A Proofs

A.1 Proof of Proposition 4.1

Proposition 4.1. Given π , $V_{\mathcal{V}}^{\phi}(s;\pi)$ and $Q_{\mathcal{V}}^{\phi}(s,w;\pi)$ are respectively the value function and action-value function of ϕ .

Proof. Let $r_i^{\phi} \doteq \sum_{a} \pi(a|s, w) r_i^{w}$ and $p_w(s'|s, w) \doteq \sum_{a} \pi(a|s, w) p_a(s'|s, a)$ in contrast with p_a . As commonly assumed the reward is deterministic given s and a, from (3), we have,

$$v_i^{\pi}(s; \boldsymbol{\phi}) = \sum_{\boldsymbol{w}} \boldsymbol{\phi}(\boldsymbol{w}|s) \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s, \boldsymbol{w}) [r_i^{\boldsymbol{w}} + \sum_{s'} p_a(s'|s, \boldsymbol{a}) \gamma v_i^{\pi}(s'; \boldsymbol{\phi})]$$
$$= \sum_{\boldsymbol{w}} \boldsymbol{\phi}(\boldsymbol{w}|s) \sum_{s'} p_w(s'|s, \boldsymbol{w}) [r_i^{\boldsymbol{\phi}} + \gamma v_i^{\pi}(s'; \boldsymbol{\phi})], \tag{7}$$

where $p_w \in \mathcal{P}_w : \mathcal{S} \times \mathcal{W} \times \mathcal{S} \rightarrow [0, 1]$ describes the state transitions given π .

Let $r_{\mathcal{V}}^{\phi} \doteq \sum_{i \in \mathcal{V}} r_i^{\phi}$, and from (7) we have

$$\begin{split} V_{\mathcal{V}}^{\boldsymbol{\phi}}(s; \boldsymbol{\pi}) &= \sum_{i \in \mathcal{V}} \sum_{\boldsymbol{w}} \boldsymbol{\phi}(\boldsymbol{w}|s) \sum_{s'} p_{w}(s'|s, \boldsymbol{w}) [r_{i}^{\boldsymbol{\phi}} + \gamma v_{i}^{\boldsymbol{\pi}}(s'; \boldsymbol{\phi})] \\ &= \sum_{\boldsymbol{w}} \boldsymbol{\phi}(\boldsymbol{w}|s) \sum_{s'} p_{w}(s'|s, \boldsymbol{w}) [\sum_{i \in \mathcal{V}} r_{i}^{\boldsymbol{\phi}} + \gamma \sum_{i \in \mathcal{V}} v_{i}^{\boldsymbol{\pi}}(s'; \boldsymbol{\phi})] \\ &= \sum_{\boldsymbol{w}} \boldsymbol{\phi}(\boldsymbol{w}|s) \sum_{s'} p_{w}(s'|s, \boldsymbol{w}) [r_{\mathcal{V}}^{\boldsymbol{\phi}} + \gamma V_{\mathcal{V}}^{\boldsymbol{\phi}}(s'; \boldsymbol{\pi})], \end{split}$$

and similarly,

$$\begin{aligned} Q_{\mathcal{V}}^{\phi}(s, \boldsymbol{w}; \boldsymbol{\pi}) &= \sum_{i \in \mathcal{V}} \sum_{s'} p_{\boldsymbol{w}}(s'|s, \boldsymbol{w}) [r_{i}^{\phi} + \gamma \sum_{\boldsymbol{w}'} \phi(\boldsymbol{w}'|s') v_{i}^{\boldsymbol{\pi}}(s'; \boldsymbol{w}', \phi)] \\ &= \sum_{s'} p_{\boldsymbol{w}}(s'|s, \boldsymbol{w}) [r_{\mathcal{V}}^{\phi} + \gamma \sum_{\boldsymbol{w}'} \phi(\boldsymbol{w}'|s') Q_{\mathcal{V}}^{\phi}(s', \boldsymbol{w}'; \boldsymbol{\pi})]. \end{aligned}$$

Moreover, from the definitions of $r_i^{\boldsymbol{w}}$ and $r_i^{\boldsymbol{\phi}}$ we have

$$\begin{aligned} r_{\mathcal{V}}^{\phi} &= \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s, \boldsymbol{w}) \sum_{i \in \mathcal{V}} r_{i}^{\boldsymbol{w}} \\ &= \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s, \boldsymbol{w}) \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{N}_{i}} w_{ji} r_{j} \\ &= \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s, \boldsymbol{w}) \sum_{(i,j) \in \mathcal{D}} w_{ij} r_{i} = \sum_{\boldsymbol{a}} \pi(\boldsymbol{a}|s, \boldsymbol{w}) \sum_{i \in \mathcal{V}} r_{i}. \end{aligned}$$

Thus, given π , $V_{\mathcal{V}}^{\phi}(s)$ and $Q_{\mathcal{V}}^{\phi}(s, w)$ are respectively the value function and action-value function of ϕ in terms of the sum of expected cumulative rewards of all agents, *i.e.*, the global objective.

A.2 Proof of Proposition 4.2

Proposition 4.2. The joint high level policy ϕ can be learned in a decentralized manner, and the decentralized high-level policies of all agents form a mean-field approximation of ϕ .

First, we introduce one definition and one lemma.

Definition 1 (Markov Random Field). A Markov Random Field (MRF) is a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ that satisfies:

$$P(X_i|\{X_j\}_{j\in\mathcal{V}\setminus\{i\}}) = P(X_i|\{X_j\}_{j\in\mathcal{N}_i})$$
(8)

where X_i is some random variable associated with node $i, \forall i \in \mathcal{V}$.

Lemma A.1 (Hammersley–Clifford Theorem). A probability distribution that has a strictly positive mass or density satisfies one of the Markov properties with respect to an undirected graph G if and only if it is a Gibbs random field, i.e., its density can be factorized over the cliques (or complete subgraphs) of the graph. (Hammersley and Clifford, 1971)

Now we begin the proof of Proposition 4.2.

Proof. Let $d_{ij} \in \mathcal{D}$ serve as a vertex with action w_{ij} and reward $w_{ij}r_i$ in a new graph \mathcal{G}' . Each vertex has its own local policy $\phi_{ij}(w_{ij}|s)$. Note that in the sense of mean-field approximation, we focus on neighbors and find a MRF: each w_{ij} needs and only needs to be determined considering other $\{w_{ik}|k \in \mathcal{N}_i \setminus \{j\}\}$, because their actions are subject to the constraint $\sum_{j \in \mathcal{N}_i} w_{ij} = 1$. It accords with the adjacency relationship in \mathcal{G}' . According to Lemma A.1, it is also a Gibbs random field.

Now we consider the cliques that we factor $\phi(w|s)$ over. For $\forall i \in \mathcal{V}$, $\{d_{ij}|j \in \mathcal{N}_i\}$ should form a complete subgraph in \mathcal{G}' . Note that $d_{ij} \in \mathcal{G}'$ connects to $\{d_{ik}|k \in \mathcal{N}_i \setminus \{j\}\}$ and $\{d_{kj}|k \in \mathcal{N}_j \setminus \{i\}\}$, but only the former will form the maximal clique. Therefore, we have $\phi(w|s) \approx \prod_{i \in \mathcal{V}} \phi_i(w_i^{\text{out}}|s)$. Note that technically each agent *i* can determine $\{w_{ij}|j \in \mathcal{N}_i\}$ simultaneously. We allow agent *i* to take charge of $\phi_i(w_i^{\text{out}}|s)$ as its high-level policy which is a joint policy of the complete subgraph in \mathcal{G}' , so that we can turn the view back to \mathcal{G} from \mathcal{G}' and verify each agent's independence in the high level.

Besides, from Proposition 4.1, we approximately have: $q_i^{\phi_i}(s, w_i^{\text{out}}; \pi_{\mathcal{N}_i}) = v_i^{\pi_i}(s; w_i^{\text{in}}, \phi_{\mathcal{N}_i})$, where $q_i^{\phi_i}$ is the action-value function of ϕ_i given $\pi_{\mathcal{N}_i}, v_i^{\pi_i}$ is the value function of π_i given $\phi_{\mathcal{N}_i}$ and conditioned on w_i^{in} . Let $Q_{\mathcal{N}_i}^{\phi}(s, \boldsymbol{w}; \pi) \doteq \sum_{j \in \mathcal{N}_i} v_j^{\pi}(s; w_j^{\text{in}}, \phi)$. Note that ϕ_i optimizes $Q_{\mathcal{N}_i}^{\phi}(s, \boldsymbol{w}; \pi)$, because only elements in $\{v_j^{\pi}(s; w_j^{\text{in}}, \phi) | j \in \mathcal{N}_i\}$ correlate with w_i^{out} , while those in $\{v_j^{\pi}(s; w_j^{\text{in}}, \phi) | j \in \mathcal{V} \setminus \mathcal{N}_i\}$ do not. After taking this uncorrelated set into account, we have an equivalent optimization of $Q_{\mathcal{V}}^{\phi}(s, \boldsymbol{w}; \pi)$, *i.e.*, the global objective. Therefore, each decentralized high-level policy shares the same optimization objective as the global one, and we can factorize J_{ϕ} into $\{J_{\phi_i} | i \in \mathcal{V}\}$.

This proposition gives a factorization which is different from existing studies. First, our factorization differs from $\pi(a|s) = \prod_{i=1}^{N} \pi(a_i|s)$ (Zhang et al., 2018), since each agent needs to make decisions considering other agents' plan. Also in contrast to Qu et al. (2020a), they parameterize intention propagation by GNN and other neural networks to factorize the joint policy thoroughly, while we accept incomplete factorization and group indecomposable cliques by each agent to form high-level policies that are also decentralized and independent of each other.

B Algorithm

We describe LToS as Algorithm 1.

C Discussions on Training LToS

As a hierarchically decentralized MARL framework, LToS brings some challenges for training.

Selfishness Initializer. On the basis of a straightforward idea that one should generally focus more on its own reward than that of others when optimizing its own policy, the initial output of each high-level policy network is supposed to be higher on the sharing weight of its own than others. We choose to predetermine the initial selfishness to learn the high-level policy effectively. However, with normal initializers, the output of the high-level policy network will be evenly distributed initially. Therefore, we use a special *selfishness initializer* for each high-level policy network instead. As we use the softmax to produce the weights, which guarantees the constraint: $\sum_{j \in \mathcal{N}_i} w_{ij} = 1, \forall i \in \mathcal{V}$, we specially set the bias of the last fully-connected layer so that each decentralized high-level policy network tends to keep for itself the same reward proportion as the given selfishness initial weights, while *fixed* LToS uses such weights throughout each experiment. Moreover, we use grid search to find the best selfishness for *fixed* LToS in *traffic* and *jungle*. For *prisoner* we deliberately set the selfishness to 0.5 so that *fixed* LToS directly optimizes the average return. Algorithm 1 LToS

1:	: Initialize ϕ_i parameterized by θ_i and π_i parameterized by μ_i for each agent <i>i</i> (ϕ_i is learned by DDPG and π_i is learned by DGN, and they share the Q-network)				
2:	for $t = 0$ to T do				
3:	for each agent <i>i</i> do				
4:	exchange observations and get o_i				
5:	$w_i^{\text{out}} \leftarrow \phi_i(o_i)$ with exploration				
6:	exchange w_i^{out} and get w_i^{in}				
7:	$a_i \leftarrow \pi_i(o_i; w_i^{\text{in}})$ with exploration				
8:	execute a_i , obtain r_i , and transition to $o'_i = o_{i,t+1}$				
9:	exchange r_i and get r_i^w				
10:	store $(o_i, w_i^{\text{in}}, a_i, r_i^w, o_i', \mathcal{N}_i)$ in \mathcal{B}_i				
11:	end for				
12:	if $t \mod update_frequency = 0$ then				
13:	for each agent <i>i</i> do				
14:	sample a minibatch from replay buffer \mathcal{B}_i : $D = \{(o_i, w_i^{in}, a_i, r_i^{\boldsymbol{w}}, o_i', \mathcal{N}_i)\}$				
15:	exchange $w_i^{\text{out'}} \leftarrow \phi_i'(o_i')$ and get $w_i^{\text{in'}}$				
16:	set $y_i \leftarrow r_i^{\boldsymbol{w}} + \gamma q_i^{\pi'_i}(o'_i, a'_i; w_i^{\text{in}'}) _{a'_i = \pi'_i(o'_i; w_i^{\text{in}'})}$				
17:	update μ_i by $ abla_{\mu_i} \mathbb{E}_D(y_i - q_i^{\pi_i}(o_i, a_i; w_i^{\text{in}}))^2$				
18:	exchange $w_i^{\text{out}} \leftarrow \phi_i(o_i)$ and get w_i^{in}				
19:	compute $g_i^{\text{in}} = \nabla_{w_i^{\text{in}}} q_i^{\pi_i}(o_i, \arg \max_{a_i} q_i^{\pi_i}; w_i^{\text{in}})$				
20:	exchange g_i^{in} and get gradient g_i^{out} for w_i^{out}				
21:	update θ_i by $\frac{1}{ D } \sum_{o_i \in D} (\nabla_{\theta_i} \phi_i(o_i))^{T} g_i^{out}$				
22:	softly update target networkrs θ'_i and μ'_i				
23:	end for				
24:	end if				
25:	end for				

Unified Pseudo Random Number Generator. LToS is learned in a decentralized manner. This incurs some difficulty for experience replay. As each agent *i* needs w_i^{in} to update network weights for both high-level and low-level policies, it should sample from its buffer a batch of experiences where each sampled experience should be synchronized across the batches of all agents (*i.e.*, the experiences should be collected at a same timestep). To handle this, all agents can simply use a unified pseudo random number generator and the same random seed.

Different Time Scales. As many hierarchical RL methods do, we can set the high-level policy to running at a slower time scale than the low-level one. Proposition 1 still holds if we expand v_i^{π} for more than one step forward. Assuming the high-level policy runs every M timesteps, we can fix $w_i^{\text{out}} = w^{\text{out},t+1} = \cdots = w^{\text{out},t+M-1}$. M is referred to as action interval in Table 5.

Infrequent Parameter Update with Small Learning Rate. Based on the continuity of w, a small modification of ϕ means a slight modification of local reward functions, and will intuitively result in an equally slight modification of the low-level value functions. This guarantees the low-level policies are highly reusable.

Unordered Output. Essentially, the output of high-level policy network is unordered and has a one-to-one match with each neighbor as input. The output of deep neural network, however, is generally ordered and has trouble in varying with the input order. To settle this, we take advantage of DGN which is insensitive of neighbor order as input. Besides, we modify the structure to make the output keep consistency with the neighbor part of input in the relative order.

D Hyperparamaters

As three experimental scenarios are quite different, we may use different hyperparameters. Note that we also tuned the hyperparameters for the baselines with grid search. Table 4 summarizes the hyperparameters of DQN, DGN that also serves as the low-level network of LToS, and IP. We choose

the setting of original DGN in *jungle* while the setting of Wei et al. (2019) in *traffic* for consistency. Table 5 summarizes the hyperparameters of the high-level network of LToS, which are different from the low-level network. Table 6 summarizes the hyperparameters of NeurComm and ConseNet, which adhere to the implementation (Chu et al., 2020). In addition, for tabular Coco-Q, the step-size parameter is 0.5, and for IP, the regularizer factor is 0.2. We adopt soft update for both high-level and low-level networks and use an Ornstein-Uhlenbeck Process (abbreviated as OU) for high-level exploration.

Both *fixed* LToS and NeurComm exploit static reward shaping, but they adopt different reward shaping schemes which are hard to compare directly. We consider a simple indicator: Self Neighbor Ratio (SNR), the ratio of reward proportion that an agent chooses to keep for itself to that it obtains from a single neighbor. As the rest reward is evenly shared with neighbors in LToS, for each agent *i*, we have SNR = selfishness/1-selfishness × ($|N_i| - 1$) for LToS, and SNR = $1/\alpha$ for NeurComm where α is the spatial discount factor. We adjust the initial selfishness and α to set the SNR of both methods at the same level for fair comparison.

Table 4: Hyperparameters for DQN, DGN (also serves as the low-level policy network of LToS), and IP.

Hyperparamater Prisoner		Jungle	$Traffic-6 \times 6$	Traffic-Shenzhen
sample size	10	10	1,000	1,000
batch size	10	10	20	20
buffer capacity	200,000	200,000	10,000	10,000
$\epsilon_{start}, \epsilon_{decay}, \epsilon_{end}$	0.8/1/0.8	0.6/0.996/0.01	0.4/0.9/0.05	0.4/0.9/0.05
initializer	random normal	random normal	random normal	random normal
optimizer	Adam	Adam	RMSProp	RMSProp
learning rate	1e-3	1e-4	1e-3	1e-3
γ	0.99	0.96	0.8	0.8
au for soft update	0.1	0.01	0.1	0.1
# MLP units	32 & 32	512 & 128	32 & 32	32 & 32
MLP activation	ReLU	ReLU	ReLU	ReLU
# encoder MLP layers	2	2	2	2
# attention heads for DGN	4	4	1	1

Table 5: Hyperparameters for the high-level policy network of LToS

Hyperparamater	Prisoner	Jungle	$Traffic-6 \times 6$	Traffic-Shenzhen
update frequency	1 step	100 episodes	20 episodes	50 episodes
action interval	1 step	1 step	15 steps	15 steps
sample size	2,000	5,000	1,000	1,000
batch size	32	32	20	20
noise for exploration	ϵ + Gaussian	OU	OU	OU
noise parameter	$\epsilon=0.8, \sigma=1$	$\sigma=0.025\epsilon$	$\sigma=0.25\epsilon$	$\sigma = 0.25\epsilon$
initializer	selfishness	selfishness	selfishness	selfishness
initial selfishness	0.5	0.5	0.8	0.9
optimizer	SGD	SGD	SGD	SGD
learning rate	1e-1	1e-4	1e-3	1e-3
last MLP layer activation	softmax	softmax	softmax	softmax

Hyperparamater	Prisoner	Jungle	$Traffic-6 \times 6$	Traffic-Shenzhen
initializer optimizer	orthogonal RMSProp	orthogonal RMSProp	orthogonal RMSProp	orthogonal RMSProp
learning rate	5e-3	5e-5	5e-4	5e-4
# MLP units	20	512 & 128	16	16
MLP activation	ReLU	ReLU	ReLU	ReLU
# cell state units	20	512	16	16
# hidden state units	20	512	16	16
RNN type for NeurComm and ConseNet	LSTM	LSTM	LSTM	LSTM
RNN type for QMIX	GRU	GRU	GRU	GRU
hypernetwork layer1 units for QMIX	2×20	20×512	36×16	36×16
hypernetwork layer2 units for QMIX	20	512	16	16
α for NeurComm	1	0.33	0.1	0.1
$\epsilon_{start}, \epsilon_{decay}, \epsilon_{end}$ for LIO	0.8/0.99/0.01	0.6/0.996/0.01	0.2/0.9/0.01	0.2/0.9/0.01
α_{θ} for LIO	1	1e-4	1e-4	1e-4
R_{max} for LIO	2	3	0.1	0.1

Table 6: Hyperparameters for NeurComm, ConseNet, LIO and QMIX