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Abstract

Discriminator plays a vital role in training generative adversarial networks (GANs)
via distinguishing real and synthesized samples. While the real data distribution
remains the same, the synthesis distribution keeps varying because of the evolving
generator, and thus effects a corresponding change to the bi-classification task for
the discriminator. We argue that a discriminator with an on-the-fly adjustment on
its capacity can better accommodate such a time-varying task. A comprehensive
empirical study confirms that the proposed training strategy, termed as DynamicD,
improves the synthesis performance without incurring any additional computation
cost or training objectives. Two capacity adjusting schemes are developed for
training GANs under different data regimes: i) given a sufficient amount of training
data, the discriminator benefits from a progressively increased learning capacity,
and ii) when the training data is limited, gradually decreasing the layer width
mitigates the over-fitting issue of the discriminator. Experiments on both 2D and
3D-aware image synthesis tasks conducted on a range of datasets substantiate the
generalizability of our DynamicD as well as its substantial improvement over the
baselines. Furthermore, DynamicD is synergistic to other discriminator-improving
approaches (including data augmentation, regularizers, and pre-training), and
brings continuous performance gain when combined for learning GANs.1

1 Introduction

Generative adversarial network (GAN) [16], which consists of a generator and a discriminator,
significantly advances image generation. In general, these two components compete against each
other during training. The generator aims to emulate the observed data distribution through producing
as realistic images as possible, and the discriminator learns to differentiate fake samples from real
ones and guides the generator towards better synthesis. Despite the great effort of improving GANs
from the generator side [40, 60, 29, 31, 32, 5], it is relatively less explored on the important role of
the discriminator in this two-player game. In fact, discriminator is the one that accesses the training
data, examines how close the real and synthesis distributions are, and derives loss functions to train
both itself and the generator. Therefore, learning an apt discriminator is also essential for GANs.

The discriminator in a GAN is typically learned with a bi-classification task. It aims to categorize
images into two folds depending on whether they come from the training set or are synthesized by the
generator. Existing studies on image classification [19, 20] have pointed out, it is critical to align the
model capacity to the task difficulty, otherwise the issue of either under-fitting or over-fitting occurs.
For instance, ResNet-50 [19] performs worse than ResNet-101 on ImageNet classification [11]
because it is not capable enough to handle the data variations. Nevertheless, ResNet-152 outperforms
ResNet-200 on the same task, where the latter model has too many parameters and thus over-fits the
training set [20]. From this perspective, the capacity of a GAN discriminator as the classifier should
be also aligned with the aforementioned bi-classification task.

† denotes equal contribution.
1Code and models are available at https://genforce.github.io/dynamicd.
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Figure 1: Illustration of the time-varying bi-classification task for the discriminator under the
training settings of (a) sufficient data and (b) limited data. Though the real data distribution is fixed,
the synthesis distribution keeps varying during training due to the evolving generator. Samples with
the same latent code produced from the generator at different training stages show the synthesis
distribution shift. FID under different training epoch, which measures the similarity between real and
fake distributions, indicates the varying difficulty of the bi-classification task.

Different from the common image classification tasks where the training data remains fixed during
the whole training process, GAN training appears to be time-varying since the synthesis quality of the
generator is constantly evolving, as suggested in Fig. 1. That way, although the real data distribution
keeps the same, the varying synthesis distribution still results in the change of the bi-classification
task for the discriminator. It naturally raises a question: does a discriminator with a fixed capacity
meet the demand of such a dynamic training environment?

To answer this question, we conduct a comprehensive empirical study by training GANs with a
dynamic discriminator (DynamicD), where an on-the-fly adjustment is enforced on its model capacity
during training. We first investigate a plain form where the layer width of the discriminator is
linearly adjusted. Under such a setting, the generator supervised by our DynamicD achieves far better
synthesis performance than its counterpart learned with a fixed discriminator, which is with either
the starting capacity or the ending capacity.2 It is noteworthy that our proposed training strategy is
highly efficient as it relies on neither additional computing cost nor extra loss functions. Inspired
by this, we come up with two capacity adjusting schemes and confirm that different training data
regimes have different favored schemes. On one hand, with a sufficient amount of training data in
Fig. 1a, the discrimination task becomes increasingly challenging when the generator gets more
capable. In this case, the discriminator benefits from a enlarged capacity to match the generator. On
the other hand, with limited training data in Fig. 1b, the longer the model is being trained, the closer
the discriminator is to memorizing the entire dataset [30]. As a result, a scheme to gradually decrease
the model capacity assists the discriminator against over-fitting.

We evaluate our method on both tasks of 2D image synthesis and 3D-aware image synthesis. On
a wide range of datasets including human faces [29], animal faces [10], scenes [58], and synthetic
cars [12], DynamicD exhibits consistent improvements over the baselines. Furthermore, we show
that DynamicD is synergistic to existing approaches that improve GAN discriminator, including data
augmentation [30], training regularizers [61], and pre-training [41]. It brings extra performance gain
when combined and opens a new dimension in improving GAN training.

2 Related Work

Generative adversarial networks. Recent efforts on architectural improvements [45, 28, 5, 29,
31, 32, 36, 2, 26, 13] and training methods [3, 18, 40, 39] provide the appealing synthesis result,
even 3D controllability [48, 43, 8, 17, 56]. Based on these, various techniques are proposed to
manipulate semantics [15, 49] and edit real images [1, 65, 46]. In addition, GANs can also improve
various discriminative tasks in turn [23, 55, 7, 44]. In this work, we aim at exploring the dynamic
capacity of discriminator at one fundamental view. Some related work is the progressive growing
training [28, 37] which adjust the generator and discriminator accordingly from low-resolution to
high-resolution. Differently, we do not modify the generator and only focus on studying the capacity
of the discriminator.

2Experimental setup and detailed analysis can be found in Sec. 4.2 and Tab. 1.

2



Increasing Capacity Decreasing Capacity

Figure 2: Two schemes for on-the-fly capacity adjustment in DynamicD. Left: We gradually
increase the network width via including newly initialized filters. Right: We progressively decrease
the network width by randomly dropping a subset of filters. “Random” means that, even under the
same capacity, the discriminator may use different filers at different training steps.

Improving discriminator in GANs. Many attempts have been made in improving discriminator
from various perspectives. Some literature [64, 53, 62, 30, 25] explore how data augmentation can
help alleviate the ovefitting of discriminator, which works perfectly under low-data regime. However,
the improvement becomes limited even negative given sufficient training data. Meanwhile, prior work
also take efforts to either incorporate kinds of regularization [61, 63, 39] or introduce various extra
tasks [9, 52, 24, 27, 59, 57, 54] for discriminator. Although a discriminator could be indeed enhanced
to some extent, extra computations are unavoidable. Recently, researchers start to make the best of the
pre-trained models on large-scale data collection (e.g., ImageNet [11]) as a frozen feature extractor
of discrimintor. Sauer et al. [47] proposed that pre-trained feature space with projection could
significantly improve convergence speed. Meanwhile, Kumari et al. [34] improved GAN training
by ensembling multiple off-the-shelf models. Nevertheless, the most recent work [35] suggests that
using ImageNet pre-trained models might make the metrics unreliable in practice. Different from
prior work, we focus on adjusting capacity of discriminator on-the-fly, to align with the time varying
bi-classification task. Such that, synthesis under different data regimes could be further improved
without extra computation cost. We also show that the proposed method is synergistic to these
existing discriminator-improving techniques and brings consistent performance gain when combined.

Model augmentation. Different from data augmentation methods which directly operate on data,
model augmentation methods augment neural representation directly. One representative example is
Dropout [50] which randomly eliminates the units of a neural network to alleviate the over-fitting
issue. A variety of dropout operations are proposed for better regularizations and performances, like
SpatialDropout [51], DropBlock [14] and StochasticDepth [22]. Recently, Cai et al. [6] introduced
network augmentation into training to improve tiny neural networks. Meanwhile, Liu et al. [38]
demonstrated that model augmentation could work well with contrastive learning. The literature
of model augmentation mostly focuses on improving discriminative models. Mordido et al. [42]
proposed to involve multiple discriminators and then selected a subset of discriminators to train
the generator. Differently, our approach focuses on one discriminator and investigates the effect of
varying capacity from both decreasing and increasing perspectives.

3 Methodology

In the two-player competition of GANs, a discriminator aims at distinguishing real and synthesized
images to accomplish bi-classification task. However, the synthesized data distribution varies with the
evolving generator, thus the bi-classification task has a significant distribution shift issue. To tackle
this, we propose to adjust the capacity of discriminator on-the-fly (called DynamicD) to match such a
dynamically varying bi-classification task. With such a dynamic discriminator, the image synthesis
quality under different data regimes could be further improved. In Sec. 3.1, we will briefly introduce
the background of GAN training. Sec. 3.2 presents two schemes to dynamically adjust the capacity
of discriminator, followed by a practical implementation under different data regimes in Sec. 3.3.

3.1 Preliminary

Generative Adversarial Network (GAN) [16] regards image synthesis as a two-player competition
between a generator and a discriminator. Given a collection of observed data {xi}Ki=1 with K samples,
the generator G(·) learns to map a randomly sampled latent code z which is usually subject to a
pre-defined distribution Z (e.g., normal distribution) to a realistic image. Meanwhile, a discriminator
D(·) aims at distinguishing the observed image x sampled from observed data distribution X from the
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synthesized G(z) as a bi-classification task. These two models are optimized jointly in an adversarial
manner:

LG = −Ez∈Z [log(D(G(z)))], (1)
LD = −Ex∈X [log(D(x))]− Ez∈Z [log(1−D(G(z)))]. (2)

Eventually, the generator could synthesize realistic images enough to confuse the discriminator. Since
discriminator is the only one that could see the observed data, and measure how similar the observed
and synthesized distributions are, it is essential to investigate the effect of capacity on the GAN
training.

3.2 Dynamic discriminator

During the two-player competition, the synthesized data distribution keeps varying due to the evolving
generator. It also makes the bi-classification task change accordingly. Therefore, the capacity of
discriminator required by the varying bi-classification task might be also different as training goes by.
Different from previous work that always uses a discriminator with fixed capacity, we propose to
adjust the capacity of the discriminator dynamically, termed as DynamicD. Meanwhile, considering
the synthesis under different data regimes might needs different dynamic capacities of discriminator,
we propose two adjustment schemes for increasing and decreasing capacity respectively.

Increasing capacity. If the bi-classification task becomes challenging while we have a weak
discriminator, under-fitting would occur, such that a generator with the relatively low synthesis quality
could easily fool the discriminator. We thus progressively increase the capacity of discriminator by
including newly initialized neural filters every several iterations. That is, assuming one layer WM

N
containing M neural filters with dimension N , increasing strategy aims at introducing αM extra
filters where α denotes an extending coefficient.

Taking a convolution layer with a kernel of M × N × 3 × 3 as an example, we would leverage
another αM kernels with spatial size 3× 3. Such that, combining the original kernel with the newly
introduced ones, we could easily enlarge the feature from N to M + αM representation space, as
shown on the left of Fig. 2. In particular, such modification on a certain layer would enlarge the
dimension of the output features, making it mismatch the following operations. Accordingly, we also
extend the original kernel from N to N + αN along the dimension, such that the original kernel size
becomes (M + αM) × (N + αN) × 3 × 3. Notably, the first layer of the entire network always
takes 3 dimension as input (i.e., RGB). Once the newly initialized filters are incorporated into the
original network, all parameters are updated by the back-propagation. As training goes by, α linearly
goes up every n iterations i.e., the capacity of all layers in discriminator grows up simultaneously
(n = 1 in practice). In practice, we start with the half capacity of a standard discriminator and ensure
the ending capacity is identical to the original one for a fair comparison.

Decreasing capacity. If the bi-classification task is relatively simple, a normal discriminator could
also over-fit, which appears to memorize the training set. The synthesis quality would be thus
deteriorated significantly. To mitigate this, we randomly eliminate a set of filters thus the layer
width gradually shrinks, as shown on the right of Fig. 2. We explicitly control the capacity through a
shrinking coefficient β. Concretely, given a certain β, we would always randomly sample a sub-kernel
with βM ×βN × 3× 3 from the aforementioned convolution layer during a certain training iteration.
Different from increasing capacity, we empirically find decreasing all layers makes training unstable,
especially when adjusting the lower level layers which typically contain fewer kernels. Therefore, we
apply such decreasing scheme after multiple layers. Such decreasing scheme differs from the standard
Dropout [42] since our method forms a “weight-level” dropout which are shared by all instances
within a training batch while Dropout is more like a per-instance regularizer at “feature-level”.

During training, β also linearly goes down, leading to a discriminator with decreasing capacity. It is
noteworthy that such strategy not only shrinks the network width but also to some extent introduces
multiple discriminators via randomly sampling. The analysis in Supplementary Material demonstrates
that representations derived from various discriminators could complement each other, preventing
severely memorizing a certain pattern i.e., alleviating the over-fitting issues substantially.
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3.3 Two schemes for different data regimes

Prior work suggests that limited training data leads to the over-fitting of discriminator while the
enhanced discriminator could also benefit from the sufficient training samples. With two basic
dynamic strategies, we thus consider the bi-classification tasks under different data regimes.

Sufficient data. Intuitively, distinguishing the observed data from the early synthesis which is likely
to be a noise is obviously much easier than the realistic synthesis at the end of training. The later stage
of training thus requires a larger discriminator. We thus take the strategy of increasing capacity on
sufficient data. In particular, we find starting with a relatively smaller network (e.g., from one subset
of the original to the entire original network) works well. That is, the extending coefficient α could
vary from −0.5 to 0.0. Such that, the largest network at the end of training is identical to the original
one, i.e., no extra computation is incurred in our DynamicD, compared to the baseline approach.
Sec. 4.2 demonstrates that applying decreasing capacity on sufficient data makes no improvements.

Limited data. Since over-fitting always appears in the later stage of the training, we adopt the
decreasing capacity for limited data. To be specific, the shrinking coefficient β could start at 1.0 and
then gradually goes down to 0.5. Considering the aforementioned unstable issue caused by decreasing
capacity for all layers, we exclude low-level layers that typically contains fewer dimensions for the
decreasing strategy. More analysis is available in Supplementary Material. Additionally, Sec. 4.2
suggests that applying increasing capacity on limited data could further exacerbate over-fitting.

Training efficiency. Regardless of the data regimes and adjusting strategy, the proposed DynamicD
always requires less computational overhead since the largest one (i.e., networks at the beginning and
the end of training for decreasing and increasing respectively) is identical to the original. Therefore,
DynamicD could substantially improve the training efficiency and synthesis quality. Additionally,
DynamicD is agnostic to neural architecture and can be easily incorporated in other GAN training.

4 Experiments

We evaluate the proposed DynamicD on various synthesis tasks, across multiple datasets and under
various data regimes. The experimental details are first introduced in Sec. 4.1. Sec. 4.2 contains
an empirical study of two strategies under different data regimes. Sec. 4.3 reports the comparisons
against prior approaches on FFHQ [29]. Lastly, the experimental results in Sec. 4.4 substantiate the
generalization across multiple datasets and the synergy between DynamicD and prior techniques.

4.1 Setup

Datasets. In this work, several benchmarks are included to evaluate the proposed DynamicD from
various perspectives. For instance, on FFHQ [29] which includes 70,000 high-resolution face images,
we conduct the empirical study and comparison against prior approaches. In order to study the effect
of different data regimes, we also follow ADA [30] to randomly sample a subset to set up a limited
setting and double the entire dataset via horizontal flip for sufficient data, with all the images well
aligned and cropped [33]. In addition, AFHQ-v2 [10] is also used to evaluate our DynamicD under
low-data regime. To be specific, AFHQ-v2 [10] consists of around 5,000 images for dogs, cats and
wild life respectively. Moreover, we conduct experiments on three sufficient scene collections i.e.,
LSUN [58] outdoor church, bridge and bedroom which contains 126K, 818K, and 3M unique images
respectively. Notably, we resize the images in FFHQ [29] and LSUN [58] to 256 × 256 and the
images in AFHQ-v2 [10] to 512× 512. Besides, we also conduct 3D-aware image synthesis on a
synthetic car dataset Carla [12] containing 10,000 images rendered from 16 different car models.

Evaluation metrics. Akin to prior approaches, Fréchet Inception Distance (FID) [21] serves as the
quantitative metric, which could reflect the human perception to some extent. Notably, in this paper,
FID is usually calculated between 50,000 synthesized images and the entire training set regardless
of data regimes. In particular, akin to [31], we calculate FID on 50,000 real images for LSUN [58]
bridge and bedroom. The official pre-trained Inception works as the feature extractor.

Baselines. StyleGAN2 [31] without adaptive discriminator augmentation (ADA) [30] serves as
our main baseline for 2D image synthesis. We additionally conduct 3D-aware image synthesis
experiments using StyleNeRF [17]. All training settings strictly follow the prior arts to ensure the fair
comparison.
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Table 1: Empirical study on training GANs with a capacity-varying discriminator. All experiments
are conducted on FFHQ [29] under 256 resolution, and the first row reports the number of samples
used for training. We choose StyleGAN2 [31] as the baseline model, while “baseline-half” means the
discriminator employs a half-width structure compared to the original, i.e., “baseline-full”. FID [21]
(lower is better) is used to evaluate the synthesis performance. We can tell that, with a proper varying
strategy, a dynamic discriminator substantially improves the generator capability.

0.1K 2K 140K

Fixed Capacity

baseline-full 179.21 78.82 3.75
baseline-half 137.31 63.36 4.73

Varying Capacity

baseline-half → baseline-full 181.03 63.16 3.53
baseline-full → baseline-half 50.37 23.47 3.74

4.2 Empirical studies

We conduct an empirical study of two proposed dynamic strategies under various data regimes
introduced in Sec. 3.3. Since previous literature [64, 53, 62, 30, 25, 57, 34] usually explore the effect
of data scale on FFHQ [29], we set up different data regimes of FFHQ [29] for a better comparison.
To be specific, we randomly sample 0.1K and 2K images for the limited setting and augment the
entire dataset via horizontal flip to build a sufficient collection with 140K images. With such a
benchmark, we compare the dynamic strategies against two baselines. The original discriminator
works as the baseline with full capacity (baseline-full) while we also directly reduce the capacity
by half as a reference (baseline-half). That is, there is no dynamic adjustment of the capacity but
the decreased one throughout the entire training. We implement our DynamicD with two strategies.
In terms of increasing strategy, the extending coefficient α varies from −0.5 to 0.0 such that the
discriminator could be changed from the half to the full capacity. Meanwhile, we also decrease the
capacity in turn via the shrinking coefficient β. Notably, all experiments make no modifications on
the generator side. Tab. 1 presents the comparison of these methods.

Varying capacity required for different data regimes. Given a sufficient training collection with
140K images, a half of discriminator would lead to the poor synthesis quality, compared to the
original one (4.73 v.s 3.75). On the contrary, a smaller network could improve the FID under low-data
regimes, from 179.21 to 137.31, 78.82 to 63.36 with 0.1K and 2K samples respectively. These
results also match the finding [30, 41] that reducing learnable parameters is of benefit to the limited
data synthesis. It also supports the adoption of different dynamic strategies since the needed capacity
varies under different data regimes.

On-the-fly adjustment outperforming offline adjustment. Experiments are first conducted by
applying two strategies under various data regimes. According to the numbers in Tab. 1, we
find that dynamically decreasing the capacity of discriminator could substantially improve the
synthesis quality under low-data regimes, outperforming the fixed discriminator (even the smaller
one) by a clear margin: 179.21 v.s 50.37 on 0.1K, 78.82 v.s 23.47 on 2K. In addition, increasing
strategy from a subnet to the full network could also enhance the sufficient data generation. That
is, compared to the baseline-full, our increasing strategy could achieve better FID (3.75 v.s 3.53)
with less computational complexity throughout the entire training. These numbers demonstrate the
effectiveness and superiority of the dynamic discriminator over the fixed adjustment of capacity.

Two strategies regarding data regimes. Although the on-the-fly adjustment of capacity could
bring significant gains, the directions in varying also matter, especially under different data regimes.
Tab. 1 also suggests that wrong strategy of varying capacity makes no improvements. For instance,
increasing capacity hardly helps the limited data synthesis, compared to the baseline. One possible
reason is that an increasing number of parameters usually exacerbate the issue of over-fitting. Another
interesting finding is that, even if we reduce the capacity by half for sufficient data, FID keeps at
the similar level (3.75 v.s 3.74). It might imply that there are a plenty of redundant parameters in
the original discriminator. This intuitively answers why our DynamicD could win over the baseline
“even with less computation”. That is, the increasing strategy might help ensure the sufficient training
of discriminator to some extent.
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Table 2: Comparison with existing approaches that improve GANs from the discriminator side. All
experiments are conducted on FFHQ [29] under 256 resolution based on StyleGAN2 [31]. FID [21]
(lower is better) is reported. Our DynamicD improves GAN training from a different perspective
(i.e., dynamically varying the discriminator capacity) and hence is orthogonal to prior arts. The
compatibility between DynamicD and other methods is explored in Sec. 4.4 and Tab. 5.Note that
numbers with ∗ are obtained by our implementation.

0.1K 2K 140K

DiffAugment [62] 61.91∗ 24.32 4.84∗
ADA [30] 82.17 15.62 3.88
APA [25] 65.31 16.91 3.67
Adaptive dropout [30] 90.95∗ 67.23 4.16

zCR [61] 179.66 71.61 3.45
InsGen [57] 53.93 11.92 3.31
Off-the-shelf pre-training [34] - 8.18 -

StyleGAN2 [31] 179.21 78.89 3.75
StyleGAN2 [31] + DynamicD 50.37 23.47 3.53

Table 3: Generalization of DynamicD on various datasets. FID [21] (lower is better) is reported
to evaluate the synthesis performance. Note that we treat AFHQ [10] (cat, dog, wild) and LSUN [58]
(church, bridge, bedroom) as limited and sufficient training settings, and hence adopt the decreasing
capacity and increasing capacity schemes, respectively.

Methods Cat-5K Dog-5K Wild-5K Church-126K Bridge-818K Bedroom-3M

StyleGAN2 [31] 6.36 18.93 3.80 4.44 6.20 5.65
w/ DynamicD 5.41 16.00 3.34 3.87 5.33 4.01

4.3 Comparison with existing approaches

In this part, we compare our DynamicD against prior approaches on both limited and sufficient data
settings. StyleGAN2 [31] used in ADA [30] serves as our baseline. In addition, we include several
data augmentation methods which aim at alleviating the over-fitting issues: ADA [30], APA [25] and
DiffAugment [62]. Moreover, we transcribe the numbers of adaptive dropout variant from ADA [30],
which implement the model augmentation i.e., Dropout [50] in an adaptive manner. Moreover, we
include several techniques that propose a new regularization (zCR [61]) or an extra task (InsGen [57]),
and leverage pre-trained models (Off-the-shelf Models [34]) to improve GAN training respectively. It
is noted that both InsGen [57] and Off-the-shelf Models [34] are based on data augmentation, making
the comparison not so strictly fair to some extent. Unless specified, all methods are trained with the
same iterations and architectures.

Main results. Tab. 2 presents the quantitative results. Our DynamicD brings the consistent
improvements under all data regimes. In term of sufficient data, the proposed approach continues
to improve the synthesis quality despite that the data augmentation i.e., ADA [30] and model
augmentation i.e., Dropout [50] lead to negative impact in turn. When it comes to the limited data
setting (e.g., 2K images), DynamicD slightly outperforms DiffAugment [62] which uses a fixed data
augmentation and performs worse than the adaptive ones (i.e., ADA [30] and APA [25]). When there
are very few training samples, like only 100 images, DynamicD beats all data augmentation methods
by a clear margin. This indicates the potential of DynamicD for image synthesis under extremely
limited data.

When compared against the recent techniques like zCR [61], InsGen [57] and Off-the-shelf
Models [34] on the sufficient data, DynamicD achieves competitive performances but with less
computations and higher training efficiency. In more details, zCR and InsGen requires extra
computations across different paired images while Off-the-shelf Models [34] needs to leverage
multiple pre-trained models. Unlike these approaches, our DynamicD merely increases capacity
from a subnet to the normal one. More importantly, the proposed DynamicD reaches the new
state-of-the-art results on extremely limited setting, outperforming InsGen [57] (50.37 v.s 53.93).
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Table 4: Generalization of DynamicD to 3D-aware image synthesis. FID [21] (lower is better) is
reported to evaluate the synthesis performance. We find that, for 3D-aware image generation, even
the full set of FFHQ [29] and Carla [12] is insufficient for such a challenging task. Therefore, all
experiments adopt the decreasing capacity scheme.

Methods FFHQ-2K FFHQ-140K Carla-2K Carla-10K

StyleNeRF [17] 73.50 8.13 72.1 53.87
w/ DynamicD 23.29 7.60 51.0 47.42

Table 5: Compatibility of DynamicD with existing approaches that improve the discriminator of
GANs. All experiments are conducted on 256 resolution and use StyleGAN2 [31] as the baseline
model. FID [21] (lower is better) and KID [4] (lower is better) are reported as the evaluation metrics.

(a) Training on FFHQ [29].

Methods 0.1K 2K

ADA [30] 82.17 15.62
w/ DynamicD 62.30 14.56

zCR [61] 179.66 71.61
w/ DynamicD 66.01 21.08

(b) Fine-tuning on MetFaces [30].

Methods FID KID (×103)

Fine-tuning 22.93 5.17
w/ FreezeD [41] 22.15 4.33
w/ DynamicD 20.52 2.39

4.4 Generalizability and compatibility of DynamicD

In this part, we first verify the generalizability of the proposed DynamicD across various datasets and
tasks, and then study its compatibility with existing discriminator-improving techniques.

Generalization across datasets. We choose AFHQ-v2 [10] and LSUN [58] as the evaluation
benchmarks because of their data regimes. StyleGAN2 [31] used in [30] serves as our baseline.
Tab. 3 and Fig. 3 present the quantitative and qualitative results respectively.

The synthesis performances are substantially improved given both limited and sufficient data.
Decreasing capacity in AFHQ-v2 [10] boosts the FID on cat, dog and wild life domains respectively.
Importantly, as the data regimes scale up, our DynamicD could improve training efficiency and bring
substantial gains simultaneously. In particular, the gain becomes larger when increasing the training
samples from 818K (bridge) to 3M (bedroom), implying the potential of DynamicD in large-scale
content generation (e.g., training a GAN on ImageNet [11]).

Generalization across tasks. Going beyond 2D image synthesis, we also apply our DynamicD on
popular 3D-aware image generation [48, 43, 8, 17, 56]. It aims at producing realistic images with high
multi-view consistency, by incorporating implicit functions or differentiable rendering into generators.
We take StyleNeRF [17] as an example, which uses the same discriminator of StyleGANv2 [31].
Considering there lacks baselines of 3D GANs under low-data regimes, we follow ADA [30] to
randomly sample a subset out of the entire collection. Tab. 4 shows the quantitative results.

We can see that limited data indeed leads to poor quality of 3D-aware synthesis. Besides, we
empirically find decreasing capacity works better on full set of both FFHQ [29] and Carla [12]. Thus
our DynamicD can be also used for improving 3D-aware image synthesis.

Compatibility with discriminator-improving techniques. We have demonstrated the effectiveness
of our approach. It would be even better if adjusting capacity is compatible with previous methods
of improving discriminator from various perspectives. For instance, ADA [30] and zCR [61] are
proposed to improve the data efficiency and training stabilization respectively. We thus conduct
the compatibility experiments under low-data regimes on FFHQ [29]. Tab. 5a provides the results.
Obviously, equipped with DynamicD, these approaches could enjoy the consistent improvements.

Moreover, as prior literature [34, 47, 41] shows that leveraging pre-trained models in discriminator
could help training and data efficiency, we also wonder if the pre-training is compatible with
DynamicD. Meanwhile, considering using frozen one might make the metrics unreliable, we thus
choose the generative domain adaptation task as a benchmark. It basically fine-tunes a given pre-
trained model which is usually trained on a large-scale source domain (e.g., FFHQ [29]) on a target
domain. Concretely, we first pre-train a StyleGAN2 on FFHQ [29] without any modifications of
capacity and then fine-tune this model with DynamicD on the target domain MetFaces [30] which
contains around 1336 high-quality faces collected from an art collection. Note that all images of
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Cat-5K, FID 5.41 (-0.95) Dog-5K, FID 16.00 (-2.93) Wild-5K, FID 3.34 (-0.46) 

Church-126K, FID 3.87 (-0.57) Bridge-818K, FID 5.33 (-0.87)

FFHQ-140K, FID 7.60 (-0.53) Carla-10K, FID 47.42 (-6.45)

Bedroom-3M, FID 4.01 (-1.64)

Figure 3: Qualitative results on various datasets. Dataset scale and FID are listed above. Numbers
in blue highlight the improvements over baselines.

MetFaces [30] are resized to 256 × 256 resolution. Tab. 5b presents the FID and kernel inception
distance (KID) [4], demonstrating the compatibility of the proposed approach.

5 Conclusion

We propose a general method DynamicD for improving GANs. By adjusting capacity of discriminator
under two different schemes, we can substantially enhance image synthesis quality and reduce
the computational cost accordingly. Experiments on a wide range of datasets and generation
tasks demonstrate the effectiveness, generalizability, and compatibility of our DynamicD, with
the consistent performance gains.

Discussion. Despite the appealing synthesis quality and performances across various tasks and
datasets, our DynamicD still has some limitations. For instance, current form of DynamicD adjusts
network capacity by extending or shrinking layer width. It is not explored for the influence of
other factors such as network depth. Meanwhile, current experiments are conducted on CNN-based
discriminator. Gains on transformer-based discriminator [26] remain uncertain and valuable to
investigate. On the other hand, although this work makes an early attempt to demonstrate the
effectiveness of two dynamic schemes under various data scales, some self-adjusting or AutoML
strategy which might be more effective. Moreover, a theoretical study would make it more appealing,
left for future study.
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