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Abstract

We consider privacy in the context of streaming algorithms for cardinality estima-
tion. We show that a large class of algorithms all satisfy ε-differential privacy, so
long as (a) the algorithm is combined with a simple down-sampling procedure, and
(b) the input stream cardinality is Ω(k/ε). Here, k is a certain parameter of the
sketch that is always at most the sketch size in bits, but is typically much smaller.
We also show that, even with no modification, algorithms in our class satisfy
(ε, δ)-differential privacy, where δ falls exponentially with the stream cardinality.
Our analysis applies to essentially all popular cardinality estimation algorithms,
and substantially generalizes and tightens privacy bounds from earlier works. Our
approach is faster and exhibits a better utility-space tradeoff than prior art.

1 Introduction

Cardinality estimation, or the distinct counting problem, is a fundamental data analysis task. Typical
applications are found in network traffic monitoring [9], query optimization [20], and counting
unique search engine queries [14]. A key challenge is to perform this estimation in small space
while processing each data item quickly. Typical approaches for solving this problem at scale involve
data sketches such as the Flajolet-Martin (FM85) sketch [12], HyperLogLog (HLL) [11], Bottom-k
[2, 6, 3]. All these provide approximate cardinality estimates but use bounded space.

While research has historically focused on the accuracy, speed, and space usage of these sketches,
recent work examines their privacy guarantees. These privacy-preserving properties have grown in
importance as companies have built tools that can grant an appropriate level of privacy to different
people and scenarios. The tools aid in satisfying users’ demand for better data stewardship, while
also ensuring compliance with regulatory requirements.

We show that all cardinality estimators in a class of hash-based, order-invariant sketches with
bounded size are ε-differentially private (DP) so long as the algorithm is combined with a simple
down-sampling procedure and the true cardinality satisfies a mild lower bound. This lower bound
requirement can be guaranteed to hold by inserting sufficiently many “phantom elements” into the
stream when initializing the sketch. We also show that, even with no modification, algorithms in our
class satisfy (ε, δ)-differential privacy, where δ falls exponentially with the stream cardinality.

Our novel analysis has significant benefits. First, prior works on differentially private cardinality
estimation have analyzed only specific sketches [23, 25, 5, 22]. Moreover, many of the sketches
analyzed (e.g., [23, 22]), while reminiscent of sketches used in practice, in fact differ from practical
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sketches in important ways. For example, Smith et al. [22] analyze a variant of HLL that Section 4
shows has an update time that can be k times slower than an HLL sketch with k buckets.

While our analysis covers an entire class of sketches at once, our error analysis improves upon prior
work in many cases when specialized to specific sketches. For example, our analysis yields tighter
privacy bounds for HLL than the one given in [5], yielding both an ε-DP guarantee, rather than an
(ε, δ)-DP guarantee, as well as tighter bounds on the failure probability δ—see Section 4 for details.
Crucially, the class of sketches we analyze captures many (in fact, almost all to our knowledge)
of the sketches that are actually used in practice. This means that existing systems can be used in
contexts requiring privacy, either without modification if streams are guaranteed to satisfy the mild
cardinality lower bound we require, or with a simple pre-processing step described if such cardinality
lower bounds may not hold. Thus, existing data infrastructure can be easily modified to provide DP
guarantees, and in fact existing sketches can be easily migrated to DP summaries.

1.1 Related work

One perspective is that cardinality estimators cannot simultaneously preserve privacy and offer
good utility [7]. However, this impossibility result applies only when an adversary However, this
impossibility result applies only when an adversary can create and merge an arbitrary number of
sketches, effectively observing an item’s value many times. It does not address the privacy of one
sketch itself.

Other works have studied more realistic models where either the hashes are public, but private noise
is added to the sketch [23, 17, 25], or the hashes are secret [5] (i.e., not known to the adversary who
is trying to “break” privacy). This latter setting turns out to permit less noisy cardinality estimates.
Past works study specific sketches or a variant of a sketch. For example, Smith et al. [22] show that
an HLL-type sketch is ε-DP while [25] modifies the FM85 sketch using coordinated sampling, which
is also based on a private hash. Variants of both models are analyzed by Choi et al. [5], and they
show (amongst other contributions) a similar result to [22], establishing that an FM85-type sketch is
differentially private. Like these prior works, we focus on the setting when the hash functions are kept
secret from the adversary. A related problem of differentially private estimation of cardinalities under
set operations is studied by [18], but they assume the inputs to each sketch are already de-duplicated.

There is one standard caveat: following prior works [22, 5] our privacy analysis assumes a perfectly
random hash function. One can remove this assumption both in theory and practice by using a
cryptographic hash function. This will yield a sketch that satisfies either a computational variant of
differential privacy called SIM-CDP, or standard information-theoretic notions of differential privacy
under the assumption that the hash function fools space-bounded computations [22, Section 2.3].

Other works also consider the privacy-preserving properties of common Lp functions over data
streams. For p = 2, these include fast dimensionality reduction [4, 24] and least squares regression
[21]. Meanwhile, for 0 < p ≤ 1, frequency-moment estimation has also been studied [26]. Our focus
is solely the cardinality estimation problem when p = 0.

1.2 Preliminaries

More formally, we consider the following problem.

Problem Definition Let D = {x1, . . . , xn} denote a stream of samples with each identifier xi
coming from a large universe U , e.g., of size 264. The objective is to estimate the cardinality, or
number of distinct identifiers, of D using an algorithm S which is given privacy parameters ε, δ ≥ 0
and a space bound b, measured in bits.
Definition 1.1 (Differential Privacy [8]). A randomized algorithm S is (ε, δ)-differentially private
((ε, δ)-DP for short or if δ = 0, pure ε-DP) if for any pair of data sets D,D′ that differ in one record
and for all S in the range of S, Pr(S(D′) ∈ S) ≤ eε Pr(S(D) ∈ S) + δ with probability over the
internal randomness of the algorithm S.

Rather than analyzing any specific sketching algorithm, we analyze a natural class of randomized
distinct counting sketches. Algorithms in this class operate in the following manner: each time a new
stream item i arrives, i is hashed using some uniform random hash function h, and then h(i) is used
to update the sketch, i.e., the update procedure depends only on h(i), and is otherwise independent of

2



i. Our analysis applies to any such algorithm that depends only on the set of observed hash values.
Equivalently, the sketch state is invariant both to the order in which stream items arrive, and to item
duplication.2 We call this class of algorithms hash-based, order-invariant cardinality estimators.
Note that for any hash-based, order-invariant cardinality estimator, the distribution of the sketch
depends only on the cardinality of the stream. All distinct counting sketches of which we are aware
that are invariant to permutations of the input data are included in this class. This includes FM85,
LPCA, Bottom-k, Adaptive Sampling, and HLL as shown in Section 4.
Definition 1.2 (Hash-Based, Order-invariant Cardinality Estimators). Any sketching algorithm that
depends only on the set of hash values of stream items using a uniform random hash function is a
hash-based order-invariant cardinality estimator. We denote this class of algorithms by C.

We denote a sketching algorithm with internal randomness r by Sr (for hash-based algorithms, r
specifies the random hash function used). The algorithm takes a data set D and generates a data
structure Sr(D) that is used to estimate the cardinality. We refer to this structure as the state of the
sketch, or simply the sketch, and the values it can take by s ∈ Ω. Sketches are first initialized and then
items are inserted into the sketch with an add operation that may or may not change the sketch state.

The size of the sketch is a crucial constraint, and we denote the space consumption in bits by b. For
example, FM85 consists of k bitmaps of length `. Thus, its state s ∈ Ω = {0, 1}k×`. Typically,
` = 32, so that b = 32k. Further examples are given in Section 4. Our goal is to prove such sketches
are differentially private.

2 Hash-Based Order-Invariant Estimators are Private

The distribution of any hash-based, order-invariant cardinality estimator depends only on the cardinal-
ity of the input stream, so without loss of generality we assume the input is D = {1, . . . , n}. Denote
the set D\{i} by D−i for i ∈ D and a sketching algorithm with internal randomness r by Sr(D).

By definition, for an ε-differential privacy guarantee, we must show that the Bayes factor comparing
the hypothesis i ∈ D versus i /∈ D is appropriately bounded:

e−ε <
Prr(Sr(D) = s)

Prr(Sr(D−i) = s)
< eε ∀s ∈ Ω, i ∈ D. (1)

Overview of privacy results. The main result in our analysis bounds the privacy loss of a hash-based,
order-invariant sketch in terms of just two sketch-specific quantities. Both quantities intuitively
capture how sensitive the sketch is to the removal or insertion of a single item from the data stream.

The first quantity is a bound kmax on the number of items that would change the sketch if removed
from the stream. Denote the items whose removal from the data set changes the sketch by

Kr := {i ∈ D : Sr(D−i) 6= Sr(D)}. (2)

Denote its cardinality by Kr := |Kr| and the upper bound by kmax = suprKr.

The second quantity is a bound on a "sampling" probability. Let π(s) be the probability that a newly
inserted item would change a sketch in state s,

π(s) := Pr
r

(Sr(D) 6= Sr(D−i) |Sr(D−i) = s). (3)

Although a sketch generally does not store explicit samples, conceptually, it can be helpful to think of
π(s) as the probability that an as-yet-unseen item i gets “sampled” by a sketch in state s. We upper
bound π∗ := sups∈Ω π(s) to limit the influence of items added to the stream.

The main sub-result in our analysis (Theorem 2.4) roughly states that the sketch is ε-DP so long
as (a) the sampling probability π∗ < 1 − e−ε is small enough, and (b) the stream cardinality
n > kmax

eε−1 = Θ(kmax/ε) is large enough.

We show Property (a) is a necessary condition for any ε-DP algorithm if the algorithm works over
data universes of unbounded size. Unfortunately, Property (a) does not directly hold for natural

2A sketch is duplication-invariant if and only if its state when run on any stream σ is identical to its state
when run on the stream σ′, in which all elements of the stream σ appear exactly once.
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sketching algorithms. But we show (Section 2.2) by applying a simple down-sampling procedure,
any hash-based, order-invariant algorithm can be modified to satisfy (a).

Furthermore, Section 4 shows common sketches satisfy Property (a) with high probability, thus pro-
viding (ε, δ)-DP guarantees for sufficiently large cardinalities. Compared to [5], these guarantees are
tighter, more precise, and more general as they establish the failure probability δ decays exponentially
with n, provide explicit formulas for δ, and apply to a range of sketches rather than just HLL.

Overview of the analysis. The definition of ε-DP requires bounding the Bayes factor in equation
1. The challenge is that the numerator and denominator may not be easy to compute by themselves.
However, it is similar to the form of a conditional probability involving only one insertion. Our main
trick re-expresses this Bayes factor as a sum of conditional probabilities involving a single insertion.
Since the denominator Prr(Sr(D−i) = s) involves a specific item i which may change the sketch,
we instead consider the smallest item Jr whose removal does not change the sketch. This allows
us to re-express the numerator in terms of a conditional probability Prr(S(D) = s ∧ Jr = j) =
Prr(Jr = j|S(D−j) = s) Prr(S(D−j) = s) involving only a single insertion plus a nuisance term
Prr(S(D−j) = s). The symmetry of items gives that the nuisance term is equal to denominator
Prr(S(D−j) = s) = Prr(S(D−i) = s), thus allowing us to eliminate it.

Lemma 2.1. Suppose n > suprKr. Then Prr(Kr = n) = 0, and

Prr(Sr(D) = s)

Prr(Sr(D−i) = s)
=
∑

j∈D
Pr
r

(Jr = j |Sr(D−j) = s). (4)

By further conditioning on the total number of items that, when removed, can change the sketch, we
obtain conditional probabilities that are simple to calculate. A combinatorial argument simplifies the
resulting expression and gives us two factors in Lemma 2.2, one involving the sampling probability
for new items π(s) given a sketch in state s and the other being an expectation involving Kr. This
identifies the two quantities that must be controlled in order for a sketch to be ε-DP.

Lemma 2.2. Under the same assumptions as Lemma 2.1

∑

j∈D
Pr
r

(Jr = j |Sr(D−j) = s) = (1− π(s))Er
(

1 +
Kr

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
. (5)

To show that all hash-based, order invariant sketching algorithms can be made ε-DP, we show that Kr

can always be bounded by the maximum size of the sketch in bits. Thus, if a sketch is combined with
a downsampling procedure to ensure π(s) is sufficiently small, one satisfies both of the properties
that are sufficient for an ε-DP guarantee.

Having established (5), we can derive a result showing that a hash-based, order-invariant sketch is
ε-DP so long as the stream cardinality is large enough and sups∈Ω π(s) is not too close to 1.

Corollary 2.3. Let Ω denote the set of all possible states of a hash-based order-invariant distinct
counting sketching algorithm. When run on a stream of cardinality n > suprKr, the sketch output
by the algorithm satisfies ε-DP if

π0 := 1− e−ε > sup
s∈Ω

π(s) and (6)

eε > 1 + Er
(

Kr

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
for all sketch states s ∈ Ω. (7)

Furthermore, if the data stream D consists of items from a universe U of unbounded size, Condition
6 is necessarily satisfied by any sketching algorithm satisfying ε-DP.

The above corollary may be difficult to apply directly since the expectation in Condition (7) is often
difficult to compute and depends on the unknown cardinality n. Our main result provides sufficient
criteria to ensure that Condition (7) holds. The criteria is expressed in terms of a minimum cardinality
n0 and sketch-dependent constant kmax. This constant kmax is a bound on the maximum number of
items which change the sketch when removed. That is, for all input streamsD and all r, kmax ≥ |Kr|.
We derive kmax for a number of popular sketch algorithms in Section 4.
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Theorem 2.4. Consider any hash-based, order-invariant distinct counting sketch. The sketch output
by the algorithm satisfies an ε-DP guarantee if

sup
s∈Ω

π(s) < π0 := 1− e−ε and there are strictly greater than (8)

n0 := kmax/(1− e−ε) unique items in the stream. (9)

Later, we explain how to modify existing sketching algorithms in a black-box way to satisfy these
conditions. If left unmodified, most sketching algorithms used in practice allow for some sketch values
s ∈ Ω which violate Condition 8, i.e π(s) > 1− e−ε. We call such sketch values “privacy-violating”.
Fortunately, such values turn out to arise with only tiny probability. The next theorem states that, so
long as this probability is smaller than δ, the sketch satisfies (ε, δ)-DP without modification. The
proof of Theorem 2.5 follows immediately from Theorem 2.4.
Theorem 2.5. Let n0 be as in Theorem 2.4. Given a hash-based, order-invariant distinct counting
sketch with bounded size, let Ω′ be the set of sketch states such that π(s) ≥ π0. If the input stream D
has cardinality n > n0, then the sketch is (ε, δ) differentially private where δ = Prr(Sr(D) ∈ Ω′).

2.1 Constructing Sketches Satisfying Approximate Differential Privacy: Algorithm 1a

Theorem 2.5 states that, when run on a stream with n ≥ n0 distinct items, any hash-based order-
invariant algorithm (see Algorithm 1a) automatically satisfies (ε, δ)-differential privacy where δ
denotes the probability that the final sketch state s is “privacy-violating”, i.e., π(s) > π0 = 1− e−ε.
In Section 4, we provide concrete bounds of δ for specific algorithms. In all cases considered, δ falls
exponentially with respect to the cardinality n. Thus, high privacy is achieved with high probability
so long as the stream is large.

We now outline how to derive a bound for a specific sketch. We can prove the desired bound on
δ by analyzing sketches in a manner similar to the coupon collector problem. Assuming a perfect,
random hash function, the hash values of a universe of items defines a probability space. We can
identify v ≤ kmax events or coupons, C1, . . . , Cv, such that π(s) is guaranteed to be less than π0

after all events have occurred. Thus, if all coupons are collected, the sketch satisfies the requirement
to be ε-DP. As the cardinality n grows, the probability that a particular coupons remains missing
decreases exponentially. A simple union bound shows that the probability δ that any coupon is
missing decreases exponentially with n.

For more intuition as to why unmodified sketches satisfy an (ε, δ)-DP guarantee when the cardinality
is large, we note that the inclusion probability π(s) is closely tied to the cardinality estimate in most
sketching algorithms. For example, the cardinality estimators used in HLL and KMV are inversely
proportional to the sampling probability π(s), i.e., N̂(s) ∝ 1/π(s), while for LPCA and Adaptive
Sampling, the cardinality estimators are monotonically decreasing with respect to π(s). Thus, for
most sketching algorithms, when run on a stream of sufficiently large cardinality, the resulting sketch
is privacy-violating only when the cardinality estimate is also inaccurate. Theorem 2.6 is useful when
analyzing the privacy of such algorithms, as it characterizes the probability δ of a “privacy violation”
in terms of the probability the returned estimate, N̂(Sr(D)), is lower than some threshold Ñ(π0).

Theorem 2.6. Let Sr be a sketching algorithm with estimator N̂(Sr). If n ≥ n0 and the estimate
returned on sketch s is a strictly decreasing function of π(s), so that N̂(s) = Ñ(π(s)) for a function
Ñ . Then, Sr is (ε, δ)-DP where δ = Prr(N̂(Sr(D)) < Ñ(π0)).

2.2 Constructing Sketches Satisfying Pure Differential Privacy: Algorithm 1b - 1c

Theorem 2.4 guarantees an ε-DP sketch if (8), (9) hold. Condition (8) requires that sups∈Ω π(s) <
1− e−ε, i.e., the “sampling probability” of the sketching algorithm is sufficiently small regardless of
the sketch’s state s. Meanwhile, (9) requires that the input cardinality is sufficiently large.

We show that any hash-based, order-invariant distinct counting sketching algorithm can satisfy these
two conditions by adding a simple pre-processing step which does two things. First, it “downsamples”
the input stream by hashing each input, interpreting the hash values as numbers in [0, 1], and simply
ignoring numbers whose hashes are larger than π0. The downsampling hash must be independent to
that used by the sketching algorithm itself. This ensures that Condition (8) is satisfied, as each input
item has maximum sampling probability π0.
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BASE(items, ε)
S ← InitSketch()

for x ∈ items do

S.add(x)

return N̂(S)

(a) (ε, δ)-DP for n ≥ n0.

DPSKETCHLARGESET(items, ε)
S ← InitSketch()
π0 ← 1− e−ε
for x ∈ items do

if hash(x) < π0 then
S.add(x)

return N̂(S)/π0

(b) (ε, 0)-DP for n ≥ n0.

DPSKETCHANYSET(items, ε)
S, n0 ← DPInitSketch(ε)
π0 ← 1− e−ε
for x ∈ items do

if hash(x) < π0 then
S.add(x)

return N̂(S)/π0 − n0

(c) (ε, 0)-DP for n ≥ 1.

Algorithms 1: Differentially private cardinality estimation algorithms from black box sketches. The
function InitSketch() initializes a black-box sketch. The uniform random hash function hash(x) is
chosen independently of any hash in the black-box sketch and is interpreted as a real in [0, 1]. The
cardinality estimate returned by sketch S is denoted N̂(S). DPInitSketch is given in Algorithm 2a.

If there is an a priori guarantee that the number of distinct items n is greater than n0 = kmax
1−e−ε , then

(9) is trivially satisfied. Pseudocode for the resulting ε-DP algorithm is given in Algorithm 1b. If
there is no such guarantee, then the preprocessing step adds n0 items to the input stream to satisfy
(9). To ensure unbiasedness, these n0 items must (i) be distinct from any items in the “real” stream,
and (ii) be downsampled as per the first modification. An unbiased estimate of the cardinality of the
unmodified stream can then be easily recovered from the sketch via a post-processing correction.
Pseudocode for the modified algorithm, which is guaranteed to satisfy ε-DP, is given in Algorithm 1c.

Corollary 2.7. The functions DPSketchLargeSet (Algorithm 1b) and DPSketchAnySet (Algorithm
1c) yield ε-DP distinct counting sketches provided that n ≥ n0 and n ≥ 1, respectively.

2.3 Constructing ε-DP Sketches from Existing Sketches: Algorithm 3, Appendix A.1

As regulations change and new ones are added, existing data may need to be appropriately anonymized.
However, if the data has already been sketched, the underlying data may no longer be available,
and even if it is retained, it may be too costly to reprocess it all. Our theory allows these sketches
to be directly converted into differentially private sketches when the sketch has a merge procedure.
Using the merge procedure to achieve ε-differential privacy yields more useful estimates than the
naive approach of simply adding Laplace noise to cardinality estimates in proportion to the global
sensitivity.

The algorithm assumes it is possible to take a sketch Sr(D1) of a stream D1 and a sketch Sr(D2) of
a stream D2, and “merge” them to get a sketch of the concatenation of the two streams D1 ◦ D2. This
is the case for most practical hash-based order-invariant distinct count sketches. Denote the merge
of sketches Sr(D1) and Sr(D2) by Sr(D1) ∪ Sr(D2). In this setting, we think of the existing non-
private sketch Sr(D1) being converted to a sketch that satisfies ε-DP by Algorithm 3 (see pseudocode
in Appendix A.1). Since sketch Sr(D1) is already constructed, items cannot be first downsampled
in the build phase the way they are in Algorithms 1b-1c. To achieve ε-DP, Algorithm 3 constructs
a noisily initialized sketch, Sr(D2), which satisfies both the downsampling condition (Condition
(8)) and the minimum stream cardinality requirement (Condition (9)) and returns the merged sketch
Sr(D1)∪ Sr(D2). Hence, the sketch will satisfy both conditions for ε-DP, as shown in Corollary A.3

This merge based procedure typically adds no additional error to the estimates for large cardinalities.
In contrast, the naive approach of adding Laplace noise can add significant noise since the sensitivity
can be very large. For example, HLL’s estimator is of the form N̂HLL(s) = α/π(s) where α is a
constant and s is the sketch. One item can update a bin to the maximum value, so that the updated
sketch s′ has sampling probability π(s′) < π(s)(1− 1/k). The sensitivity of cardinality estimate is
thus at least N̂HLL(s)/k. Given that the cardinality estimate, and hence sensitivity, can be arbitrarily
large when n ≥ k, the naive approach is unworkable to achieve ε-DP.

3 The Utility of Private Sketches

When processing a data set with n unique items, denote the expectation and variance of a sketch and
its estimator by En(N̂) and Varn(N̂) respectively. We show that our algorithms all yield unbiased
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estimates. Furthermore, we show that for Algorithms 1a-1c, if the base sketch satisfies a relative
error guarantee (defined below), the DP sketches add no additional error asymptotically.

Establishing unbiasedness. To analyze the expectation and variance of each algorithm’s estimator,
N̂(S(D)), note that each estimator uses a ‘base estimate’ N̂base from the base sketch S and has the
form N̂(S(D)) = N̂base

p − V ; p is the downsampling probability and V is the number of artificial
items added. This allows us to express expectations and variance via the variance of the base estimator.

Theorem 3.1. Consider a base sketching algorithm S ∈ C with an unbiased estimator N̂base for the
cardinality of items added to the base sketch. Algorithms 1 (a)-(c) and 3 yield unbiased estimators.

Bounding the variance. Theorem 3.1 yields a clean expression for the variance of our private
algorithms. Namely, Var[N̂(Sr(D))] = E[Var( N̂basep |V )] which is shown in Corollary B.1. The
expression is a consequence of the law of total variance and that the estimators are unbiased.

We say that the base sketch satisfies a relative-error guarantee if with high probability, the estimate
returned by the sketching algorithm when run on a stream of cardinality n is (1 ± 1/

√
c)n for

some constant c > 0. Let N̂base,n denote the cardinality estimate when the base algorithm is
run on a stream of cardinality n, as opposed to N̂base denoting the cardinality estimate produced
by the base sketch on the sub-sampled stream used in our private sketches DPSketchLargeSet
(Algorithm 1b) and DPSketchAnySet (Algorithm 1c). The relative error guarantee is satisfied when
Varn(N̂base,n) < n2/c; this is an immediate consequence of Chebyshev’s inequality.

When the number of artificially added items V is constant as in Algorithms 1b and 1c, Corollary
B.1 provides a precise expression for the variance of the differentially private sketch. In Theorem
3.2 below, we use this expression to establish that the modification of the base algorithm to an ε-DP
sketch as per Algorithms 1b and 1c satisfy the exact same relative error guarantee asymptotically.
In other words, the additional error due to any pre-processing (down-sampling and possibly adding
artificial items) is insignificant for large cardinalities n.

Theorem 3.2. Suppose N̂base,n satisfies a relative error guarantee, Varn(N̂base,n) < n2/c, for all n
and for some constant c. Let v = 0 for Algorithm 1b and v = n0 for Algorithm 1c. Then Algorithms
1b and 1c satisfy

Varn(N̂) ≤ (n+ v)2

c
+

(n+ v)(v + π−1
0 )

kmax
=

(n+ v)2

c
+O(n), (10)

so that Varn(N̂)/Varn(N̂base,n)→ 1 as n→∞.

In Corollary B.2 we prove an analagous result for Algorithm 3, which merges non-private and noisy
sketches to produce a private sketch. Informally, the result is comparable to (10), albeit with v ≥ n0.
This is because, in Algorithm 3, the number of artificial items added V is a random variable. We ensure
that the algorithm satisfies a utility guarantee by bounding V with high probability. This is equivalent
to showing that the base sketching algorithm satisfies an (ε, δ)-DP guarantee as for any n∗ ≥ n0

and dataset D∗ with |D∗| = n∗, (ε, δn∗)-DP ensures δn∗ > Prr(π(Sr(D∗)) > π0) = Prr(V > n∗)
which follows from the definition of V in Algorithm 2b.

4 Examples of Hash-based, Order-Invariant Cardinality Estimators

We now provide (ε, δ)-DP results for a select group of samples: FM85, LPCA, Bottom-k, Adaptive
Sampling, and HLL. The (ε, δ)-DP results in this section operate in the Algorithm 1a setting with
no modification to the base sketching algorithm. Recall that the quantities of interest are the
number of bins used in the sketch k, the size of the sketch in bits b and the number of items whose
absence changes the sketch kmax. From Section 2 and Lemma A.1 we know that kmax ≤ b but for
several common sketches we show a stronger bound of kmax = k. The relationship between these
parameters for various sketching algorithms is summarized in Table 1. Table 2, Appendix C, details
our improvements over [22, 5] in both privacy and utility.

We remind the reader that, per (6), π0 = 1 − e−ε, and (9) n0 = kmax
1−e−ε . Furthermore, recall that

once we bound the parameter kmax for any given hash-based order-invariant sketching algorithm,
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Table 1: Properties of each sketch with k “buckets” (see each sketch’s respective section for details of
what this parameter means for the sketch). Each sketch provides an (ε, δ)-DP guarantee, where the
column ln δ provides an upper bound on ln δ established in the relevant subsection of Section 4.

Sketch b: size (bits) Standard Error kmax ln δ Reference

FM85 32k 0.649n/
√
k 32k −π0

2kn+ o(1) [16]
LPCA k n/

√
k 3 k − π0

Ñ(π0)
n+O(log n) [27]

Bottom-k 64k n/
√
k k − 1

2
π0

1−π0
n+ o(1) [13]

Adaptive Sampling k 1.2n/
√
k k − 1

2
π0

1−π0
n+ o(1) [10]

HLL 5k 1.04n/
√
k k −π0

k n+ o(1) [11]

Corollary 2.7 states that the derived algorithms 1b-1c satisfy ε-DP provided that n ≥ n0 and n ≥ 1,
respectively. Accordingly, in the rest of this section, we bound kmax for each example sketch of
interest, which has the consequences for pure ε-differential privacy delineated above.

Flajolet-Martin ’85 The FM85 sketch, often called Probabilistic Counting with Stochastic Aver-
aging (PCSA), consists of k bitmaps Bi of length `. Each item is hashed into a bitmap and index
(Bi, Gi) and sets the indexed bit in the bitmap to 1. The chosen bitmap is uniform amongst the k
bitmaps and the indexGi ∼ Geometric(1/2). If ` is the length of each bitmap, then the total number
of bits used by the sketch is b = k` and kmax = k` for all seeds r. A typical value for ` is 32 bits, as
used in Table 1. Past work [25] proposed an ε-DP version of FM85 using a similar subsampling idea
combined with random bit flips.
Theorem 4.1. Let v = d− log2 π0e and π̃0 := 2−v ∈ (π0/2, π0]. If n ≥ n0, then the FM85 sketch is
(ε, δ)-DP with δ ≤ kv exp

(
−π̃0

n
k

)
.

For any k, FM85 has kmax ∈ {32k, 64k}. This is worse than all other sketches we study which have
kmax = k, so FM85 needs a larger number of minimum items n0 to ensure the sketch is (ε, δ)-DP.

LPCA The Linear Probabilistic Counting Algorithm (LPCA) consists of a length-k bitmap. Each
item is hashed to an index and sets its bit to 1. If B is the number of 1 bits, the LPCA cardinality
estimate is N̂LPCA = −k log(1−B/k) = k log π(Sr(D)). Trivially, kmax = k.

Since all bits are expected to be 1 after processing roughly k log k distinct items, the capacity of the
sketch is bounded. To estimate larger cardinalities, one first downsamples the distinct items with
some sampling probability p. To ensure the sketch satisfies an ε-DP guarantee, one simply ensures
p ≥ π0. In this case, our analysis shows that LPCA is differentially private with no modifications if
the cardinality is sufficiently large. Otherwise, since the estimator N̂(s) is a function of the sampling
probability π(s), Theorem 2.6 provides an (ε, δ) guarantee in terms of N̂ .
Theorem 4.2. Consider a LPCA sketch with k bits and downsampling probability p. If p < π0

and n > k
1−e−ε then LPCA is ε-DP. Otherwise, let b0 = dk(1− π0/p)e, π̃0 = b0/k, and µ0 be the

expected number of items inserted to fill b0 bits in the sketch. Then, LPCA is (ε, δ)-DP if n > µ0 with

δ = Pr
r

(B < b0) <
µ0

n
exp

(
− π̃0

µ0
n

)
exp(−π̃0) (11)

where B is the number of filled bits in the sketch. Furthermore, µ0 < Ñ(π̃0) where Ñ(π̃) =
−kp log(1− π̃) is the cardinality estimate of the sketch when the sampling probability is π̃.

Bottom-k (also known as MinCount or KMV) sketches store the k smallest hash values. Removing
an item changes the sketch if and only if 1) the item’s hash value is one of these k and 2) it does
not collide with another item’s hash value. Thus, kmax = k. Typically, the output size of the hash
function is large enough to ensure that the collision probability is negligible, so for practical purposes
kmax = k exactly. Since the Bottom-k estimator N̂(s) = (k − 1)/π(s) is a function of the update
probability π(s), Theorem 2.6 gives an (ε, δ)-DP guarantee in terms of the cardinality estimate by
coupon collecting; Theorem 4.3 tightens this bound on δ for a stronger (ε, δ)-DP guarantee.

3This approximation holds for n < k. A better approximation of the error is
√
k(exp(n/k)− n/k − 1)

8



Theorem 4.3. Consider Bottom-k with k minimum values. Given ε > 0, let π0, n0 be the correspond-
ing subsampling and minimum cardinality to ensure the modified Bottom-k sketch is (ε, 0)-DP. When
run on streams of cardinality n ≥ n0, then the unmodified sketch is (ε, δ)-DP, where δ = P (X ≤
k) < exp(−nαn) where X ∼ Binomial(n, π0) and αn = 1

2
(π0−k/n)2

π0(1−π0)+1/3n2 → 1
2

π0

1−π0
as n→∞.

The closely related Adaptive Sampling sketch has the same privacy behavior as a bottom-k sketch.
Rather than storing exactly k hashes, the algorithm maintains a threshold p and stores up to k hash
values beneath p. Once the sketch size exceeds k, the threshold is halved and only hashes less than
p/2 are kept. Since at most k hashes are stored, and the sketch is modified only if one of these hashes
is removed the maximum number of items that can modify the sketch by removal is kmax = k.
Corollary 4.4. For any size k and cardinality n, if a bottom-k sketch is (ε, δ)-DP, then a maximum
size k adaptive sampling sketch is (ε, δ)-DP with the same ε and δ.

HyperLogLog (HLL) hashes each item to a bin and value (Bi, Gi). Within each bin, it takes the
maximum value so each bin is a form of Bottom-1 sketch. If there are k bins, then kmax = k.

Our results uniformly improve upon existing DP results on the HLL sketch and its variants. One
variation of the HLL sketch achieves ε-DP but is far slower than HLL, as it requires every item to be
independently hashed once for each of the k bins, rather than just one time [22]. In other words, [22]
needs O(k) update time compared to O(1) for our algorithms. Another provides an (ε, δ) guarantee
for streams of cardinality n ≥ n′0, for an n′0 that is larger than our n0 by a factor of roughly (at
least) 8, with δ falling exponentially with n [5]. In contrast, for streams with cardinality n ≥ n0, we
provide a pure ε-DP guarantee using Algorithms 1b-1c. HLL also has the following (ε, δ) guarantee.
Theorem 4.5. If n ≥ n0, then HLL satisfies an (ε, δ)-DP guarantee where δ ≤ k exp(−π0n/k)

HLL’s estimator is only a function of π(s) for medium to large cardinalities as it has the form
N̂(s) = Ñ(π(s)) when Ñ(π(s)) > 5k/2. Thus, if π0 is sufficiently small so that Ñ(π0(s)) > 5k/2,
then Theorem 2.6 can still be applied, and HLL satisfies (ε, δ)-DP with δ = P (N̂(Sr(D)) < Ñ(π0)).

5 Empirical Evaluation

We provide two experiments highlighting the practical benefits of our approach. Of past works,
only [5, 22] are comparable and both differ from our approach in significant ways. We empirically
compare only to [22] since [5] is simply an analysis of HLL. Our improvement over [5] for HLL
consists of providing significantly tighter privacy bounds in Section 4 and providing a fully ε-DP
sketch in the secret hash setting. We denote our ε-DP version of HLL using Algorithm 1b by PHLL
(private-HLL) and that of [22] by QLL. Details of the experimental setup are in Appendix D.

Experiment 1: Update Time (Figure 1a). We implemented regular, non-private HLL, our PHLL,
and QLL and recorded the time to populate every sketch over 210 updates with k ∈ {27, 28, . . . 212}
buckets. For HLL, these bucket sizes correspond to relative standard errors ranging from ≈ 9% down
to ≈ 1.6%. Each marker represents the mean update time over all updates and the curves are the
evaluated mean update time over 10 trials.

27 28 29 210 211 212

10−5

10−4

10−3

Number of buckets: k

U
pd

at
e

Ti
m

e

HLL QLL PHLL

(a) Wall-clock update time in seconds vs. k.
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272829210211212
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(b) Estimated space increase using QLL [22] rather than PHLL.

Figure 1: (1a) QLL’s update time is not competitive since it performs O(k) hashes. (1b) QLL is less
efficient spacewise than PHLL. The relative size of a QLL sketch to a PHLL sketch, the Space ratio,
is larger for more accurate sketches.
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As expected from theory, the update time of [22] grows as O(k). In contrast, our method PHLL has a
constant update time and is similar in magnitude to HLL. Both are roughly 500× faster than [22]
when k = 212. Thus, figure 1a shows that [22] is not a scalable solution and the speedup by achieving
O(1) updates is substantial.

Experiment 2: Space Comparison (Figure 1b). In addition to having a worse update time, we also
show that QLL has lower utility in the sense that it requires more space than PHLL to achieve the
same error. Fixing the input cardinality at n = 220 and the privacy budget at ε = ln(2), we vary the
number of buckets k ∈ {27, 28, . . . 212} and simulate the ε-DP methods, PHLL and QLL [22]. The
number of buckets controls the error and we found that both methods obtained very similar mean
relative error for a given number of bins4 so we plot the space usage against the expected relative
error for a given number of buckets. For QLL, since the error guarantees tie the parameter γ to the
number of buckets, we modify γ accordingly as well. We compare the sizes of each sketch as the
error varies.

Since the number of bits required for each bin depends on the range of values the bin can take, we
record the simulated total sketch size := k · log2 maxi si, by using the space required for the largest
bin value over k buckets.

Although QLL achieves similar utility, it does so using a sketch that is larger: when k = 27, we
expect an error of roughly 9%, QLL is roughly 1.1× larger. This increases to about 1.6× larger than
our PHLL sketch when k = 212, achieving error of roughly 1.6%. We see that the average increase
in space when using QLL compared to PHLL grows exponentially in the desired accuracy of the
sketch; when lower relative error is necessary, we obtain a greater space improvement over QLL than
at higher relative errors. This supports the behavior expected by comparing with space bounds of
[22] with (P)HLL.

6 Conclusion

We have studied the (differential) privacy of a class of cardinality estimation sketches that includes
most popular algorithms. Two examples are the HLL and KMV (bottom-k) sketches that have been
deployed in large systems [14, 1]. We have shown that the sketches returned by these algorithms
are ε-differentially private when run on streams of cardinality greater than n0 = kmax

1−e−ε and when
combined with a simple downsampling procedure. Moreover, even without downsampling, these
algorithms satisfy (ε, δ)-differential privacy where δ falls exponentially with the stream cardinality
n once n is larger than the threshold n0. Our results are more general and yield better privacy
guarantees than prior work for small space cardinality estimators that preserve differential privacy.
Our empirical validations show that our approach is practical and scalable, being much faster than
previous state-of-the-art while consuming much less space.
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7 Paper Checklist

1. (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? See answer to
next question.

(d) Did you describe the limitations of your work? Our work shows that existing algorithms,
or mild variants thereof, preserve privacy. Therefore, there should not be any negative
societal impacts that are consequences of positive privacy results unless users/readers
incorrectly apply the results to their systems. Any mathematical limitations from the
theory are clearly outlined through the formal technical statements.

2. (a) Did you state the full set of assumptions of all theoretical results?[Yes]
(b) Did you include complete proofs of all theoretical results?[Yes]

3. (a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? A small repository
containing the experimental scripts and figure plotting has been provided.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? For Figure 1a the standard deviations have been plotted in
shaded regions but these are too small in magnitude to be seen on the scale of the plot,
indicating that there is very little variation. For Figure 1b we have plotted the entire
distribution over all trials.

(d) Did you include the amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [No]

4. (a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. (a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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