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Abstract

Formulating and answering logical queries is a standard communication interface
for knowledge graphs (KGs). Alleviating the notorious incompleteness of real-
world KGs, neural methods achieved impressive results in link prediction and com-
plex query answering tasks by learning representations of entities, relations, and
queries. Still, most existing query answering methods rely on transductive entity
embeddings and cannot generalize to KGs containing new entities without retrain-
ing the entity embeddings. In this work, we study the inductive query answering
task where inference is performed on a graph containing new entities with queries
over both seen and unseen entities. To this end, we devise two mechanisms lever-
aging inductive node and relational structure representations powered by graph
neural networks (GNNs). Experimentally, we show that inductive models are able
to perform logical reasoning at inference time over unseen nodes generalizing to
graphs up to 500% larger than training ones. Exploring the efficiency–effectiveness
trade-off, we find the inductive relational structure representation method generally
achieves higher performance, while the inductive node representation method is
able to answer complex queries in the inference-only regime without any train-
ing on queries and scales to graphs of millions of nodes. Code is available at
https://github.com/DeepGraphLearning/InductiveQE.

1 Introduction

Traditionally, querying knowledge graphs (KGs) is performed via databases using structured query
languages like SPARQL. Databases can answer complex queries relatively fast under the assumption
of completeness, i.e., there is no missing information in the graph. In practice, however, KGs are
notoriously incomplete [32]. Embedding-based methods that learn vector representations of entities
and relations are known to be effective in simple link prediction predicting heads or tails of query
patterns (head, relation, ?), e.g., (Einstein, graduate, ?), as common in KG completion [1, 17].

Complex queries are graph patterns expressed in a subset of first-order logic (FOL) with operators such
as intersection (^), union (_), negation (¬) and existentially quantified (9) variables1, e.g., ?U.9V :
Win(NobelPrize, V ) ^ Citizen(USA, V ) ^ Graduate(V, U) (Fig. 1). Complex queries define a
superset of KG completion. The conventional KG completion (link prediction) task can be viewed
as a complex query with a single triplet pattern without logical operators, e.g., Citizen(USA, V ),
which we also denote as a projection query.

1The universal quantifier (8) is often discarded as in real-world KGs there is no node connected to all others.
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Figure 1: Inductive query answering problem: at inference time, the graph is updated with new nodes
Feynman and Princeton and edges such that the same query now has more answers.

To tackle complex queries on incomplete knowledge graphs, query embedding methods are proposed
to execute logic operations in the latent space, including variants that employ geometric [15, 23, 38],
probabilistic [24, 9], neural-symbolic [26, 8, 5], neural [21, 4], and GNN [11, 3] approaches for
learning entity, relation, and query representations.

However, this very fact of learning a separate embedding for each entity makes those methods
inherently transductive i.e., they are bound to the space of learned entities and cannot generalize to
unseen entities without retraining the whole embedding matrix which can be prohibitively expensive
in large graphs. The problem is illustrated in Fig. 1: given a graph about Einstein and a logical
query Where did US citizens with Nobel Prize graduate?, transductive QE methods learn to execute
logical operators and return the answer set {University of Zurich, ETH Zurich}. Then, the
graph is updated with new nodes and edges about Feynman and Princeton, and the same query now
has more correct answers {University of Zurich, ETH Zurich, Princeton} as new unseen
entities satisfy the query as well.

Such inductive inference is not possible for transductive models as they do not have representations for
new Feynman and Princeton nodes. In the extreme case, inference graphs might be disconnected
from the training one and only share the set of relations. Therefore, inductive capabilities are a key
factor to transferring trained query answering models onto updated or entirely new KGs.

In this work, we study answering complex queries in the inductive setting, where the model has
to deal with unseen entities at inference time. Inspired by recent advancement in inductive Kg
completion [42, 13], we devise two solutions for learning inductive representations for complex query:
1) The first solution, NodePiece-QE, extends the inductive node representation model NodePiece [13]
to complex query answering. NodePiece-QE learns inductive representations of each entity as a
function of tokens from a fixed-size vocabulary, and answers complex query with a non-parametric
logical query executor [5]. The advantages of NodePiece-QE are that it only needs to be trained
on simple link prediction data, answers complex queries in the inference-only mode, and can scale
to large KGs. 2) The second solution, GNN-QE [40], extends the inductive KG completion model
NBFNet [42] for complex query answering. Originally, GNN-QE was studied only in the transductive
setting. Here, we analyze its inductive capabilities. GNN-QE learns inductive representations of the
relational structure without entity embeddings, and uses the relational structure between the query
constants and the answers to make the prediction. GNN-QE can be trained end-to-end on complex
queries, achieves much better performance than NodePiece-QE, but struggles to scale to large KGs.

To the best of our knowledge, this is the first work to study complex logical query answering in the
inductive setting without any additional features like entity types or textual descriptions. Conducting
experiments on a novel benchmarking suite of 10 datasets, we find that 1) both inductive solutions
exhibit non-trivial performance answering logical queries over unseen entities and query patterns; 2)
inductive models demonstrate out-of-distribution generalization capabilities to graphs up to 500%
larger than training ones; 3) akin to updatable databases, inductive methods can successfully find new
correct answers to known training queries after adding new nodes and edges; 4) the inductive node

representation method scales to answering logical queries over a graph of 2M nodes with 500k new
unseen nodes; 5) GNN-based models still exhibit some difficulties [20, 35] generalizing to graphs
larger than those they were originally trained on.
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2 Related Work

Knowledge Graph Completion. Knowledge graph completion, a.k.a. simple link prediction, has
been widely studied in the transductive paradigm [6, 33, 27, 37], i.e., when training and inference are
performed on the same graph with a fixed set of entities. Generally, these methods learn a shallow
embedding vector for each entity. We refer the audience to respective surveys [1, 17] covering
dozens of transductive embedding methods. The emergence of message passing [14] and graph
neural networks (GNNs) has led to more advanced, inductive representation learning approaches
that model entity or triplet representations as a function of the graph structure in its neighborhood.
GraIL [28] learns triplet representations based on the subgraph structure surrounding the two entities.
NeuralLP [34], DRUM [25] and NBFNet [42] learn the pairwise entity representations based on
the set of relation paths between two entities. NodePiece [13] learns entity representations from a
fixed-size vocabulary of tokens that can be anchor nodes in a graph or relation types.

Complex Query Answering. In the complex (multi-hop) query answering setup with logical
operators, existing models employ different approaches, e.g., geometric [15, 23, 38], probabilistic [24,
9], neural-symbolic [26, 8, 5], neural [21, 4], and GNN [11, 3]. Still, all the approaches are created
and evaluated exclusively in the transductive mode where the set of entities does not change at
inference time. To the best of our knowledge, there is no related work in inductive logical query
answering when the inference graph contains new entities. With our work, we aim to bridge this gap
and extend inductive representation learning algorithms to logical query answering. In particular,
we focus on the inductive setup where an inference graph is a superset of a training graph2 such that
1) inference queries require reasoning over both seen and new entities; 2) original training queries
might have more correct answers at inference time with the addition of new entities.

3 Preliminaries and Problem Definition

Knowledge Graph and Inductive Setup. Given a finite set of entities E , a finite set of relations R,
and a set of triples (edges) T = (E ⇥R ⇥ E), a knowledge graph G is defined as G = (E ,R, T ).
Accounting for the inductive setup, we define a training graph Gtrain = (Etrain,R, Ttrain) and an
inference graph Ginf = (Einf,R, Tinf) such that Etrain ⇢ Einf and Ttrain ⇢ Tinf. That is, the inference

graph extends the training graph with new entities and edges3.The inference graph Ginf is an incomplete
part of the not observable complete graph Ĝinf = (Einf,R, T̂inf) with T̂inf = Tinf [ Tpred whose missing
triples Tpred have to be predicted at inference time.

First-Order Logic Queries. Applied to KGs, a first-order logic (FOL) query Q is a formula that
consists of constants C (C ✓ E), variables V (V ✓ E , existentially quantified), relation projections

R(a, b) denoting a binary function over constants or variables, and logic symbols (9,^,_,¬). The
answers AG(Q) to the query Q are assignments of variables in a formula such that the instantiated
query formula is a subgraph of the complete graph Ĝ.

Fig. 1 illustrates the logical form of a query Where did US citizens with Nobel Prize graduate? as
?U.9V : Win(NobelPrize, V )^Citizen(USA, V )^Graduate(V, U) where NobelPrize and USA
are constants; Win, Citizen, Graduate are relation projections (labeled edges); V, U - variables

such that V is an existentially quantified free variable and U is the projected bound target variable of
the query. Common for the literature, we aim at predicting assignments of the query target whereas
assignments of intermediate variables might not always be explicitly interpreted depending on the
model architecture. In the example, the answer set AG(Q) is a binding of a target variable U to
constants University of Zurich and ETH Zurich.

Inductive FOL Queries. In the standard transductive query answering setup, query constants and
variables at both training and inference time belong to the same set of entities, i.e., Ctrain = Cinf ✓
E ,Vtrain = Vinf ✓ E . In the inductive setup covered in this work, query constants and variables at
inference time belong to a different and larger set of entities Einf from the inference graph Ginf, i.e.,
Ctrain ✓ Etrain,Vtrain ✓ Etrain but Cinf ✓ Einf,Vinf ✓ Einf. This also leads to the fact that training queries
executed over the inference graph might have more correct answers, i.e., AGtrain

(Q) ✓ AGinf
(Q). For

example (cf. Fig. 1), the inference graph is updated with new nodes Feynman, Princeton and their

2The set of relation types is fixed.
3Note that the set of relation types R remains the same.
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new respective edges. The same query now has a larger set of intermediate variables satisfying the
formula (Feynman) and an additional correct answer Princeton. Therefore, inductive generalization
is essential for obtaining representations of such new nodes and enabling logical reasoning over both
seen and new nodes, i.e., finding more answers to known queries in larger graphs or answering new
queries with new constants. In the following section, we describe two approaches for achieving
inductive generalization with different parameterization strategies.

4 Method

Inductive Representations of Complex Queries. Given a complex query Q = (C,RQ,G), the goal
is to rank all possible entities according to the query. From a representation learning perspective,
this requires us to learn a conditional representation function f(e|C,RQ,G) for each entity e 2 E .
Transductive methods learn a shallow embedding for each answer entity e 2 E , and, therefore, cannot
generalize to unseen entities. For inductive methods, the function f(e|C,RQ,G) should generalize to
some unseen answer entity e0 (or unseen constant entity c0 2 C0) at inference time. Here, we discuss
two solutions for devising such an inductive function.

The first solution is to parameterize the representation of each entity e as a function of an
invariant vocabulary of tokens that does not change at training and inference. Particularly, the
vocabulary might consist of unique relation types R that are always the same for Gtrain and Ginf, and
we are able to infer the representation of an unseen answer entity (or an unseen constant entity) as a
function of its incident relations (cf. Fig. 2 left). The idea has been studied in NodePiece [13] for
simple link prediction. Here, we adopt a similar idea to learn inductive entity representations for
complex query answering. Once we obtain the representations for unseen entities, we can use any
off-the-shelf decoding method (e.g., CQD-Beam [5]) for predicting the answer to the complex query.
We denote this strategy as NodePiece-QE.

The second solution is to parameterize f(e|C,RQ,G) as a function of the relational structure.
Intuitively, an answer of a complex query can be decided solely based on the relational structure
between the query constants and the answer (Fig. 1). Even after anonymizing entity names (and,
hence, not learning any explicit entity embedding), we can still infer Princeton as an answer since
it forms a distinctive relational structure with the query constants and conforms to the query
structure. Similarly, intermediate nodes will be deemed correct if they follow a relational structure

. In other words, we do not need to know the answer node is Princeton, but only need to know
the relative position of Princeton w.r.t. the constants like Nobel Prize and USA. Based on this
idea, we design f(e|C,RQ,G) to be a relational structure search function. Such an idea has been
studied in Neural Bellman-Ford Networks (NBFNet) [42] to search for a single relation in simple
link prediction. Applied to complex queries, GNN-QE [40] chains several NBFNet instances with
differentiable logic operations to learn inductive complex query in an end-to-end fashion. So far,
GNN-QE was evaluated solely on transductive tasks. Here we extend it to the inductive setup.

4.1 NodePiece-QE: Inductive Node Representation

Here we aim at reconstructing node representations for seen and unseen entities without learning
shallow node embedding vectors. To this end, we employ NodePiece [13], a compositional tokeniza-
tion approach that learns an invariant vocabulary of tokens shared between training and inference
graphs. Formally, given a vocabulary of tokens ti 2 T , each entity ei is deterministically hashed into
a set of representative tokens ei = [t1, . . . , tk]. An entity vector ei is then obtained as a function of
token embeddings ei = f✓([ti, . . . , tk]), ti 2 Rd where the encoder function f✓ : Rk⇥d ! Rd is
parameterized with a neural network ✓.

Since the set of relation types R is invariant for training and inference graphs, we can learn relation
embeddings R 2 R|R|⇥d and our vocabulary of learnable tokens T is comprised of distinct relation
types such that entities are hashed into a set of unique incident relation types. For example (cf. Fig. 2
left), a middle node from a training graph Gtrain is hashed with a set of relations ei = [ ] that stands
for two unique incoming relations and one unique outgoing relation . Passing the hashes through
f✓, we can reconstruct the whole entity embedding matrix E 2 R|Etrain|⇥d. Additionally, it is possible
to enrich entity and relation embeddings by passing them through a relational GNN encoder [31] over
a target graph G: E0,R0 = GNN(E,R,G). In both ways, the entity embedding matrix E encodes a
joint probability distribution p(h, r, t) for all triples in a graph.
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Figure 2: Inductive node representation (NodePiece-QE, left) and relational structure (GNN-QE,
right) strategies for complex logical query answering. In NodePiece-QE, we obtain inductive node
representations through the invariant set of tokens (here, through incident relation types). NodePiece-
QE is an inference-only approach, pre-trained with simple 1p link prediction and can be directly
applied to inductive complex queries with a non-parametric decoder (e.g., CQD Beam). In GNN-QE,
we learn the the relative structure of each node w.r.t. the anchor nodes in the query. GNN-QE is
trainable end-to-end on complex queries.

Having a uniform featurization mechanism for both seen and unseen entities, it is now possible to
apply any previously-transductive complex query answering model with learnable entity embeddings
and logical operators [23, 11, 24, 8]. Moreover, it was recently shown [5] that a combination of
simple link prediction pre-training and a non-parametric logical executor allows to effectively answer
complex FOL queries in the inference-only regime without training on any complex query sample.
We adopt this Continuous Query Decomposition algorithm with beam search (CQD-Beam) as the
main query answering decoder. CQD-Beam relies only on entity and relation embeddings E,R
pre-trained on a simple 1p link prediction task. Then, given a complex query, CQD-Beam applies
t-norms and t-conorms [19] that execute conjunctions (^) and disjunctions (_) as non-parametric
algebraic operations in the embedding space, respectively.

In our inductive setup (Fig. 2), we train a NodePiece encoder f✓ and relation embeddings R (and
optionally a GNN) on the 1p link prediction task over the training graph Gtrain. We then apply the
learned encoder to materialize entity representations of the inference graph E 2 R|Einf|⇥d and send
them to CQD-Beam that performs a non-parametric decoding of complex FOL queries over new
unseen entities. The inference-only nature of NodePiece-QE is designed to probe the abilities for
zero-shot generalization in performing complex logical reasoning over larger graphs.

4.2 GNN-QE: Inductive Relational Structure Representation

The second strategy relies on learning inductive relational structure representations instead of explicit
node representations. Having the same set of relation types R at training and inference time, we can
parameterize each entity based on the relative relational structure between it and the anchor nodes
in a given query. For instance (Fig. 2 right), given a query with a particular relational structure
and a set of anchor nodes, the representation of each node captures its relational structure relative to
the anchor nodes. Each neighborhood expansion step is equivalent to a projection step in a complex
query. In our example, immediate neighboring nodes will capture the intersection pattern , and
further nodes, in turn, capture the extended intersection-projection structure .

Therefore, a node is likely to be an answer if its captured (or predicted) relational structure conforms
with the query relational structure. As long as the set of relations is fixed, relation projection is
performed in the same way for training or new unseen nodes. The idea of a one-hop (1p) projection
for simple link prediction has been proposed by Neural Bellman-Ford Networks (NBFNet) [42].

In particular, given a relation projection query (h, r, ?), NBFNet assigns unique initial states h(0) to
all nodes in a graph by applying an indicator function h(0) = INDICATOR(h, v, r), i.e., a head node h
is initialized with a learnable relation embedding r and all other nodes are initialized with zeros. Then,
NBFNet applies L relational message passing GNN layers where each layer l has its own learnable
relation embedding matrix R(l) obtained as a projection (and reshaping) of thein initial relation
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R(l) = W (l)r + b(l). Final layer representations h(L) are passed through an MLP and the sigmoid
function � to get a probability distribution over all nodes in a graph p(t|h, r) = �(MLP(h(L))). As
each projection query spawns a uniquely initialized graph and message passing procedure, NBFNet is
seen to be applying a labeling trick [36] to model a conditional probability distribution p(t|h, r) that
is provably more expressive than a joint distribution p(h, r, t) produced by standard graph encoders.

Applied to complex queries, chaining k NBFNet instances allows us to answer k-hop projection
queries, e.g., two instances for 2p queries. GNN-QE employs NBFNet as a trainable projection
operator and endows it with differentiable, non-parametric product logic for modeling conjunction
(^), disjunction (_), and negation (¬) over the fuzzy sets of all entities x 2 [0, 1]E , i.e., after applying
a logical operator (discussed in Appendix A), each entity’s degree of truth is associated with a scalar
in range [0, 1]. For the i-th hop projection, the indicator function initializes a node state h(0)

e with a
relation vector ri weighted by a scalar probability predicted in the previous hop xe: h(0)

e = xeri.
Differentiable logical operators allow training GNN-QE end-to-end on complex queries.

5 Experiments

We designed the experimental agenda to demonstrate that inductive representation strategies are able
to: 1) answer complex logical queries over new, unseen entities at inference time, i.e., when query
anchors are new nodes (Section 5.2); 2) predict new correct answers for known training queries when
executed over larger inference graphs, i.e., when query anchors come from the training graph but
variables and answers belong to the larger inference graph (Section 5.3); 3) generalize to inference
graphs of up to 500% larger than training graphs; 4) scale to inductive query answering over graphs
of millions of nodes when updated with 500k new nodes and 5M new edges (Section 5.5).

5.1 Setup & Dataset

Dataset. Due to the absence of inductive logical query benchmarks, we create a novel suite of
datasets based on FB15k-237 [29] (open license) and following the query generation process of
BetaE [24]. Given a source graph with E entities, we sample |Etrain| = r · |E|, r 2 [0.1, 0.9] nodes to
induce a training graph Gtrain. For validation and test graphs, we split the remaining set of entities
into two non-overlapping sets each with 1�r

2 |E| nodes. We then merge training and unseen nodes
into the inference set of nodes Einf and induce inference graphs for validation and test from those sets,
respectively, i.e., Eval

inf
= Etrain [ Eval and E test

inf
= Etrain [ Etest. That is, validation and test inference

graphs both extend the training graph but their sets of new entities are disjoint. Finally, we sample
and remove 15% of edges Tpred in the inference graphs as missing edges for sampling queries with
those missing edges. Overall, we sample 9 such datasets based on different choices of r, which result
in the ratios of inference graph size to the training graph Einf/Etrain from 106% to 550%.

For each dataset, we employ the query sampler from BetaE [24] to extract 14 typical query types
1p/2p/3p/2i/3i/ip/pi/2u/up/2in/3in/inp/pin/pni. Training queries are sampled from the training graph
Gtrain, validation and test queries are sampled from their respective inference graphs Ginf where at
least one edge belongs to Tpred and has to be predicted at inference time.

As inference graphs extend training graphs, training queries are very likely to have new answers
when executed over Ginf with simple graph traversal and without any link prediction. We create an
additional set of true answers for all training queries executed over the test inference graph G test

inf
to

measure the entailment capabilities of query answering models. This is designed to be an inference
task and extends the faithfullness evaluation of [26]. Dataset statistics can be found in Appendix B.

Evaluation Protocol. Following the literature [24], query answers are separated into two sets: easy

answers that only require graph traversal over existing edges, and hard answers that require inferring
missing links to achieve the answer node. For the main experiment, evaluation involves ranking of
hard answers against all entities having easy ones filtered out. For evaluating training queries on
inference graphs, we only have easy answers and rank them against all entities. We report Hits@10
as the main performance metric on different query types.

Implementation Details. All NodePiece-based models [13] were pre-trained until convergence
on a simple 1p link prediction task with the relations-only vocabulary and entity tokenization,
MLP encoder, and ComplEx [30] scoring function. We used a 2-layer CompGCN [31] as an
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Figure 3: Aggregated Hits@10 performance of test queries (involving unseen entities) executed
on inference graphs of different ratios compared to training graphs. NodePiece-based models are
inference-only and support EPFO queries, GNN-QE is trainable and supports negation queries.

Table 1: Test Hits@10 results (%) on answering inductive FOL queries when Einf/Etrain = 175%.
avgp is the average on EPFO queries (^, _). avgn is the average on queries with negation.

Model avgp avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni
Transductive

BetaE 1.3 0.2 2.9 0.4 0.4 2.1 3.3 1.5 0.7 0.2 0.2 0.1 0.2 0.2 0.1 0.1

Inductive Inference-only

Edge-type Heuristic 10.1 4.1 17.7 8.2 9.9 10.7 13.0 9.8 8.2 5.3 8.5 2.6 2.9 8.4 3.8 2.7
NodePiece-QE 11.2 - 25.5 8.2 8.4 12.4 13.9 9.9 8.7 7.0 6.8 - - - - -
NodePiece-QE w/ GNN 28.6 - 45.9 19.2 11.5 39.9 48.8 29.4 22.6 25.3 14.6 - - - - -

Inductive Trainable

GNN-QE 50.7 33.6 65.4 36.3 31.6 73.8 84.3 56.5 41.5 39.3 28.0 33.3 46.4 29.2 24.9 34.0

optional message passing encoder on top of NodePiece features. The non-parametric CQD-Beam [5]
decoder for answering complex queries is tuned for each query type based on the validation set of
queries, most of the setups employ a product t-norm, sigmoid entity score normalization, and beam
size of 32. Following the literature, the GNN-QE models [40] were trained on 10 query patterns
(1p/2p/3p/2i/3i/2in/3in/inp/pin/pni) where ip/pi/2u/up are only seen at inference time. Each model
employs a 4-layer NBFNet [42] as a trainable projection operator with DistMult [33] composition
function and PNA [10] aggregation. Other logical operators (^,_,¬) are executed with the non-
parametric product t-norm and t-conorm. Both NodePiece-QE and GNN-QE are implemented4 with
PyTorch [22] and trained with the Adam [18] optimizer. NodePiece-QE models were pre-trained and
evaluated on a single Tesla V100 32 GB GPU whereas GNN-QE models were trained and evaluated
on 4 Tesla V100 16GB. All hyperparameters are listed in Appendix D. To show that the proposed
models are non-trivial, we compare them with an Edge-type Heuristic baseline (Appendix E), which
selects all entities that satisfy the relations in the last hop of the query in Ginf.

5.2 Complex Query Answering over Unseen Entities on Differently Sized Inference Graphs

First, we probe inference-only NodePiece-based embedding models and trainable GNN-QE in the
inductive setup, i.e., query answering over unseen nodes requiring link prediction over unseen nodes.
As a sanity check, we compare them to the Edge-type Heuristic and a transductive BetaE model [24]
trained with standard hyperparameters (Appendix D) on the reference dataset (with ratio Einf/Etrain of
175%) with randomly initialized embeddings for unseen nodes at inference time. Table 1 summarizes
the results on the reference dataset while Fig. 3 illustrates a bigger picture on all datasets (we provide
a detailed breakdown by query type for all splits in Appendix C). The experiment on the tranductive
BetaE confirms that pure transductive models can not generalize to graphs with unseen nodes.

With inductive models, however, we observe that even inference-only models pre-trained solely on
simple 1p link prediction exhibit non-trivial performance in answering queries with unseen entities.
Particularly, the inference-only NodePiece with GNN baseline exhibits better performance over all
query types and inference graphs up to 300% larger than training graphs.

4Code and data are available at https://github.com/DeepGraphLearning/InductiveQE
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Figure 4: Aggregated Hits@10 performance of training queries on the original training and extended
test inference graphs where queries have new correct answers. NodePiece-based models are inference-

only and support EPFO queries, GNN-QE is trainable and supports negation queries.

The trainable GNN-QE models expectedly outperform non-trainable baselines and can tackle queries
with negation (¬). Here, we confirm that the labeling trick [36] and conditional p(t|h, r) modeling
better capture the relation projection problem than joint p(h, r, t) encoding approaches.

Still, we notice that models with GNNs, i.e., inference-only NodePiece-QE with GNN and trainable
GNN-QE, suffer from increasing the size of the inference graph and having more unseen entities.
Reaching best results on Einf/Etrain ratios around 130%, both approaches steadily deteriorate up until
final 550% by 20 absolute Hits@10 points on EPFO queries and negation queries. We attribute this
deterioration to the known generalization issues [20, 35] of message passing GNNs when performing
inference over a larger graph than the network has seen during training. Recently, a few strategies
have been proposed [7, 39] to alleviate this issue and we see it as a promising avenue for future
work. On the other hand, a simple NodePiece-QE model without message passing retains similar
performance independently of the inference graph size.

Lastly, we observe that lower performance of inference-only NodePiece models can be also attributed
to underfitting (cf. train graph charts in Fig. 4). Although 1p link predictors were trained until
convergence (on the inductive validation set of missing triples), the performance of training queries
on training graphs with easy answers that require only relation traversal without predicting missing
edges is not yet saturated. This fact suggests that better fitting entity featurization (obtained by
NodePiece or other strategies) could further improve the test performance in the inference-only
regime. We leave the search of such strategies for future work.

5.3 Predicting New Answers for Training Queries on Larger Inference Graphs

Simulating the incremental addition of new edges in graph databases, we evaluate the performance
of our inference-only and trainable QE models on training queries on the original training graph
and extended inference graph (with added test edges). As databases are able to immediately retrieve
new answers to known queries after updating the graph, we aim at exploring and quantifying this
behaviour of neural reasoning models. In this experiment, we probe training queries and their easy

answers that require performing only graph traversal without predicting missing links in the inference
graph. While execution of training queries over the training graph indicates how well the model
could fit training data, executing training queries over the bigger inference graph with new entities
aims to capture basic reasoning capabilities of QE models in the inductive regime.

Particular challenges arising when executing training queries over a bigger graph are: (1) the same
queries can have more correct answers as more new nodes and edges satisfying the query pattern
might have been added (as in Fig. 1); (2) more new entities create a “distractor” setting with more
false positives. Generally, evaluation of training queries on the inference graph can be considered
as an extended version of the faithfullness [26] evaluation that captures how well a trained model
can answer original training queries, i.e., memorization capacity. In all 9 datasets, most of training
queries have at least one new correct answer in the inference graph (more details in Appendix B).
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Fig. 4 illustrates the performance of the Edge-type Heuristic baseline, inference-only NodePiece-QE
(without and with GNN) and trainable GNN-QE models. Generally, GNN-QE fits the training query
data almost perfectly confirming the original finding [42] that NBFNet performs graph traversal akin
to symbolic models. GNN-QE can also find new correct answers on graphs up to 300% larger than
training ones. Then, the performance deteriorates which we attribute to the distractor factor with
more unseen entities and the mentioned generalization issue on larger inference graphs.

The inference-only NodePiece-QE models, as expected, do not fully fit the training data as they were
never trained on complex queries. Still, the inference-only models exhibit non-trivial performance
(compared to the Edge-type Heuristic) in finding more answers on graphs up to 200% larger than
training ones with relatively small performance margins compared to training queries. The most
surprising observation is that GNN-free NodePiece-QE models improve the performance on both
training and inference graphs as the graphs (and the Einf/Etrain ratio) grow larger while GNN-enriched
models steadily deteriorate. We attribute this growth to the relation-based NodePiece tokenization and
its learned features that tend to be more discriminative in larger inference graphs where new nodes
have smaller degree and thus can be better identified by their incident relation types. We provide
more experimental results for each dataset ratio with breakdown by query type in Appendix C.

5.4 Ranking of Easy and Hard Answers

In addition to evaluating faithfullness that measures whether a model could recover easy answers, it
is also insightful to measure whether all easy answers can be ranked higher than hard answers. That
is, a reliable query answering model would first recover all possible easy answers and would enrich
the answer set with highly-probable hard answers. To this end, we apply a ROC AUC metric over
original unfiltered scores. The ROC AUC score measures how many hard answers are ranked after

easy answers. Note that the score does not depend on actual values of ranks, that is, the metric will
be high when easy answers are ranked, e.g., in between 100-1000 as long as hard answers are ranked
1001 and lower. Therefore, ROC AUC still needs to be paired with MRR to see how easy and hard
answers are ranked absolutely.

Table 2: Macro-averaged ROC AUC score over unfiltered predictions on the reference Einf/Etrain =
175% dataset to measure if all easy answers are ranked higher than hard answers. Higher is better.

Model avgp avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni
Inductive Inference-only

NodePiece-QE 0.692 0.623 0.710 0.711 0.657 0.654 0.692 0.731 0.723 0.729
NodePiece-QE w/ GNN 0.776 0.783 0.783 0.739 0.758 0.733 0.760 0.801 0.841 0.787

Inductive Trainable

GNN-QE 0.973 0.885 0.998 0.992 0.986 0.969 0.962 0.967 0.969 0.938 0.978 0.879 0.859 0.926 0.914 0.847

We compute ROC AUC for each query and average them over each query type thus making it
macro-averaged ROC AUC. Our experimental results on all query types using the models reported
in Table 1 on the reference 175% dataset are compiled in Table 2.

GNN-QE has nearly perfect ROC AUC scores as it was trained on complex queries. NodePiece-QE
models are acceptable for inference-only models that were only trained only on 1p simple link
prediction and have never seen any complex query at training time.

5.5 Scaling to Millions of Nodes on WikiKG-QE

Finally, we perform a scalability experiment evaluating complex query answering in the inductive
mode on a new large dataset WikiKG-QE constructed from OGB WikiKG 2 [16] (CC0 license).
While the original task is transductive link prediction, we split the graph into a training graph of
1.5M entities (5.8M edges, 512 unique relation types) and validation (test) graphs of 500k unseen
nodes (5M known and 600k missing edges) each. The resulting validation (test) inference graphs are
therefore of 2M entities and 11M edges with the Einf/Etrain ratio of 133% (details are in Appendix B).

GNN-QE cannot scale to such sizes, so we only probe NodePiece-QE models. Due to the problem
size, we only sample 10k EPFO queries of each type from the test inference graph to run in the
inference-only regime. Each query has at least one missing edge to be predicted at inference. The
answers are ranked against all 2M entities in the filtered setting (in contrast to the OGB task that
ranks against 1000 pre-computed negative samples) and Hits@100 as the target metric.
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We pre-train a NodePiece encoder (in addition to relation types, we tokenize nodes with a vocabulary
of 20k nodes, total 3M parameters in the encoder) with the ComplEx decoder on 1p link prediction
over the training graph for 1M steps (see Appendix D for hyperparameters). Then, the graph is
extended with 500k new nodes and 5M new edges forming the inference graph. Then, using the
pre-trained encoder, we materialize representations of entities (both seen and new) and relations from
this inference graph. Finally, CQD-Beam executes the queries against the bigger inference graph
extended with 500k new nodes and 5M new edges.

Table 3: Test Hits@100 of NodePiece-QE on WikiKG-QE (2M nodes, 11M edges including 500k
new nodes and 5M new edges) in the inference-only regime. avgp is the average on EPFO queries.

Model avgp 1p 2p 3p 2i 3i pi ip 2u up
Edge-type Heuristic 3.1 10.0 1.0 0.9 3.7 8.1 1.8 0.9 0.7 0.5
NodePiece-QE 9.2 22.6 5.2 3.9 11.6 17.4 7.0 4.5 7.4 3.2
NodePiece-QE w/ GNN 10.1 66.6 0.9 0.6 5.4 8.2 2.3 0.8 5.2 0.5

As shown in Table 3, we find a non-trivial performance of the inference-only model on EPFO queries
demonstrating that inductive node representation QE models are able to scale to graphs with hundreds
of thousands of new nodes and millions of new edges in the zero-shot fashion. That is, answering
complex queries over unseen entities is available right upon updating the graph without the need
to retrain a model. This fact paves the way for the concept of neural graph databases capable of
performing zero-shot inference over updatable graphs without expensive retraining.

6 Limitations and Future Work

Limitations. With the two proposed inductive query answering strategies, we observe a common
trade-off between the performance and computational complexity. That is, inductive node repre-

sentation models like NodePiece-QE are fast, scalable, and can be executed in the inference-only
regime but underperform compared to the inductive relational structure representation models like
GNN-QE. On the other hand, GNN-QE incurs high computational costs due to executing each query
on a uniquely initialized graph instance. Alleviating this issue is a key to scalability.

Societal Impact. The inductive setup assumes running inference on (partly) unseen data, that is, the
nature of this unseen data might be out-of-distrbution, unknown and potentially malicious. This fact
has to be taken into account when evaluating predictions and overall system trustworthiness.

Conclusion and Future Work. In this work, we defined the problem of inductive complex logical
query answering and proposed two possible parameterization strategies based on node and relational

structure representations to deal with new, unseen entities at inference time. Experiments demon-
strated that both strategies are able to answer complex logical queries over unseen entities as well as
identify new answers on larger inference graphs. In the future work, we plan to extend the inductive
setup to completely disjoint training and inference graphs, expand the set of supported logical query
patterns aligned with popular queries over real-world KGs, enable reasoning over continuous features
like texts and numbers, support more KG modalities like hypergraphs and hyper-relational graphs,
and further explore the concept of neural graph databases.
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