
A Proofs

A.1 Proof of Proposition 4.1

Proposition 4.1. Given π, V φV (s;π) and QφV(s,w;π) are respectively the value function and
action-value function of φ.

Proof. Let rφi
.
=

∑
a π(a|s,w)rwi and pw(s′|s,w)

.
=

∑
a π(a|s,w)pa(s′|s,a) in contrast with

pa . As commonly assumed the reward is deterministic given s and a, from (3), we have,

vπi (s;φ) =
∑
w

φ(w|s)
∑
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π(a|s,w)[rwi +
∑
s′

pa(s′|s,a)γvπi (s′;φ)]

=
∑
w

φ(w|s)
∑
s′

pw(s′|s,w)[rφi + γvπi (s′;φ)], (7)

where pw ∈ Pw : S ×W × S → [0, 1] describes the state transitions given π.

Let rφV
.
=

∑
i∈V r

φ
i , and from (7) we have

V φV (s;π) =
∑
i∈V

∑
w

φ(w|s)
∑
s′

pw(s′|s,w)[rφi + γvπi (s′;φ)]

=
∑
w

φ(w|s)
∑
s′

pw(s′|s,w)[
∑
i∈V

rφi + γ
∑
i∈V

vπi (s′;φ)]

=
∑
w

φ(w|s)
∑
s′

pw(s′|s,w)[rφV + γV φV (s′;π)],

and similarly,

QφV(s,w;π) =
∑
i∈V

∑
s′

pw(s′|s,w)[rφi + γ
∑
w′

φ(w′|s′)vπi (s′;w′,φ)]

=
∑
s′

pw(s′|s,w)[rφV + γ
∑
w′

φ(w′|s′)QφV(s′,w′;π)].

Moreover, from the definitions of rwi and rφi we have

rφV =
∑
a

π(a|s,w)
∑
i∈V

rwi

=
∑
a

π(a|s,w)
∑
i∈V

∑
j∈Ni

wjirj

=
∑
a

π(a|s,w)
∑

(i,j)∈D

wijri =
∑
a

π(a|s,w)
∑
i∈V

ri.

Thus, given π, V φV (s) and QφV(s,w) are respectively the value function and action-value function of
φ in terms of the sum of expected cumulative rewards of all agents, i.e., the global objective.

A.2 Proof of Proposition 4.2

Proposition 4.2. The joint high level policy φ can be learned in a decentralized manner, and the
decentralized high-level policies of all agents form a mean-field approximation of φ.

First, we introduce one definition and one lemma.

Definition 1 (Markov Random Field). A Markov Random Field (MRF) is a graph G = (V, E) that
satisfies:

P (Xi|{Xj}j∈V\{i}) = P (Xi|{Xj}j∈Ni
) (8)

where Xi is some random variable associated with node i,∀i ∈ V .
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Lemma A.1 (Hammersley–Clifford Theorem). A probability distribution that has a strictly posi-
tive mass or density satisfies one of the Markov properties with respect to an undirected graph G if
and only if it is a Gibbs random field, i.e., its density can be factorized over the cliques (or complete
subgraphs) of the graph. (Hammersley and Clifford, 1971)

Now we begin the proof of Proposition 4.2.

Proof. Let dij ∈ D serve as a vertex with action wij and reward wijri in a new graph G′. Each vertex
has its own local policy φij(wij |s). Note that in the sense of mean-field approximation, we focus
on neighbors and find a MRF: each wij needs and only needs to be determined considering other
{wik|k ∈ Ni\{j}}, because their actions are subject to the constraint

∑
j∈Ni

wij = 1. It accords
with the adjacency relationship in G′. According to Lemma A.1, it is also a Gibbs random field.

Now we consider the cliques that we factor φ(w|s) over. For ∀i ∈ V , {dij |j ∈ Ni} should form a
complete subgraph in G′. Note that dij ∈ G′ connects to {dik|k ∈ Ni\{j}} and {dkj |k ∈ Nj\{i}},
but only the former will form the maximal clique. Therefore, we have φ(w|s) ≈

∏
i∈V φi(w

out
i |s).

Note that technically each agent i can determine {wij |j ∈ Ni} simultaneously. We allow agent i to
take charge of φi(wout

i |s) as its high-level policy which is a joint policy of the complete subgraph in
G′, so that we can turn the view back to G from G′ and verify each agent’s independence in the high
level.

Besides, from Proposition 4.1, we approximately have: qφi

i (s, wout
i ;πNi) = vπi

i (s;win
i , φNi),

where qφi

i is the action-value function of φi given πNi , v
πi
i is the value function of πi given

φNi
and conditioned on win

i . Let QφNi
(s,w;π)

.
=

∑
j∈Ni

vπj (s;win
j ,φ). Note that φi optimizes

QφNi
(s,w;π), because only elements in {vπj (s;win

j ,φ)|j ∈ Ni} correlate with wout
i , while those

in {vπj (s;win
j ,φ)|j ∈ V\Ni} do not. After taking this uncorrelated set into account, we have an

equivalent optimization of QφV(s,w;π), i.e., the global objective. Therefore, each decentralized
high-level policy shares the same optimization objective as the global one, and we can factorize Jφ
into {Jφi

|i ∈ V}.

This proposition gives a factorization which is different from existing studies. First, our factorization
differs from π(a|s) = ΠN

i=1π(ai|s) (Zhang et al., 2018), since each agent needs to make decisions
considering other agents’ plan. Also in contrast to Qu et al. (2020a), they parameterize intention
propagation by GNN and other neural networks to factorize the joint policy thoroughly, while we
accept incomplete factorization and group indecomposable cliques by each agent to form high-level
policies that are also decentralized and independent of each other.

B Algorithm

We describe LToS as Algorithm 1.

C Discussions on Training LToS

As a hierarchically decentralized MARL framework, LToS brings some challenges for training.

Selfishness Initializer. On the basis of a straightforward idea that one should generally focus more
on its own reward than that of others when optimizing its own policy, the initial output of each
high-level policy network is supposed to be higher on the sharing weight of its own than others. We
choose to predetermine the initial selfishness to learn the high-level policy effectively. However, with
normal initializers, the output of the high-level policy network will be evenly distributed initially.
Therefore, we use a special selfishness initializer for each high-level policy network instead. As we
use the softmax to produce the weights, which guarantees the constraint:

∑
j∈Ni

wij = 1,∀i ∈ V ,
we specially set the bias of the last fully-connected layer so that each decentralized high-level policy
network tends to keep for itself the same reward proportion as the given selfishness initially. The rest
of reward is still evenly distributed among neighbors. LToS learns started from such initial weights,
while fixed LToS uses such weights throughout each experiment. Moreover, we use grid search to
find the best selfishness for fixed LToS in traffic and jungle. For prisoner we deliberately set the
selfishness to 0.5 so that fixed LToS directly optimizes the average return.
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Algorithm 1 LToS

1: Initialize φi parameterized by θi and πi parameterized by µi for each agent i (φi is learned by
DDPG and πi is learned by DGN, and they share the Q-network)

2: for t = 0 to T do
3: for each agent i do
4: exchange observations and get oi
5: wout

i ← φi(oi) with exploration
6: exchange wout

i and get win
i

7: ai ← πi(oi;w
in
i ) with exploration

8: execute ai, obtain ri, and transition to o′i = oi,t+1

9: exchange ri and get rwi
10: store (oi, w

in
i , ai, r

w
i , o

′
i,Ni) in Bi

11: end for
12: if t mod update_frequency = 0 then
13: for each agent i do
14: sample a minibatch from replay buffer Bi: D = {(oi, win

i , ai, r
w
i , o

′
i,Ni)}

15: exchange wout′
i ← φ′i(o

′
i) and get win′

i

16: set yi ← rwi + γq
π′i
i (o′i, a

′
i;w

in′
i )|a′i=π′i(o′i;win′

i )

17: update µi by ∇µi
ED(yi − qπi

i (oi, ai;w
in
i ))2

18: exchange wout
i ← φi(oi) and get win

i

19: compute gin
i = ∇win

i
qπi
i (oi, arg maxai q

πi
i ;win

i )

20: exchange gin
i and get gradient gout

i for wout
i

21: update θi by 1
|D|

∑
oi∈D(∇θiφi(oi))Tgout

i

22: softly update target networkrs θ′i and µ′i
23: end for
24: end if
25: end for

Unified Pseudo Random Number Generator. LToS is learned in a decentralized manner. This
incurs some difficulty for experience replay. As each agent i needs win

i to update network weights for
both high-level and low-level policies, it should sample from its buffer a batch of experiences where
each sampled experience should be synchronized across the batches of all agents (i.e., the experiences
should be collected at a same timestep). To handle this, all agents can simply use a unified pseudo
random number generator and the same random seed.

Different Time Scales. As many hierarchical RL methods do, we can set the high-level policy to
running at a slower time scale than the low-level one. Proposition 1 still holds if we expand vπi for
more than one step forward. Assuming the high-level policy runs every M timesteps, we can fix
wout
i = wout,t+1 = · · · = wout,t+M−1. M is referred to as action interval in Table 5.

Infrequent Parameter Update with Small Learning Rate. Based on the continuity of w, a small
modification of φ means a slight modification of local reward functions, and will intuitively result in
an equally slight modification of the low-level value functions. This guarantees the low-level policies
are highly reusable.

Unordered Output. Essentially, the output of high-level policy network is unordered and has a
one-to-one match with each neighbor as input. The output of deep neural network, however, is
generally ordered and has trouble in varying with the input order. To settle this, we take advantage of
DGN which is insensitive of neighbor order as input. Besides, we modify the structure to make the
output keep consistency with the neighbor part of input in the relative order.

D Hyperparamaters

As three experimental scenarios are quite different, we may use different hyperparameters. Note
that we also tuned the hyparameters for the baselines with grid search. Table 4 summarizes the
hyperparameters of DQN, DGN that also serves as the low-level network of LToS, and IP. We choose
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the setting of original DGN in jungle while the setting of Wei et al. (2019) in traffic for consistency.
Table 5 summarizes the hyperparameters of the high-level network of LToS, which are different
from the low-level network. Table 6 summarizes the hyperparameters of NeurComm and ConseNet,
which adhere to the implementation (Chu et al., 2020). In addition, for tabular Coco-Q, the step-size
parameter is 0.5, and for IP, the regularizer factor is 0.2. We adopt soft update for both high-level
and low-level networks and use an Ornstein-Uhlenbeck Process (abbreviated as OU) for high-level
exploration.

Both fixed LToS and NeurComm exploit static reward shaping, but they adopt different reward shaping
schemes which are hard to compare directly. We consider a simple indicator: Self Neighbor Ratio
(SNR), the ratio of reward proportion that an agent chooses to keep for itself to that it obtains from a
single neighbor. As the rest reward is evenly shared with neighbors in LToS, for each agent i, we
have SNR = selfishness/1-selfishness × (|Ni| − 1) for LToS, and SNR = 1/α for NeurComm where α is
the spatial discount factor. We adjust the initial selfishness and α to set the SNR of both methods at
the same level for fair comparison.

Table 4: Hyperparameters for DQN, DGN (also serves as the low-level policy network of LToS), and
IP.

Hyperparamater Prisoner Jungle Traffic-6× 6 Traffic-Shenzhen

sample size 10 10 1,000 1,000
batch size 10 10 20 20

buffer capacity 200,000 200,000 10,000 10,000
εstart, εdecay, εend 0.8/1/0.8 0.6/0.996/0.01 0.4/0.9/0.05 0.4/0.9/0.05

initializer random normal random normal random normal random normal
optimizer Adam Adam RMSProp RMSProp

learning rate 1e-3 1e-4 1e-3 1e-3
γ 0.99 0.96 0.8 0.8

τ for soft update 0.1 0.01 0.1 0.1

# MLP units 32 & 32 512 & 128 32 & 32 32 & 32
MLP activation ReLU ReLU ReLU ReLU

# encoder MLP layers 2 2 2 2
# attention heads for DGN 4 4 1 1

Table 5: Hyperparameters for the high-level policy network of LToS

Hyperparamater Prisoner Jungle Traffic-6× 6 Traffic-Shenzhen

update frequency 1 step 100 episodes 20 episodes 50 episodes
action interval 1 step 1 step 15 steps 15 steps

sample size 2,000 5,000 1,000 1,000
batch size 32 32 20 20

noise for exploration ε + Gaussian OU OU OU
noise parameter ε = 0.8, σ = 1 σ = 0.025ε σ = 0.25ε σ = 0.25ε

initializer selfishness selfishness selfishness selfishness
initial selfishness 0.5 0.5 0.8 0.9

optimizer SGD SGD SGD SGD
learning rate 1e-1 1e-4 1e-3 1e-3

last MLP layer activation softmax softmax softmax softmax
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Table 6: Hyperparameters for NeurComm, ConseNet, LIO and QMIX

Hyperparamater Prisoner Jungle Traffic-6× 6 Traffic-Shenzhen

initializer orthogonal orthogonal orthogonal orthogonal
optimizer RMSProp RMSProp RMSProp RMSProp

learning rate 5e-3 5e-5 5e-4 5e-4

# MLP units 20 512 & 128 16 16
MLP activation ReLU ReLU ReLU ReLU
# cell state units 20 512 16 16

# hidden state units 20 512 16 16

RNN type for NeurComm and ConseNet LSTM LSTM LSTM LSTM
RNN type for QMIX GRU GRU GRU GRU

hypernetwork layer1 units for QMIX 2× 20 20× 512 36× 16 36× 16
hypernetwork layer2 units for QMIX 20 512 16 16

α for NeurComm 1 0.33 0.1 0.1

εstart, εdecay, εend for LIO 0.8/0.99/0.01 0.6/0.996/0.01 0.2/0.9/0.01 0.2/0.9/0.01
αθ for LIO 1 1e-4 1e-4 1e-4

Rmax for LIO 2 3 0.1 0.1
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