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A Appendix

In the supplementary material, we provide more experimental results and summary them as follows:

• In Sec. A.1, we utilize UMAP [4] to generate more visualization results for a comprehensive
analysis of the feature space learned by different models.

• In Sec. A.2, we provide a comprehensive training procedure of our proposed method.

• In Sec. A.3, we provide detailed ablation studies on the key components of our proposed
method w.r.t single-source, multi-source, and multi-target benchmarks.

• In Sec. A.4, we compare our proposed method with previous state-of-the-art methods by
qualitative results on the GTA5 → Cityscapes benchmark.

• In Sec. A.5, we provide a detailed comparison of the training efficiency with previous
state-of-the-art methods on the GTA5 → Cityscapes benchmark.

• In Sec. A.6, we further discuss the limitations and potential negative impacts of our proposed
method.

A.1 Visualization of Feature Space

To better understand the intuitions behind the proposed method, we utilize UMAP [4] to visualize
the target feature representations before the final classification layer on the GTA5 → Cityscapes
benchmark. As shown in Fig. 1, the feature representation of the model trained on the source
domain is not compact enough within each class, and the inter-class distance of each class pair is
also relatively small. While models trained on the coarse region-path (CRP) and fine class-path
(FCP) have comparable performance, their feature distributions are quite different. In FCP, due to
more attention paid to the object’s inherent properties, the feature representation within each class is
more compact than in CRP. However, the representations of ‘bus’ and ‘train’ in FCP are seriously
overlapping. The model trained on CRP tends to exploit the contextual information to discriminate
the confused classes, which drives to more separable representations of ‘bus’ and ‘train.’

As depicted in the bottom row of Fig. 1, the student models integrating knowledge from two
complementary teacher models not only have more compact feature representations than the teacher
model in FCP but also mitigate the overlapping issue of the confused ‘bus’ and ‘train’ classes.
Furthermore, the alternating optimization strategy can consistently further enhance such properties of
the student model.
∗Equal contribution.
†Correspoding author.
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(a) Source only (b) Coarse region-path (c) Fine class-path

(d) Student of stage1 (e) Student of stage2 (f) Student of stage3

Figure 1: UMAP [4] visualization of the feature space before the classification layer on GTA5→ Cityscapes.
For a clear analysis, we select two pairs of categories suffering class bias and confusion, respectively, i.e., salmon
for road, green for sidewalk, gray for bus, and purple for train.

A.2 Algorithm

The training procedure of our DDB is summarized in Algorithm 1, which is composed of multiple
rounds of alternating dual-path domain bridging (DPDB) and cross-path knowledge distillation
(CKD) steps. For detailed equations and loss functions, please refer to the main paper.

Algorithm 1: Training process of DDB

Input: training dataset: (Xs, Ys, Xt); batch data: (xs, ys, xt); teacher models: M1
C ,M

1
F and student

model: M1
S ; EMA teacher models: M ′rC ,M

′r
F ; EMA momentum: α; alternating rounds: R.

Output: final student model: MR
S .

1 for r ← 1 to R do
2 # Dual-path Domain Bridging
3 EMA models initialization: θM′r

C
← θMr

C
, θM′r

F
← θMr

F
;

4 for k ← 1 to max_iterations do
5 Get source images xs, target images xt;
6

7 Get CRP bridging images xcrp, labels ŷcrp by Eqn. 3
8 Get pseudo-label weight maps mcrp by Eqn. 6;
9 Optimize Mr

C by Eqn. 8;
10 Update EMA model: θk+1

M′r
C
← αθkM′r

C
+ (1− α) θkMC

;
11

12 Get FCP bridging images xfcp, labels ŷfcp by Eqn. 3
13 Get pseudo-label weight maps mfcp by Eqn. 6;
14 Optimize Mr

F by Eqn. 8;
15 Update EMA model: θk+1

M′r
F
← αθkM′r

F
+ (1− α) θkMF

;

16

17 # Cross-path Knowledge Distillation
18 Calculate the prototypes ηrC , η

r
F on Xt by Eqn. 10;

19 for k ← 1 to max_iterations do
20 Get source images xs;
21 Get clean and augmented target images xt, xaugt ;
22 Utilize prototypes to get adaptive weight maps wC , wF by Eqn. 11;
23 Get ensembled pseudo-label ȳt;
24 Optimize Mr

S by Eqn. 14;

25 if r 6= R then
26 Teacher models initialization for next round: θ

Mr+1
C
← θMr

S
, θ

Mr+1
F
← θMr

S
;
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Table 1: Ablation studies on the momentum of EMA in the
DPDB step (fine-class path) on the GTA5 (G)→ Cityscapes (C)
benchmark.

Momentum mIoU
0.9 58.3±0.4
0.99 58.5±0.3
0.999 58.4±0.3
0.9999 54.2±0.1

Table 2: Ablation studies on the augmentation strategy for
the input of the student model in the first CKD step on the
GTA5 (G)→ Cityscapes (C) benchmark.

Gaussian blur Color jitter mIoU
61.0±0.2

X 61.2±0.2
X X 61.5±0.3

A.3 Detailed Ablation Studies

Study on Baseline. As mentioned in Sec.3.2 of the main paper, we follow [5, 1] to construct a
simple self-training pipeline (pseudo labeling) to validate the effectiveness of various DB methods
in the DASS task and treat it as our baseline. As shown in Tab. 3, Tab. 4, and Tab. 5, the model
trained on baseline tends to give over confidences to some easily discriminated categories, resulting
in performance converging to 0 in other categories. Specifically, due to more labeled data in the
source domain, the model under the multi-source setting has a extremely over-confidence w.r.t the
easily discriminated categories, resulting in a performance decrease of 8.5 in mIoU.

Study on Dual-path Domain Bridging. As shown in Tab. 3, Tab. 4, and Tab. 5, the source-only and
baseline models all perform poorly on three benchmarks. Benefited from the proposed dual-path
domain bridging scheme, the adapted model on each path can obtain gains at least 24.4, 15.3, and
19.7 in mIoU separately. Although the CRP and FCP models achieve comparable performance, they
have pretty different behaviors in each class. For example, on the GTA5 → Cityscapes (single-source)
benchmark, the CRP model achieves 39.5 in the ‘train’ class while the FCP model only achieves 0.0.
This is because the CRP model tends to exploit contextual information to mitigate the class confusion
issue. Due to the lack of contextual information, the FCP model pays more attentions on the inherent
object properties, mitigating the class bias, such as ‘sidewalk’ and ‘terrain’ classes. Moreover, as
shown in Tab. 1, we further conducted ablation experiments on α, and found that α = 0.99 will lead
to better and more stable results.

Study on Cross-path Knowledge Distillation. As illustrated in Tab. 3 and Tab. 4, the hard distilla-
tion is more effective than the soft manner in the single-source and multi-source domain settings.
Especially in the multi-source setting (see Tab. 4), the hard distillation can improve model by 2.1 in
mIoU than the soft one. Furthermore, the proposed adaptive ensemble can consistently improve the
performance of both soft and hard distillation schemes in all three settings. By leveraging CKD that
equipped with the hard distillation and adaptive ensemble schemes, we can consistently obtain a more
superior student model than its teachers in all three benchmarks. Especially in the multi-target setting
(see Tab. 5), the student model gets gains of 3.6 and 4.4 in mIoU than the CRP and FCP teacher
models, separately. Moreover, we further conducted ablation experiments about the augmentation
strategies. As shown in Tab. 2, combining the Gaussian blur and color jitter augmentation techniques
leads to the best performance.

Influence of Alternating Optimization Strategy. As illustrated in Tab. 3, Tab. 4, and Tab. 5, after
integrating knowledge from two complementary teacher models, the student model performs better
than each teacher model. Once a superior student is obtained, we further conduct next DPDB step and
utilize the weights of the student model to initialize the teacher models in DPDB to obtain two more
powerful teachers. The student model performs best across all three domain settings in the second
round. However, the student model shows a slight performance degradation after the third round of
alternate training in the multi-source and multi-target domain settings. We analyse the degradation is
because the non-negligible domain conflict in these two settings.
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Table 3: Ablation studies on the key components of our proposed method on the GTA5→ Cityscapes benchmark.
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mIoU gain

baseline source only 60.4 15.1 58.3 8.7 21.3 20.9 33.2 22.4 77.7 8.6 71.3 55.8 13.2 77.0 22.8 22.1 0.4 14.1 6.1 32.1
pseudo labeling 92.5 52.6 80.7 6.7 3.1 0.0 0.8 0.6 82.7 36.2 86.1 53.1 0.0 82.7 21.9 41.9 0.0 0.8 0.0 33.8 +1.7

stage1
DPDB

region
path

class
path mIoU gain

X 92.2 51.5 86.6 39.4 36.4 28.1 49.1 41.1 84.4 29.1 86.1 70.8 43.4 90.0 53.6 55.6 39.5 41.0 56.6 56.5 +24.4
X 93.3 54.9 88.2 37.6 43.3 41.2 52.0 49.6 88.3 45.7 88.2 70.8 35.3 91.5 63.1 62.4 0.0 45.0 54.4 58.2 +26.1

stage1
CKD

hard
distillation

adaptive
ensemble mIoU gain

93.4 55.9 87.6 44.5 43.0 35.4 51.1 45.5 88.4 44.4 88.6 70.9 44.9 91.5 55.1 56.5 15.9 48.1 60.2 59.0 +26.9
X 94.1 59.9 88.1 44.2 43.9 36.8 52.9 47.8 88.3 45.3 88.7 70.9 42.9 91.6 66.0 63.2 3.5 49.9 60.4 59.9 +27.8

X 94.4 63.3 88.8 43.8 43.5 38.2 54.9 51.4 87.5 38.7 89.2 71.1 43.2 91.1 63.6 65.7 24.1 46.0 62.6 61.1 +29.0
X X 94.6 64.0 88.9 43.9 44.0 39.6 54.7 52.4 88.0 41.1 89.2 71.6 42.6 91.9 61.4 63.9 22.4 46.7 62.7 61.2 +29.1

stage2
DPDB

region
path

class
path mIoU gain

X 94.4 62.5 88.1 41.7 43.2 35.9 54.0 50.7 87.3 40.8 85.3 70.5 43.4 92.2 67.3 63.9 33.4 49.1 63.3 61.4 +29.3
X 94.8 65.0 88.9 36.6 46.0 39.3 52.9 54.0 88.5 46.7 88.2 71.1 41.8 92.4 73.5 68.8 29.5 50.1 62.4 62.6 +30.5

stage2
CKD

hard
distillation

adaptive
ensemble mIoU gain

X X 95.3 67.4 89.3 44.4 45.7 38.7 54.7 55.7 88.1 40.7 90.7 70.7 43.1 92.2 60.8 67.6 34.5 48.7 63.7 62.7 +30.6

stage3
DPDB

region
path

class
path mIoU gain

X 94.9 65.8 88.1 36.4 44.5 35.5 53.9 54.3 87.1 36.0 88.5 70.8 42.4 92.0 61.6 67.3 38.8 48.6 63.6 61.6 +29.5
X 95.1 66.2 88.9 39.2 46.4 39.7 53.9 54.4 88.3 42.2 90.0 71.0 42.4 91.8 63.1 69.8 35.7 50.2 63.7 62.7 +30.6

stage3
CKD

hard
distillation

adaptive
ensemble mIoU gain

X X 95.1 67.2 88.9 39.2 44.8 38.2 54.6 54.7 87.6 37.5 91.2 71.2 44.0 91.8 62.7 70.0 40.1 48.8 63.8 62.7 +30.6

Table 4: Ablation studies on the key components of our proposed method on the GTA5 + Synscapes→ Cityscapes
benchmark.
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mIoU gain

baseline source only 82.5 42.4 79.0 27.2 31.7 40.8 53.0 45.6 85.3 30.9 80.9 68.7 35.7 78.3 39.0 42.7 9.6 37.3 55.9 50.9
pseudo labeling 94.5 65.8 81.1 19.7 0.5 0.1 42.1 31.6 82.7 34.3 87.8 53.0 0.2 82.3 4.7 47.5 2.4 20.9 54.4 42.4 -8.5

stage1
DPDB

region
path

class
path mIoU gain

X 96.0 70.0 88.3 45.5 46.7 44.0 60.1 62.4 88.3 43.6 91.8 74.0 51.6 90.8 57.1 73.2 57.1 56.0 69.9 66.7 +15.8
X 96.4 72.8 89.0 48.1 47.0 46.5 57.8 64.8 88.8 49.2 92.4 72.9 49.5 92.3 65.6 70.2 31.3 54.3 69.1 66.2 +15.3

stage1
CKD

hard
distillation

adaptive
ensemble mIoU gain

95.2 67.5 89.0 47.5 49.8 43.3 58.6 63.1 88.2 40.0 92.8 72.8 50.3 91.7 61.5 65.6 22.2 55.7 69.9 64.5 +13.6
X 95.4 66.9 89.9 54.2 52.5 47.0 61.1 64.6 89.6 50.5 93.2 75.2 52.0 92.6 67.2 69.8 17.6 55.8 70.3 66.6 +15.7

X 94.9 69.1 88.5 49.6 47.6 41.9 57.9 62.9 89.2 46.7 93.1 72.9 49.3 91.3 55.8 68.5 32.8 50.2 69.4 64.8 +13.9
X X 96.7 74.9 90.1 55.0 51.2 47.6 60.6 66.0 89.7 49.4 93.3 74.4 52.3 92.4 62.8 73.9 47.2 55.7 71.0 68.6 +17.7

stage2
DPDB

region
path

class
path mIoU gain

X 96.6 73.2 89.4 49.7 49.9 46.6 61.5 64.8 89.5 45.9 92.4 74.8 52.9 92.6 62.9 77.2 61.9 57.5 71.7 69.0 +18.1
X 96.9 75.5 89.6 48.7 50.6 47.2 61.0 66.0 89.4 50.3 92.6 74.2 52.3 92.4 65.7 74.3 49.1 59.0 71.0 68.7 +17.8

stage2
CKD

hard
distillation

adaptive
ensemble mIoU gain

X X 96.9 75.6 90.0 54.4 48.6 47.6 61.1 66.3 89.7 48.4 93.4 74.4 52.7 92.3 60.8 74.7 58.9 53.9 71.4 69.0 +18.1

stage3
DPDB

region
path

class
path mIoU gain

X 96.7 73.2 89.4 48.2 49.3 46.6 61.6 65.4 89.3 42.7 92.4 74.3 52.7 92.5 64.5 75.2 62.6 56.2 71.4 68.6 +17.7
X 97.0 75.1 89.4 50.6 49.4 46.9 61.1 66.3 89.1 45.4 92.8 73.5 52.1 92.1 64.4 75.8 58.1 58.1 70.5 68.8 +17.9

stage3
CKD

hard
distillation

adaptive
ensemble mIoU gain

X X 96.9 75.2 89.8 54.4 48.8 47.0 60.6 65.7 89.4 46.1 93.2 74.0 52.3 92.4 61.5 75.4 59.6 53.1 71.3 68.8 +17.9
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Table 5: Ablation studies on the key components of our proposed method on the GTA5→ Cityscapes + Mapillary
benchmark. C denotes the Cityscapes dataset, and M denotes the Mapillary dataset.
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mIoU avg. gain

baseline
source only C 53.3 15.2 56.6 8.2 26.2 21.2 30.7 22.2 76.3 9.3 53.3 55.3 15.5 72.9 21.5 4.9 0.9 20.2 7.4 30.1 32.8M 55.7 27.1 55.3 9.9 20.6 22.7 33.3 31.6 68.4 21.1 70.6 53.5 30.9 72.7 32.3 11.6 5.6 36.3 14.9 35.5

pseudo labeling C 87.0 21.2 78.6 15.7 0.0 1.4 13.4 1.9 84.4 35.2 83.7 50.0 0.0 85.1 30.9 36.5 0.0 0.4 0.0 32.9 33.1 +0.3M 80.4 29.9 71.4 12.3 3.1 2.2 19.4 3.1 79.0 40.3 95.4 46.4 0.6 78.3 38.2 24.6 0.0 7.3 0.0 33.3

stage1
DPDB

region
path

class
path target mIoU avg. gain

X
C 93.3 58.3 86.3 33.2 36.4 31.3 49.5 45.3 87.7 44.8 88.8 69.1 39.8 88.1 43.7 49.6 18.3 35.0 50.0 55.2 53.3 +20.5M 73.9 54.5 79.0 27.6 32.2 30.5 45.8 43.8 71.4 38.0 78.9 61.5 45.6 84.6 52.7 52.2 21.5 48.1 35.9 51.5

X
C 61.7 47.5 87.4 29.9 37.4 35.7 51.4 53.8 88.0 47.1 89.8 67.2 31.1 36.2 59.6 54.0 8.6 33.4 46.0 50.8 52.5 +19.7M 86.0 53.3 81.7 28.8 36.1 31.5 46.9 48.4 71.8 45.3 90.7 62.9 50.1 85.3 57.2 54.9 16.9 47.9 32.8 54.1

stage1
CKD

hard
distillation

adaptive
ensemble target mIoU avg. gain

C 89.3 52.4 87.8 38.0 40.2 33.4 53.2 51.5 88.5 48.7 90.3 69.1 39.7 83.7 57.3 53.4 2.9 39.5 51.1 56.3 55.9 +23.1M 86.8 56.5 81.6 32.6 37.3 31.6 47.1 46.9 75.2 44.3 91.8 63.5 49.6 86.8 58.1 55.9 19.0 52.7 35.3 55.4

X
C 88.8 52.8 87.8 47.8 40.2 34.3 51.3 50.3 88.8 48.2 90.2 68.8 38.4 80.4 57.4 55.5 0.1 38.9 53.8 56.5 55.8 +23.0M 87.1 56.3 82.0 33.4 36.8 31.2 46.6 47.2 74.4 43.9 91.9 62.4 49.8 86.5 58.4 52.8 10.8 50.4 42.1 55.0

X
C 87.6 58.3 88.4 42.3 42.7 35.2 53.5 55.7 88.6 46.7 91.2 68.7 41.1 71.1 50.1 58.3 8.8 38.2 54.8 56.9 56.8 +24.0M 87.6 57.6 82.0 33.1 37.4 33.8 47.8 49.8 73.0 40.7 91.9 63.2 51.1 85.7 57.1 60.1 29.1 52.3 44.7 56.7

X X
C 89.6 58.7 88.3 40.1 44.7 34.8 53.9 54.4 88.8 47.2 90.9 69.4 41.1 77.2 51.9 57.3 6.4 34.9 55.0 57.1 56.9 +24.1M 88.3 57.8 81.8 33.8 37.8 33.2 47.8 48.4 73.7 41.9 91.9 63.2 49.9 86.3 59.2 61.3 27.2 51.7 40.4 56.6

stage2
DPDB

region
path

class
path target mIoU avg. gain

X
C 93.9 65.5 87.1 31.5 43.1 30.8 53.2 53.9 88.4 49.1 89.8 69.6 42.0 91.3 60.0 56.9 12.9 42.2 59.3 59.0 57.7 +24.9M 85.2 60.4 81.5 32.0 36.7 32.3 47.5 48.8 71.0 38.6 89.9 63.7 51.5 86.4 62.9 63.3 27.8 52.4 40.2 56.4

X
C 93.2 67.2 88.6 41.5 45.4 32.5 53.0 57.3 89.0 49.0 90.8 68.7 40.4 82.5 63.9 57.5 0.8 41.7 58.5 59.0 57.9 +25.1M 89.7 58.6 82.3 34.7 36.9 32.7 47.8 49.9 70.3 38.2 91.0 63.6 52.3 86.3 64.2 65.7 20.0 53.6 51.3 56.8

stage2
CKD

hard
distillation

adaptive
ensemble target mIoU avg. gain

X X
C 93.5 67.8 88.3 38.4 45.6 32.3 54.2 57.9 89.2 48.6 91.6 69.1 43.2 84.6 63.6 61.8 15.1 44.1 58.6 60.4 58.6 +25.8M 89.3 60.8 81.4 35.9 38.4 32.9 48.5 50.5 69.9 37.9 90.1 62.6 49.6 86.0 62.7 62.9 26.1 52.0 42.8 56.9

stage3
DPDB

region
path

class
path target mIoU avg. gain

X
C 93.0 63.0 86.9 28.5 44.9 28.1 53.9 53.2 88.8 50.0 90.7 67.4 41.4 90.7 66.0 61.0 18.2 41.6 43.9 58.5 57.6 +24.8M 88.6 62.5 81.8 34.2 36.7 31.8 48.2 48.7 68.7 34.1 90.5 64.0 51.1 86.3 63.3 59.2 29.6 53.6 43.2 56.6

X
C 92.7 64.0 88.1 27.7 46.2 31.8 54.4 58.7 88.9 50.3 91.2 68.5 40.9 86.3 68.9 59.9 0.6 43.9 49.3 58.5 57.6 +24.8M 90.4 62.6 82.4 34.7 36.4 32.5 48.2 50.3 67.4 35.7 90.5 63.6 51.9 85.7 64.7 56.1 22.9 54.7 44.3 56.6

stage3
CKD

hard
distillation

adaptive
ensemble target mIoU avg. gain

X X
C 92.6 63.4 87.6 39.2 45.1 29.1 54.5 57.7 88.9 49.5 91.6 67.6 43.3 86.8 58.0 64.5 26..3 44.8 40.7 59.5 58.2 +25.4M 90.1 61.8 81.9 37.1 36.6 32.3 48.7 50.3 67.8 35.6 90.8 63.4 50.6 86.0 61.9 58.8 26.2 53.9 45.2 56.8
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A.4 Comparison of Qualitative Results

Image Source Only ProDA(21) [6] CPSL(22) [2] DDB (Ours) Ground Truth

road sidewalk building wall fence pole light sign vege. n/a.
terrain sky person rider car truck bus train motor bike

Figure 2: Qualitative comparisons of recent state-of-the-art methods on GTA5 → Cityscapes.

A.5 Comparison of Training Efficiency

As illustrated in Tab. 6, our method achieved better performance after one round of training with
smaller input size, fewer GPUs, fewer iterations, and fewer post-processing steps than other SOTA
methods. Furthermore, our method could still achieve gains of 1.5 mIoU with one more training
round, while still being more efficient than other SOTA methods.

Table 6: Comparison of the training efficiency on the GTA5 → Cityscapes benchmark.

Method Input size Total GPUs Total iterations Pseudo-label generation Prototype generation mIoU
ProDA+distill [6] (896,512) 4 238K X X 57.5
UndoDA+distill [3] (896,512) 4 238K X X 59.3
CPSL+distill [2] (896,512) 4 238K X X 60.8
DDB-round1 (512,512) 1 80K × X 61.2
DDB-round2 (512,512) 1 160K × X 62.7

A.6 Limitations

Although our proposed approach achieves impressive performance on the single-source, multi-source,
and multi-target domain settings, it still requires multiple training rounds to conduct alternating
optimization processes of the proposed dual-path domain bridging and cross-path knowledge dis-
tillation steps. We will explore an end-to-end optimization approach in future work. Moreover, the
proposed method might be used in undesirable applications like surveillance or military UAVs for the
purpose of domain adaptive semantic segmentation. Legal limitations on the applications of semantic
segmentation algorithms could be a potential defense.
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