5.8	${ }_{15.7}^{6.7}$	5.3	5.1	3.4	4.0					
		Hits@10	11.7		22.3	9.3	8.8	12.9	15.5	11.5	10.0	7.1	7.8					
	NodePiece-QE w/ GNN	Hits@3	13.6		25.7	8.8	5.3	18.7	24.8	12.9	10.3	8.9	6.9					
		Hits@10	23.5		41.0	16.0	10.4	32.5	40.8	23.7	17.7	16.9	12.6					
	GNN-QE	Hits@3	37.9	19.2	50.6	24.4	19.3	58.6	76.2	45.1	31.4	19.7	16.0	17.6	32.6	18.3	14.0	13.6
		Hits@10	49.2	30.1	61.3	36.1	29.8	72.6	86.8	58.4	42.5	29.3	25.8	26.7	47.4	30.3	22.7	23.3
175\%	Edge-type Heuristic	Hits@3	4.7	1.7	8.4	3.8	4.8	4.5	5.6	4.3	4.0	2.5	4.2	1.0	1.2	3.3	1.8	1.0
		Hits@10	10.1	4.1	17.7	8.2	9.9	10.7	13.0	9.8	8.2	5.3	8.5	2.6	2.9	8.4	3.8	2.7
	NodePiece-QE	Hits@3	5.6		14.2	4.1	4.1	5.6	6.2	4.5	4.6	3.5	3.3					
		Hits@10	11.2		25.5	8.2	8.4	12.4	13.9	9.9	8.7	7.0	6.8					
	NodePiece-QE w/ GNN	Hits@3	17.2		30.7	10.7	5.9	24.4	31.2	17.2	13.1	14.2	7.3					
		Hits@10	28.6		45.9	19.2	11.5	39.9	48.8	29.4	22.6	25.3	14.6					
	GNN-QE	Hits@3	38.5	20.5	52.8	24.1	20.6	59.8	73.3	43.2	30.0	24.4	17.9	18.9	32.2	17.8	15.3	18.2
		Hits@10	50.7	33.6	65.4	36.3	31.6	73.8	84.3	56.5	41.5	39.3	28.0	33.3	46.4	29.2	24.9	34.0
150\%	Edge-type Heuristic	Hits@3	4.4	1.9	9.2	3.6	4.0	4.3	5.3	3.9	3.5	1.8	3.8	1.3	1.5	3.5	2.1	1.1
		Hits@10	9.6	4.4	17.4	7.9	8.7	10.4	12.7	9.0	7.7	4.5	8.0	2.8	3.6	8.7	4.2	2.5
	NodePiece-QE	Hits@3	5.4		14.0	4.5	4.1	5.0	5.5	4.0	4.6	3.0	3.8					
		Hits@10	10.8		22.8	8.9	8.5	11.7	12.9	9.1	9.1	6.3	7.7					
	NodePiece-QE w/ GNN	Hits@3	15.7		33.1	9.7	4.6	22.3	26.9	14.8	11.4	12.3	6.5					
		Hits@10	25.9		48.9	17.2	9.1	36.6	43.1	25.1	19.7	21.1	12.2					
	GNN-QE	Hits@3	37.3	18.1	56.6	23.6	18.9	58.6	69.8	39.6	27.3	23.2	18.0	16.9	25.7	16.6	16.2	15.4
		Hits@10	49.3	30.3	69.1	35.7	29.7	73.1	81.3	52.9	38.7	34.3	28.7	28.3	40.1	27.8	27.7	27.7
133\%	Edge-type Heuristic	Hits@3	4.0	1.9	8.6	3.5	3.2	4.3	4.9	3.4	3.5	1.8	3.2	1.2	1.6	2.7	2.0	1.1
		Hits@10	9.0	4.2	17.7	7.3	7.1	10.1	11.8	8.0	7.5	4.3	7.0	2.6	2.9	7.4	3.8	2.5
	NodePiece-QE	Hits@3	5.1		15.4	4.8	3.5	4.4	4.1	2.9	4.8	2.6	3.4					
		Hits@10	10.2		24.8	9.3	7.7	10.1	9.9	7.4	9.3	5.6	7.5					
	NodePiece-QE w/ GNN	Hits@3	19.4		38.0	12.6	5.2	27.0	32.3	17.9	16.0	16.7	8.7					
		Hits@10	29.6		52.1	20.6	9.4	42.3	49.2	29.3	24.3	25.5	14.2					
	GNN-QE	Hits@3	38.8	21.4	56.3	25.6	19.8	59.3	68.5	40.6	30.6	28.4	19.8	23.0	25.9	16.4	18.3	23.6
		Hits@10	51.4	34.1	69.2	38.7	31.1	73.4	79.9	53.8	43.7	42.2	30.4	35.6	40.3	27.8	28.6	38.1
121\%	Edge-type Heuristic	Hits@3	4.3	1.5	14.7	3.0	3.2	3.0	3.9	2.8	2.8	1.5	3.3	0.9	1.0	2.6	1.7	1.2
		Hits@10	8.6	3.7	23.3	6.5	6.9	7.6	9.5	6.7	6.4	3.7	6.9	2.2	2.4	7.2	3.5	3.0
	NodePiece-QE	Hits@3	4.6		16.0	3.2	2.7	3.7	4.3	3.1	3.5	2.1	2.8					
		Hits@10	9.6		28.0	6.5	6.1	9.2	10.7	7.8	7.1	4.9	6.0					
	NodePiece-QE w/ GNN	Hits@3	18.4		39.7	10.6	4.8	24.8	30.6	16.4	13.9	16.8	7.8					
		Hits@10	27.9		53.6	17.1	8.4	38.0	45.9	26.7	21.9	26.1	13.9					
	GNN-QE	Hits@3	35.3	18.9	62.0	21.1	17.9	50.0	59.5	36.8	26.7	27.4	16.6	20.2	23.4	15.4	13.8	21.5
		Hits@10	46.2	29.1	74.2	31.1	27.2	63.4	70.5	48.1	37.3	38.3	25.4	30.5	35.2	25.5	21.8	32.6
113\%	Edge-type Heuristic	Hits@3	3.1	1.0	8.5	1.8	2.3	3.3	4.5	2.5	1.9	1.3	2.1	0.5	1.3	1.5	1.2	0.4
		Hits@10	7.0	2.4	15.2	4.3	5.5	8.2	10.4	6.4	4.4	3.4	5.1	1.1	2.4	4.2	2.9	1.6
	NodePiece-QE	Hits@3	4.0		13.6	3.2	3.2	3.4	3.8	2.4	2.6	1.7	2.7					
		Hits@10	8.1		21.5	6.4	6.4	7.8	8.6	5.9	5.9	3.8	6.3					
	NodePiece-QE w/ GNN	Hits@3	18.1		39.1	10.2	3.8	25.9	31.0	17.2	13.8	15.8	6.4					
		Hits@10	27.2		53.6	16.0	7.3	39.2	46.7	26.2	21.1	24.0	11.0					
	GNN-QE	Hits@3	38.1	22.7	58.6	24.5	22.3	53.0	62.1	39.0	28.4	33.4	21.7	26.4	24.5	13.6	20.2	28.5
		Hits@10	49.4	33.9	71.7	34.9	31.3	67.5	74.7	50.7	38.9	44.3	30.9	36.8	39.5	23.7	29.6	39.8
106\%	Edge-type Heuristic	Hits@3	2.8	1.3	7.1	1.9	1.7	3.5	4.2	1.8	1.4	1.4	1.9	1.6	1.2	1.2	1.1	1.4
		Hits@10	6.4	3.0	14.5	4.3	4.4	8.1	9.7	4.8	3.7	3.1	4.7	2.8	2.2	4.4	2.6	2.9
	NodePiece-QE	Hits@3	4.0		11.9	3.6	4.0	3.6	4.0	1.8	2.1	1.5	3.3					
		Hits@10	7.7		19.2	5.9	7.6	8.1	9.2	4.3	4.5	4.1	6.1					
	NodePiece-QE w/ GNN	Hits@3	22.1		39.6	14.8	5.1	30.1	35.6	19.6	19.6	24.5	9.9					
		Hits@10	31.7		54.3	21.6	7.8	44.2	51.6	28.4	27.7	35.2	14.0					
	GNN-QE	Hits@3	40.6	28.3	58.1	28.5	24.1	54.7	62.3	38.7	33.1	40.3	25.6	31.7	30.4	17.0	22.4	40.1
		Hits@10	50.4	37.7	71.9	37.0	32.4	67.9	73.7	48.2	41.8	48.0	32.7	39.6	43.2	25.3	31.1	49.4

Fig. 6 and Table 9 contain detailed results from the experiment in Section 5.3 about executing training queries over the original training and extended test inference graphs.

Figure 6: Hits@ 10 results on answering training queries executed over the original train (solid line) and test inference (dashed line) graphs. NodePiece-QE models are inference-only and were trained on $l p$ queries, GNN-QE is end-to-end trainable on all complex queries.

Table 9: Hits@ 10 results (\%) of training queries executed over the original training graph and extended test inference graph. All ratios $\mathcal{E}_{\text {inf }} / \mathcal{E}_{\text {train }} . \operatorname{avg}_{p}$ is the average on EPFO queries (\wedge, \vee). avg ${ }_{n}$ is the average on queries with negation. NodePiece-QE models are inference-only and were trained on $1 p$ queries, GNN-QE is end-to-end trainable on all complex queries.

Ratio	Model	Graph	$\mathbf{a v g}_{p}$	$\mathbf{a v g}_{n}$	1p	2p	3p	2 i	3 i	pi	ip	2 u	up	2 in	3 in	inp	pin	pni
550\%	Edge-type Heuristic	test	25.4	10.5	19.2	21.3	23.4	36.1	29.4	18.9	23.6	27.3	29.2	7.0	4.6	23.1	10.4	7.4
	NodePiece-QE	train	79.1		76.9	70.7	65.2	93.8	94.4	80.0	70.2	89.6	70.8					
		test	48.2		49.8	36.1	28.7	72.7	81.7	56.4	34.0	46.9	27.8					
	NodePiece-QE w/ GNN	train	80.0		84.9	68.9	45.9	96.7	96.3	85.5	77.6	93.1	71.4					
		test	55.7		60.8	37.3	23.0	84.8	86.1	60.1	46.6	66.2	36.7					
	GNN-QE	train	99.9	99.7	100.0	99.9	99.8	100.0	100.0	100.0	100.0	100.0	99.8	99.7	100.0	99.6	99.6	99.8
		test	95.4	92.1	99.5	94.8	83.9	99.9	100.0	99.1	93.0	99.3	89.5	95.8	98.1	87.4	87.3	92.1
300\%	Edge-type Heuristic	test	25.4	13.0	27.1	25.1	30.8	21.3	27.6	20.6	27.7	12.2	36.0	10.2	5.5	20.2	14.0	15.2
	NodePiece-QE	train	62.6		68.3	55.3	54.6	68.3	76.0	62.2	58.5	58.2	62.0					
		test	41.0		51.8	30.1	28.4	56.3	66.5	42.1	30.7	31.7	31.1					
	NodePiece-QE w/ GNN	train	85.5		96.9	81.3	49.9	97.5	98.2	89.5	86.0	91.4	78.7					
		test	64.3		82.2	51.9	33.1	86.4	90.5	67.8	55.9	62.8	47.9					
	GNN-QE	train	99.9	99.4	100.0	100.0	99.8	100.0	100.0	100.0	100.0	100.0	99.8	99.1	99.6	99.4	99.2	99.6
		test	96.2	89.7	100.0	95.9	94.6	100.0	100.0	97.3	91.3	96.7	90.3	90.8	95.5	95.0	84.6	82.8
217\%	Edge-type Heuristic	test	21.9	11.1	24.3	22.2	24.6	20.8	30.0	21.4	18.9	9.3	25.6	7.4	9.9	16.0	10.3	12.1
	NodePiece-QE	train	59.7		68.6	51.4	43.3	70.4	79.6	62.0	52.8	55.8	53.3					
		test	45.0		55.3	34.3	28.0	61.6	73.3	48.4	35.0	35.6	33.3					
	NodePiece-QE w/ GNN	train	83.9		96.9	77.9	46.6	97.8	98.9	90.1	83.6	90.0	72.9					
		test	71.0		87.6	59.0	37.5	91.0	95.2	76.4	65.6	72.2	54.9					
	GNN-QE	train	99.9	98.7	100.0	99.9	99.7	100.0	100.0	100.0	99.9	100.0	99.8	98.6	99.2	98.7	98.3	98.5
		test	98.3	93.9	100.0	97.6	96.9	100.0	100.0	99.0	96.8	98.5	96.2	95.5	95.6	96.1	91.8	90.5
175\%	Edge-type Heuristic	test	20.0	9.8	23.4	18.4	25.5	17.7	23.6	18.7	17.6	9.6	25.5	6.7	6.5	16.0	9.3	10.3
	NodePiece-QE	train	50.1		65.8	42.0	40.7	54.2	62.1	47.1	43.1	49.0	47.0					
		test	40.2		57.6	30.8	29.1	47.9	57.4	38.6	31.8	35.5	33.0					
	NodePiece-QE w/ GNN	train	91.0		99.9	94.1	51.7	99.9	99.9	96.3	96.8	98.4	82.2					
		test	81.8		95.8	76.2	43.4	97.3	98.7	87.4	84.3	88.5	64.6					
	GNN-QE	train	100.0	99.6	100.0	100.0	99.9	100.0	100.0	100.0	100.0	100.0	99.9	99.6	99.6	99.5	99.4	99.6
		test	99.1	93.9	100.0	99.8	98.9	100.0	99.9	98.6	98.7	98.1	97.6	95.3	94.1	95.5	93.5	91.0
150\%	Edge-type Heuristic	test	19.7	9.8	27.0	19.1	24.8	16.6	23.6	17.6	15.9	8.4	24.7	6.2	7.7	15.1	9.2	10.6
	NodePiece-QE	train	41.3		57.8	37.3	36.3	40.7	48.7	36.8	34.0	39.1	41.3					
		test	34.8		52.5	29.1	28.1	36.9	46.0	31.4	27.2	30.2	31.6					
	NodePiece-QE w/ GNN	train	88.5		99.7	89.7	44.9	99.6	99.8	93.9	94.1	97.7	76.6					
		test	79.6		95.0	74.3	38.3	96.2	98.3	86.0	81.7	85.6	61.1					
	GNN-QE	train	99.9	98.8	100.0	99.9	99.8	100.0	100.0	99.9	99.9	100.0	99.9	98.6	98.8	98.9	98.7	99.1
		test	98.8	94.1	100.0	99.6	98.5	99.9	99.9	99.2	98.4	96.5	97.4	94.6	95.5	94.9	92.9	92.3
133\%	Edge-type Heuristic	test	19.8	10.2	25.0	19.8	25.5	15.6	21.3	17.8	17.3	8.7	26.8	6.8	7.5	15.0	10.4	11.5
	NodePiece-QE	train	32.9		52.0	32.0	34.1	25.0	27.7	26.0	29.9	31.9	37.4					
		test	29.2		49.0	27.5	29.4	22.9	26.0	23.0	25.8	27.0	32.1					
	NodePiece-QE w/ GNN	train	89.7		99.9	92.0	47.6	99.9	99.9	94.1	96.0	99.2	78.8					
		test	84.2		97.3	82.0	43.0	97.8	98.9	89.3	88.5	92.4	69.0					
	GNN-QE	train	100.0	99.7	100.0	100.0	99.9	100.0	100.0	100.0	100.0	100.0	99.9	99.8	99.8	99.6	99.5	99.8
		test	99.2	96.8	100.0	99.1	98.9	99.9	99.8	99.0	98.5	98.6	98.7	97.5	97.0	97.7	95.8	95.8
121\%	Edge-type Heuristic	test	17.9	8.6	22.9	16.6	23.9	14.6	20.7	15.8	14.0	7.9	24.3	5.4	5.9	13.8	8.6	9.2
	NodePiece-QE	train	38.4		56.4	33.8	32.5	37.0	43.6	34.5	32.3	36.6	38.6					
		test	35.0		53.5	29.7	28.7	35.1	42.2	31.2	28.4	32.4	33.8					
	NodePiece-QE w/ GNN	train	87.8		100.0	89.2	42.1	99.9	99.9	92.3	94.1	98.5	74.4					
		test	84.8		98.0	83.9	39.6	98.6	99.4	89.2	90.3	94.3	69.7					
	GNN-QE	train	100.0	99.4	100.0	100.0	99.9	100.0	100.0	100.0	100.0	100.0	99.9	99.4	99.5	99.1	99.3	99.7
		test	99.3	97.3	100.0	99.2	99.2	100.0	100.0	99.3	98.3	99.2	98.6	97.9	98.3	97.8	96.5	96.2
113\%	Edge-type Heuristic	test	18.3	9.0	26.8	17.9	23.9	13.9	18.8	15.2	14.6	8.2	25.0	5.7	6.7	13.6	9.1	9.8
	NodePiece-QE	train	31.8		52.5	29.4	30.3	27.0	30.5	25.5	26.7	30.8	33.9					
		test	30.2		51.0	27.6	28.4	25.9	29.6	24.1	25.0	28.6	31.8					
	NodePiece-QE w/ GNN		87.4		100.0	88.4	40.4	99.9	99.9	91.9	94.0	99.6	72.4					
		test	85.1		98.8	83.9	38.6	99.0	99.5	89.9	90.7	97.2	67.9					
	GNN-QE	train	100.0	98.8	100.0	100.0	99.9	100.0	100.0	100.0	100.0	100.0	100.0	98.7	99.0	98.7	98.5	99.2
		test	99.9	97.8	100.0	100.0	99.7	100.0	100.0	99.8	99.9	100.0	99.9	98.2	98.4	98.1	97.3	97.1
106\%	Edge-type Heuristic	test	17.1	8.3	24.1	16.1	23.6	13.2	17.4	14.4	13.5	7.8	23.9	5.4	5.5	13.5	8.2	9.0
	NodePiece-QE	train	24.1		45.4	22.9	27.6	16.1	16.8	17.0	20.1	22.1	28.7					
		test	23.6		44.9	22.3	27.0	15.8	16.6	16.6	19.5	21.5	27.9					
	NodePiece-QE w/ GNN	train	86.0		99.9	84.9	38.0	99.9	99.9	90.8	92.3	99.2	68.8					
		test	84.9		99.4	82.8	37.1	99.5	99.8	89.8	90.7	98.1	66.6					
	GNN-QE	train	100.0	99.0	100.0	100.0	99.9	100.0	100.0	100.0	99.9	100.0	99.9	98.8	99.0	98.9	98.9	99.4
		test	99.9	98.4	100.0	100.0	99.8	100.0	100.0	100.0	99.8	100.0	99.7	98.4	98.5	98.3	98.1	98.8

D Hyperparameters

Both NodePiece-QE and GNN-QE models are implemented with PyTorch [22] (MIT License). In particular, NodePiece-QE models employ PyG [12] (MIT License) and PyKEEN [2] (MIT License) for training link prediction models. GNN-QE is implemented based on the official NBFNet repository ${ }^{7}$ (MIT License) and TorchDrug [41] library (Apache 2.0).
For all inductive experiments in Sections 5.2 and 5.3, Table 10 lists best hyperparameters for NodePiece-QE models without GNN encoder, Table 11 contains hyperparameters for GNN-enabled NodePiece-QE models. The GNN-free models use only relation-based tokenization where each entity e is represented with two fixed-size sets: a set of k unique incoming r_{i} and a set of k unique outgoing r_{o} relation types. Looking up their d-dimensional vectors, we obtain:

$$
e=\left[\left[\boldsymbol{r}_{i 1}, \boldsymbol{r}_{i 2}, \ldots, \boldsymbol{r}_{i k}\right]\left[\boldsymbol{r}_{o 1}, \boldsymbol{r}_{o 2}, \ldots, \boldsymbol{r}_{o k}\right]\right] \in \mathbb{R}^{2 \times k \times d}
$$

If, for some entity, the number of unique relations of a certain kind is less than k, we pad the set with auxiliary [PAD] tokens. Entity representations are built as a function of the two sets $f(e): \mathbb{R}^{2 \times k \times d} \rightarrow \mathbb{R}^{d}$:

$$
\boldsymbol{h}_{e}=\operatorname{MLP}\left(\operatorname{RANDOMPROJ}\left(\sum_{j=0}^{k} \boldsymbol{r}_{i j}\right)+\operatorname{RANDOMPROJ}\left(\sum_{j=0}^{k} \boldsymbol{r}_{o j}\right)\right)
$$

Particularly, we first sum up tokens of the same direction, pass them through a random projection layer RANDOMPROJ (we found that making this projection learnable does not improve results), sum up representations of incoming and outgoing parts, and pass the resulting vector through a learnable MLP. This way, the number of learnable encoder parameters does not depend on the sequence length k, i.e., the number of chosen tokens per node.

The GNN-enabled models employ a slightly different Concat $+M L P$ encoder where each node is tokenized with a sample of k incident relations. Then, we concatenate d-dimensional embeddings of those tokens t_{i} into a single long vector $\mathbb{R}^{k d}$, and then use a 2-layer MLP to project it to a model dimension d, i.e., $f(e): \mathbb{R}^{k d} \rightarrow \mathbb{R}^{d}$:

$$
\boldsymbol{h}_{e}=\operatorname{MLP}\left(\left[\boldsymbol{t}_{0} ; \boldsymbol{t}_{1} ; \ldots ; \boldsymbol{t}_{k}\right]\right)
$$

For the large-scale experiment on WikiKG-QE in Section 5.5, we employ the Concat $+M L P$ encoder. Instead of separating incoming and outgoing relation types, we first tokenize each node with 20 nearest anchors (pre-selected in advance using the default NodePiece strategy [13]) and add a sample of k unique incident relations. NodePiece-QE w/ GNN employs a 3-layer CompGCN with the RotatE interaction function during message computation and sum aggregator. Due to high memory consumption, we train the 50d model for 2 epochs on $2 \times$ RTX 8000 (48 GB) GPUs.
The overall tokens vocabulary consists of 20,000 anchor nodes, 1,024 relation types (including inverse relations) and one [PAD] token. All hyperparameters for this experiments are listed in Table 12.

Having trained the link predictors, we tune CQD-Beam hyperparameters on the validation set varying the t-norms, t-conorms, and scores normalization. Table 13 lists best options for each EPFO query type. For all experiments, we used a beam size $k=32$ except for queries on WikiKG-QE where we used $k=8$ due to the memory-expensive need of maintaining a beam over 2M entities.

Table 14 lists hyperparameters for GNN-QE models for all inductive splits. We found this architecture is quite stable under various configurations and eventually employed the same set of hyperparameters across all datasets.

BetaE (as a transductive baseline for the reference 175% dataset) was configured with 400 d embedding dimension, batch size 512, 32 negative samples, learning rate 0.0005 , margin $\gamma 60$, and trained on 10 query patterns $\{1 p, 2 p, 3 p, 2 i, 3 i, 2 i n, 3 i n, i n p, p i n, p n i\}$ for $200 k$ steps.

[^0]Table 10: NodePiece-QE hyperparameters for all inductive splits.

Hyperparameter	Dataset $\mathcal{E}_{\text {inf }} / \mathcal{E}_{\text {train }}$ Ratios								
	106	113	133	134	150	175	217	300	550
Vocab size	472	466	460	458	450	438	442	402	346
Tokens per node	20	20	20	20	20	20	20	20	10
Vocab dim	400	400	400	400	400	400	400	400	1000
Scoring function	ComplEx [30]								
Encoder	RandomProj + MLP								
Encoder dim	400	400	400	400	400	400	400	400	1000
Encoder layers					2				
Batch size					256				
Epochs	400	400	400	1000	1000	2000	2000	2000	3000
Learning rate					$1 \mathrm{e}-4$				
Optimizer					Adam				
Loss function					BCE				
Adv. temperature	1.0	1.0	1.0	1.0	0.5	0.5	0.5	0.2	1.0
\# negatives	128	128	128	128	128	128	128	128	128
\# parameters	699k	694k	689k	688k	681k	671k	675k	643k	2.7 M
Training time (hrs)	15	12	10	9	6	9	9	5	1

Table 11: NodePiece-QE with GNN hyperparameters for all inductive splits.

Table 12: NodePiece-QE hyperparameters for WikiKG-QE (133\%).

Hyperparameter	NodePiece-QE	NodePiece-QE w/ GNN
Vocab size	20,000	anchors +1024 relation types
Anchor tokens per node	20	15
Relation tokens per node	20	10
Vocab dim	100	50
Scoring function		ComplEx [30]
Encoder	Concat + MLP	
Encoder dim	200	100
Encoder layers	2	2
GNN	-	CompGCN
GNN dim	-	50
GNN layers	-	3
Batch size	512	
Epochs	$40(\approx 1 \mathrm{M}$ steps $)$	1024
Learning rate		2
Optimizer		Adam
Loss function		
Adversarial temp.		
\# negatives	64	1.0
\# parameters	$2,922,900$	
Training time (hrs)	40	

Table 13: CQD-Beam t-norm hyperparameters for all splits and both link predictors, NodePiece-QE and NodePiece-QE w/ GNN, when answering EPFO queries. The default beam size $k=32$, $\operatorname{prod}+$ σ is product t -norm with sigmoid score normalization. Details on t-norms are in Appendix A.

Ratio	Link predictor	1p	2p	3p	2 i	3 i	pi	ip	2u	up
106\%	NodePiece-QE NodePiece-QE w/ GNN	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$
113\%	NodePiece-QE NodePiece-QE w/ GNN	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$
122\%	NodePiece-QE NodePiece-QE w/ GNN	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$
134\%	NodePiece-QE NodePiece-QE w/ GNN	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$
150\%	NodePiece-QE NodePiece-QE w/ GNN	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$
175\%	NodePiece-QE NodePiece-QE w/ GNN	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$
217\%	NodePiece-QE NodePiece-QE w/ GNN	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$
300\%	NodePiece-QE NodePiece-QE w/ GNN	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$
550\%	NodePiece-QE NodePiece-QE w/ GNN	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	prod $+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$	$\operatorname{prod}+\sigma$
133\%	NodePiece-QE				kiKG-QE)	prod $+\sigma$ fo	all query typ			

Table 14: Hyperparameters of GNN-QE on different datasets. All the hyperparameters are selected by the performance on the validation set.

Hyperparameter		All splits
GNN	\#layers	4
	hidden dim.	32
	composition	DistMult [33]
	aggregation	PNA [10]
MLP	\#layer	2
	hidden dim.	64
Traversal Dropout Logical Operator	probability	0.5
	t-norm	product
Learning	batch size	64
	sample weight	uniform across queries
	loss	BCE
	\# negatives	32
	optimizer	Adam
	learning rate	5e-3
	iterations (\#batch)	10,000
	adv. temperature	0.1

E Edge-type Heuristic

We consider Edge-type Heuristic as a trivial baseline for inductive complex query. Given a query $\mathcal{Q}=\left(\mathcal{C}, \mathcal{R}_{Q}, \mathcal{G}\right)$, Edge-type Heuristic finds all entities $e \in \mathcal{E}$ that satisfy the relations in the last hop of \mathcal{R}_{Q} on the inference graph $\mathcal{G}_{\text {inf }}$. In other words, this baseline filters out entities that are not consistent with the query according to the edge types, which is a necessary condition for the answers when the inference graph is reasonably dense. Since Edge-type Heuristic only distinguishes the entities into two classes, we randomly shuffle the entities in each class to create a ranking.

Edge-type Heuristic can be easily implemented as GNN-QE with a special relation projection. Given an inference graph $\mathcal{G}_{\text {inf }}$, we first preprocess a relation-to-entity mapping \boldsymbol{M}, where $\boldsymbol{M}_{r, t}$ means there exists a head entity h and an edge (h, r, t) for tail entity t. Then the relation projection of relation r can be implemented by looking up the row \boldsymbol{M}_{r}. Note that the Edge-type Heuristic only filters entities according to the edge type, and hence the head entity (or the distribution of head entity) is ignored in the relation projection.

[^0]: ${ }^{7}$ https://github.com/DeepGraphLearning/NBFNet

