
Beyond spectral gap:
The role of the topology in decentralized learning

Thijs Vogels∗
EPFL

Hadrien Hendrikx∗
EPFL

Martin Jaggi
EPFL

Abstract

In data-parallel optimization of machine learning models, workers collaborate
to improve their estimates of the model: more accurate gradients allow them to
use larger learning rates and optimize faster. We consider the setting in which
all workers sample from the same dataset, and communicate over a sparse graph
(decentralized). In this setting, current theory fails to capture important aspects of
real-world behavior. First, the ‘spectral gap’ of the communication graph is not pre-
dictive of its empirical performance in (deep) learning. Second, current theory does
not explain that collaboration enables larger learning rates than training alone. In
fact, it prescribes smaller learning rates, which further decrease as graphs become
larger, failing to explain convergence in infinite graphs. This paper aims to paint an
accurate picture of sparsely-connected distributed optimization when workers share
the same data distribution. We quantify how the graph topology influences conver-
gence in a quadratic toy problem and provide theoretical results for general smooth
and (strongly) convex objectives. Our theory matches empirical observations in
deep learning, and accurately describes the relative merits of different graph topolo-
gies. Code: github.com/epfml/topology-in-decentralized-learning

1 Introduction

Distributed data-parallel optimization algorithms help us tackle the increasing complexity of machine
learning models and of the data on which they are trained. We can classify those training algorithms as
either centralized or decentralized, and we often consider those settings to have different benefits over
training ‘alone’. In the centralized setting, workers compute gradients on independent mini-batches
of data, and they average those gradients between all workers. The resulting lower variance in the
updates enables larger learning rates and faster training. In the decentralized setting, workers average
their models with only a sparse set of ‘neighbors’ in a graph instead of all-to-all, and they may have
private datasets sampled from different distributions. As the benefit of decentralized learning, we
usually focus only on the (indirect) access to other worker’s datasets, and not of faster training.

While decentralized learning is typically studied with heterogeneous datasets across workers, sparse
(decentralized) averaging between is also useful when worker’s data is identically distributed
(i.i.d.) [15]. As an example, sparse averaging is used in data centers to mitigate communication bottle-
necks [1]. In fact the D-SGD algorithm [11], on which we focus in this work, performs well mainly
in this setting, while algorithmic modifications [14, 21, 22] are required to yield good performance
on heterogeneous objectives. When the data is i.i.d., the goal of sparse averaging is to optimize faster,
just like in centralized (all-to-all) graphs.

Yet, current decentralized learning theory poorly explains the i.i.d. case. Analyses typically show that,
for small enough learning rates, training with sparse averaging behaves the same as with all-to-all
averaging [11, 8]. Compared to training alone with the same small learning rate, all-to-all averaging

∗Equal contribution. Corresponding authors thijs.vogels@epfl.ch and hadrien.hendrikx@epfl.ch.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/epfml/topology-in-decentralized-learning

10

100

1000

↑ Steps until loss < 0.01

0.001 0.01 0.1 1
Learning rate→

Fully connected

Ring
Alone (disconnected)

Current theory useslower learning rates
but decentralized averagingenables higher learning rates

0.001 0.01 0.1 1
Learning rate→

1-ring (spectral gap 1)
2-ring (spectral gap 1)
4-ring (spectral gap 0.67)

8-ring (s.g. 0.20)
∞-ring (s.g. 0)

= Instead of a speedup,current theory predicts a slowdown with ring size

Figure 1: ‘Time to target’ for D-SGD [11] with constant learning rates on an i.i.d. isotropic quadratic
dataset (Section 3). The noise disappears at the optimum. Compared to optimizing alone, 32 workers
in a ring (left) are faster for any learning rate, but the largest improvement comes from being able to
use a large learning rate. This benefit is not captured by current theory, which prescribes a smaller
learning rate than training alone. On the right, we see that rings of increasing size enable larger
learning rates and faster optimization. Because a ring’s spectral gap goes to zero with the size, this
cannot be explained by current theory.

reduces the gradient variance by the number of workers. In practice, however, such small learning
rates would never be used. In fact, a reduction in variance should allow us to use a larger learning
rate than training alone, rather than imposing a smaller one. Contrary to current theory, we show
that averaging reduces the variance from the start, instead of just asymptotically. Lower variance
increases the maximum learning rate, which directly speeds up convergence. We characterize how
much averaging with various communication graphs reduces the variance, and show that centralized
performance is not always achieved when using optimal large learning rates. The behavior we explain
is illustrated in Figure 1.

In current convergence rates, the graph topology appears through the spectral gap of its averaging
(gossip) matrix. The spectral gap poses a conservative lower bound on how much one averaging
step brings all worker’s models closer together. The larger, the better. If the spectral gap is small,
a significantly smaller learning rate is required to make the algorithm behave close to SGD with
all-to-all averaging with the same learning rate. Unfortunately, we experimentally observe that, both
in deep learning and in convex optimization, the spectral gap of the communication graph is not
predictive of its performance under realistically tuned learning rates.

The problem with the spectral gap quantity is clearly illustrated in a simple example. Let the
communication graph be a ring of varying size. As the size of the ring increases to infinity, its spectral
gap goes to zero, since it becomes harder and harder to achieve consensus between all the workers.
This leads to the optimization progress predicted by current theory to go to zero as well. Yet, this
behavior does not match the empirical behavior of the rings with i.i.d. data. As the size of the ring
increases, the convergence rate actually improves (Figure 1), until it saturates at a point that depends
on the problem.

In this work, we aim to accurately describe the behavior of i.i.d. distributed learning algorithms with
sparse averaging, both in theory and in practice. We quantify the role of the graph in a quadratic toy
problem designed to mimic the initial phase of deep learning (Section 3), showing that averaging
enables a larger learning rate. From these insights, we derive a problem-independent notion of
‘effective number of neighbors’ in a graph that is consistent with time-varying topologies and infinite
graphs, and is predictive of a graph’s empirical performance in both convex and deep learning. We
provide convergence proofs for convex and (strongly) convex objectives that only mildly depend on
the spectral gap of the graph (Section 4), and consider the whole spectrum instead. At its core, our
analysis does not enforce global consensus, but only between workers that are close to each other in
the graph. Our theory shows that sparse averaging provably enables larger learning rates and thus
speeds up optimization. These insights prove to be relevant in deep learning, where we accurately
describe the performance of a variety of topologies, while their spectral gap does not (Section 5).

2

2 Related work

Decentralized SGD This paper studies decentralized SGD. Koloskova et al. [8] obtain the tightest
bounds for this algorithm in the general setting where workers optimize heterogeneous objectives.
Contrary to their work, we focus primarily on the case where all workers sample i.i.d. data from the
same distribution. This important case is not described in a meaningful way by their analysis: while
they show that gossip averaging reduces the asymptotic variance suffered by the algorithm, the fast
initial linear decrease term in their convergence rate depends on the spectral gap of the gossip matrix.
This key term does not improve through collaboration and gives rise to a smaller learning rate than
training alone. Besides, as discussed above, this implies that optimization is not possible in the limit
of large graphs, even in the absence of heterogeneity: for instance, the spectral gap of an infinite ring
is zero, which would lead to a learning rate of zero as well.

These rates suggest that decentralized averaging speeds up the last part of training (dominated by
variance), at the cost of slowing down the initial (linear convergence) phase. Beyond the work
of Koloskova et al. [8], many papers focus on linear speedup (in the variance phase) over optimizing
alone, and prove similar results in a variety of settings [11, 20, 12]. All these results rely on the
following insight: while linear speedup is only achieved for small learning rates, SGD eventually
requires such small learning rates anyway (because of, e.g., variance, or non-smoothness). This
observation leads these works to argue that “topology does not matter”. This is the case indeed, but
only for very small learning rates, as shown in Figure 1. In practice, averaging speeds up both the
initial and last part of training. This is what we show in this work, both in theory and in practice.

Another line of work studies D-(S)GD under statistical assumptions on the local data. In particular,
Richards and Rebeschini [18] show favorable properties for D-SGD with graph-dependent implicit
regularization and attain optimal statistical rates. Their suggested learning rate does depend on the
spectral gap of the communication network, and it goes to zero when the spectral gap shrinks. Richards
and Rebeschini [17] also show that larger (constant) learning rates can be used in decentralized GD,
but their analysis focuses on decentralized kernel regression. It does not cover stochastic gradients,
and relies on statistical concentration of local objectives rather than analysis on local neighborhoods.

Gossiping in infinite graphs An important feature of our results is that they only mildly depend
on the spectral gap, and so they apply independently of the size of the graph. Berthier et al. [3]
study acceleration of gossip averaging in infinite graphs, and obtain the same conclusions as we do:
although spectral gap is useful for asymptotics, it fails to accurately describe the transient regime of
averaging. This is especially limiting for optimization (compared to of just averaging), as new local
updates need to be averaged at every step. The transient regime of averaging deeply matters. Indeed,
it impacts the quality of the gradient updates, and so it rules the asymptotic regime of optimization.

The impact of the topology Some works on linear speedup [11] argue that the topology of the
graph does not matter. This is only true for asymptotic rates in specific settings, as illustrated in
Figure 1. Neglia et al. [16] investigate the impact of the topology on decentralized optimization, and
contradict this claim. Compared to us, they make different noise assumptions, which in particular
depend on the spectral distribution of the noise over the eigenvalues of the Laplacian (thus mixing
computation and communication aspects). Although they show that the topology has an impact in the
early phases of training (just like we do), they still get an unavoidable dependence on the spectral gap
of the graph. Our results are different in nature, and show the benefits of averaging and the impact of
the topology through the choice of large learning rates.

Another line of work studies the interaction of topology with particular patterns of data heterogene-
ity [4, 2], and how to optimize graphs with this heterogeneity in mind. These works “only” show a
benefit from one-step gossip averaging and this is thus what they optimize the graph for. In contrast,
we show that it is possible to benefit from distant workers beyond direct neighbors, too. This is an
orthogonal direction, though the insights from our work could be used to strengthen their results.

Time-varying topologies Time-varying topologies are popular for decentralized deep learning in
data centers due to their strong mixing [1, 23]. The benefit of varying the communication topology
over time is not easily explained through standard theory, but requires dedicated analysis [25]. While
our proofs only cover static topologies, the quantities that appear in our analysis can be computed for
time-varying schemes, too. With these quantities, we can empirically study static and time-varying
schemes in the same framework.

3

3 A toy problem: D-SGD on isotropic random quadratics

Before analyzing decentralized stochastic optimization through theory for general convex objectives
and deep learning experiments, we first investigate a simple toy example that illustrates the behavior
we want to explain in the analysis. In this setting, we can exactly characterize the convergence of
decentralized SGD. We also introduce concepts that will be used throughout the paper.

We consider n workers that jointly optimize an isotropic quadratic Ed∼Nd(0,1)
1
2 (d
>x)2 = 1

2‖x‖2
with a unique global minimum x? = 0. The workers access the quadratic through stochastic gradients
of the form g(x) = dd>x, with d ∼ N d(0, 1). This corresponds to a linear model with infinite
data, and where the model can fit the data perfectly, so that stochastic noise goes to zero close to
the optimum. We empirically find that this simple model is a meaningful proxy for the initial phase
of (over-parameterized) deep learning (Section 5). A benefit of this model is that we can compute
exact rates for it. These rates illustrate the behavior that we capture more generally in the theory of
Section 4. Appendix C contains a detailed version of this section that includes full derivations.

The stochasticity in this toy problem can be quantified by the noise level

ζ = sup
x∈Rd

Ed‖dd>x‖2
‖x‖2 , (1)

which is equal to ζ = d+ 2, due to the random normal distribution of d.

The workers run the D-SGD algorithm [11]. Each worker i has its own copy xi ∈ Rd of the model,
and they alternate between local model updates xi ← xi − ηg(xi) and averaging their models
with others: xi ←

∑n
j=1 wijxj . The averaging weights wij are summarized in the gossip matrix

W ∈ Rn×n. A non-zero weight wij indicates that i and j are directly connected. In the following,
we assume that W is symmetric and doubly stochastic:

∑n
j=1 wij = 1 ∀i.

On our objective, D-SGD either converges or diverges linearly. Whenever it converges, i.e. when the
learning rate is small enough, there is a convergence rate r such that

E‖x(t)
i ‖2 ≤ (1− r)‖x(t−1)

i ‖2,
with equality as t → ∞ (proofs in Appendix C). When the workers train alone (W = I), the
convergence rate for a given learning rate η reads:

ralone = 1− (1− η)2 − (ζ − 1)η2. (2)

The optimal learning rate η? = 1
ζ balances the optimization term (1− η)2 and the stochastic term

(ζ − 1)η2. In the centralized (fully connected) setting (wij = 1
n ∀i, j), the rate is simple as well:

rcentralized = 1− (1− η)2 − (ζ − 1)η2

n
. (3)

Averaging between n workers reduces the impact of the gradient noise, and the optimal learning rate
grows to η? = n

n+ζ−1 . D-SGD with a general gossip matrix W interpolates those results.

To quantify the reduction of the (ζ − 1)η2 term in general, we introduce the problem-independent
notion of effective number of neighbors nW(γ) of the gossip matrix W and decay parameter γ.

Definition A. The effective number of neighbors nW(γ) = limt→∞

∑n
i=1 Var[y

(t)
i]∑n

i=1 Var[z
(t)
i]

measures the

ratio of the asymptotic variance of the processes

y(t+1) =
√
γ · y(t) + ξ(t), where y(t) ∈ Rn and ξ(t) ∼ Nn(0, 1) (4)

and

z(t+1) = W(
√
γ · z(t) + ξ(t)), where z(t) ∈ Rn and ξ(t) ∼ Nn(0, 1). (5)

We call y and z random walks because workers repeatedly add noise to their state, somewhat like
SGD’s parameter updates. This should not be confused with a ‘random walk’ over nodes in the graph.

Since averaging with W decreases the variance of the random walk by at most n, the effective number
of neighbors is a number between 1 and n. The decay γ modulates the sensitivity to communication
delays. If γ = 0, workers only benefit from averaging with their direct neighbors. As γ increases,

4

↑ Effective number of neighbors (variance reduction in a ‘random walk’)

1
4
8

16

24

32

0.99990.9990.990.90
Decay γ of the ‘random walk’→

(Think “lower learning rate” or “iterates moving slower”)→

Fully connected

Two cliques
Time-varyingexponential
Ring Alone (disconnected)

· · ·

Figure 2: The effective number of neighbors for several topologies (Appendix B) measured by their
variance reduction in Equation 5. The point γ on the x-axis that matters depends on the learning
rate and the task. Which topology is ‘best’ varies from problem to problem. For large decay rates γ
(corresponding small learning rates), all connected topologies achieve variance reduction close to a
fully connected graph. For small decay rates (large learning rates), workers only benefit from their
direct neighbors (e.g. 3 in a ring). These curves can be computed explicitly for constant topologies,
and simulated efficiently for the time-varying exponential scheme [1].

multi-hop connections play an increasingly important role. As γ approaches 1, delayed and undelayed
noise contributions become equally weighted, and the reduction tends to n for any connected topology.

For regular doubly-stochastic symmetric gossip matrices W with eigenvalues λ1, . . . , λn, nW(γ)
has a closed-form expression

nW(γ) =

1
1−γ

1
n

∑n
i=1

λi2

1−λ2
iγ

. (6)

The notion of variance reduction in random walks, however, naturally extends to infinite topologies
or time-varying averaging schemes as well. Figure 2 illustrates nW for various topologies.

In our exact characterization of the convergence of D-SGD on the isotropic quadratic toy problem
(Appendix C), we find that the effective number of neighbors appears in place of the number of
workers n in the fully-connected rate of Equation 3. The rate is the unique solution to

r = 1− (1− η)2 − (ζ − 1)η2

nW
((1−η)2

1−r
) . (7)

For fully-connected and disconnected W, nW(γ) = n or 1 respectively, irrespective of γ, and
Equation 7 recovers Equations 2 and 3. For other graphs, the effective number of workers depends on
the learning rate. Current theory only considers the case where nW ≈ n, but the small learning rates
this requires can make the term (1− η)2 too large, defeating the purpose of collaboration.

Beyond this toy problem, we find that the proposed notion of effective number of neighbors is also
meaningful in the analysis of general objectives (Section 4) and in deep learning (Section 5).

4 Theoretical analysis

In the previous section, we have derived exact rates for a specific function. Now we present
convergence rates for general (strongly) convex functions that are consistent with our observations in
the previous section. We obtain rates that depend on the level of noise, the hardness of the objective,
and the topology of the graph. We will assume the following randomized model for D-SGD:

x
(t+1)
i =

x
(t)
i − η∇fξ(t)i (x

(t)
i) with probability 1

2 ,∑n
j=1 wijx

(t)
j otherwise,

(8)

where f
ξ
(t)
i

represent sampled data points and the gossip weights wij are elements of W. This ran-
domized model yields a clean analysis, but similar results hold for standard D-SGD (Appendix D.4).

5

Assumption B. The stochastic gradients are such that: (I) ξ(t)i and ξ(`)j are independent for all t, ` and
i 6= j. (II) E [f

ξ
(t)
i
] = f for all t, i (III) E ‖∇f

ξ
(t)
i
(x?)‖2 ≤ σ2 for all t, i, where x? is a minimizer of

f . (IV) f
ξ
(t)
i

is convex and ζ-smooth for all t, i. (V) f is µ-strongly-convex for µ ≥ 0 and L-smooth.

The smoothness ζ of the stochastic functions fξ defines the level of noise in the problem (the lower,
the better). The ratio ζ/L compares the difficulty of optimizing with stochastic gradients to the
difficulty with the true global gradient (before reaching the ‘variance region’ of distanceO(σ2) to the
optimum). Assuming better smoothness for the global average objective than for the local functions
is key to showing the benefit of averaging between workers. Without communication, convergence
to the variance region is ensured for learning rates η ≤ 1/ζ. If ζ ≈ L, there is little noise and
cooperation does not help before ‖x(t) − x?‖2 ≈ σ2. Yet, in noisy regimes (ζ � L), such as in
Section 3 in which ζ = d+ 2� 1 = L, averaging enables larger step-sizes up to min(1/L, n/ζ),
greatly speeding up the initial training phase. This is precisely what we prove in Theorem I.

If the workers always remain close (xi ≈ 1
n (x1 + . . . + xn) ∀i, or equivalently 1

n11
>x ≈ x),

D-SGD behaves the same as SGD on the average parameter 1
n

∑n
i=1 xi, and the learning rate depends

on max(ζ/n, L), showing a reduction of variance by n. To maintain “ 1
n11

>x ≈ x”, however, we
require a small learning rate. This is a common starting point for the analysis of D-SGD, in particular
for the proofs in Koloskova et al. [8]. On the other extreme, if we do not assume closeness between
workers, “Ix ≈ x” always holds. In this case, there is no variance reduction, but no requirement for
a small learning rate either. In Section 3, we found that, at the optimal learning rate, workers are not
close to all other workers, but they are close to others that are not too far away in the graph.

We capture the concept of ‘local closeness’ by defining an averaging matrix M. It allows us to
consider semi-local averaging beyond direct neighbors, but without fully averaging with the whole
graph. We ensure that “Mx ≈ x”, leading to some improvement in the smoothness between ζ and
ζ/n, interpolating between the two previous cases. Each matrix M implies a requirement on the
learning rate, as well as an improvement in smoothness. Based on Section 3, we therefore focus
on a specific family of matrices that strike a good balance between the two: We choose M as the
covariance of a decay-γ ‘random walk process’ with the graph, meaning that

M = (1− γ)
∞∑
k=1

γk−1W2k = (1− γ)W2(1− γW2)−1. (9)

Varying γ induces a spectrum of averaging neighborhoods from M = W2 (γ = 0) to M = 1
n11

>

(γ = 1). γ also implies an effective number of neighbors nW(γ): the larger γ, the larger nW(γ).

Theorem I provides convergence rates for any value of γ, but the best rates are obtained for a specific γ
that balances the benefit of averaging with the constraint it imposes on closeness between neighbors.
In the following theorem, we assume that Mii = Mjj for all i, j, so that Mii

−1 = nW(γ): the
effective number of neighbors defined in (6) is equal to the inverse of the self-weights of matrix M.
Otherwise, all results hold by replacing nW(γ) with miniMii

−1.

Theorem I. If Assumption B holds, and the learning rate satisfies

η ≤ min

(
1

8(ζ/nW(γ) + L)
,
1− γλ2(W)

2nW(γ)L

)
, (10)

then the iterates obtained by (8) verify

‖x(t) − x?‖2M +
1

nW(γ)
‖x(t)‖2I−M ≤

(
1− ηµ

2

)t
C0 +

8ησ2

nW(γ)
, (11)

The bound on the learning rate (10) represents the tension between (I) reducing the noise ζ by
averaging with more people (larger nW(γ)), which is the first term in the minimum, and (II) staying
close to all of them. A large spectral gap 1 − λ2(W) reduces the second constraint, but we allow
non-trivial learning rates η > 0 even when λ2(W) = 1 (infinite graphs) as long as γ < 1.

Theorem I gives a rate for each parameter γ that controls the local neighborhood size. The task that
remains is to find the γ parameter that gives the best convergence guarantees (the largest learning
rate). As explained before, one should never reduce the learning rate in order to be close to others,

6

5 10 15 20 25 30
0.000

0.001

0.002

0.003

0.004

0.005
↑ Learning rate given by Theorem 1 (L = 1.0, ζ = 2000)

Effective number of neighbors nW(γ)→
5 10 15 20 25 30

0.000

0.002

0.004

0.006

0.008

0.010

Effective number of neighbors nW(γ)→

Ring

Torus (4x8)

Hypercube
Restricted by noise Restricted by consensus

M

Figure 3: Maximum learning rates prescribed by Theorem I, varying the parameter γ that implies an
effective neighborhood size (x-axis) and an averaging matrix M (drawn as heatmaps). On the left,
we show the details for a 32-worker ring topology, and on the right, we compare it to more connected
topologies. Increasing γ (and with it nW(γ)) initially leads to larger learning rates thanks to noise
reduction. At the optimum, the cost of consensus exceeds the benefit of further reduced noise.

because the goal of collaboration is to increase the learning rate. We should therefore pick γ such
that the first term in Equation (10) dominates. This intuition is summarized in Corollary II, which
compares the performance of D-SGD with centralized SGD with fewer workers.

Corollary II. D-SGD is as fast as centralized mini-batch SGD with O(nW(γ)) workers, assuming
that ζ ≥ nL, and that the parameter γ is the highest γ such that 2nW(γ)2

1−γλ2(W) ≤ 32 ζL . This corresponds
to a learning rate η = nW(γ)/16ζ.

The typical D-SGD learning rates [8] are of orderO(min(1/T, 1−λ2(W))), which are much smaller
than the learning rate of Corollary II when λ2(W) is large or the number of iterations large. We
use the condition ζ ≥ nL only to present results in a simpler way. The condition 2nW(γ)2

1−γλ2(W) only
depends on the size and topology of the graph, and can easily be computed in many cases. Thus, to
obtain the best guarantees, we start from γ = 0 and then increase it until either nW(γ) ≈ n, the total
size of the graph, or the two terms in the minimum match. This is how we obtain Figure 3.

Proof sketch (Theorem I). The proof relies on a simple argument: rather than bounding ‖x(t)−x?‖2
or ‖ 1n11>x(t) − x?‖2, we analyze ‖x(t) − x?‖2M. This term better captures the benefit of averaging
than ‖x(t) − x?‖2, thus leading to better smoothness constants, as long as ‖x(t)‖2I−M is not too large.
This yields fast rates without the need to guarantee that iterates between very distant workers remain
close, which would be prohibitively expensive.

Theorem I is a special case of a more general theorem presented in Appendix D. This version, among
other things, covers different choices of parameters, unbalanced communication and computation
probabilities (thus allowing for local steps), and the convex (µ = 0) case.

5 Experimental analysis

While in the previous sections we have discussed isotropic quadratics or convex and smooth functions,
the initial motivation for this work comes from observations in deep learning. First, it is crucial
in deep learning to use a large learning rate in the initial phase of training [10]. Contrary to what
current theory prescribes, we do not use smaller learning rates in decentralized optimization than
when training alone (even when data is heterogeneous.) And second, we find that the spectral gap of
a topology is not predictive of the performance of that topology in deep learning experiments.

In this section, we experiment with a variety of 32-worker topologies on Cifar-10 [9] with a VGG-11
model [19]. Like other recent works [13, 22], we opt for this older model, because it does not

7

2.3

0.2

1.55

1.15

0.5

0.001 0.01 0.1

↑ Cifar-10 training loss after 2.5k steps (∼25 epochs)

Learning rate→

Binary tree

Fully connected
Hypercube

Ring

Social network

Solo
Star

Time-varying exponentialTorus (4x8)

Two cliques

Figure 4: Training loss reached after 2.5k SGD steps with a variety of graph topologies. In all cases,
averaging yields a small increase in speed for small learning rates, but a large gain over training alone
comes from being able to increase the learning rate. While the star has a better spectral gap (0.031)
than the ring (0.013), it performs worse, and does not allow large learning rates. For reference, similar
curves for fully-connected graphs of varying sizes are in Appendix F.

Gos
sip

ma
trix

Me
asu

red
cov

.
onC

ifar
-10

Cov
aria

nce
in

ran
dom

wal
k

Two cliques

nW(γ := 0.948)
= 17.8

Torus (4x8)

nW(γ := 0.993)
= 29.4

Star

nW(γ := 0.986)
= 5.1

Social network

nW(γ := 0.992)
= 27.3

Ring

nW(γ := 0.983)
= 13.9

Hypercube

nW(γ := 0.997)
= 31.3

Binary tree

nW(γ := 0.984)
= 12.3

Figure 5: Measured covariance in Cifar-10 (second row) between workers using various graphs (top
row). After 10 epochs, we store a checkpoint of the model and train repeatedly for 100 SGD steps,
yielding 100 models for 32 workers. We show normalized covariance matrices between the workers.
These are very well approximated by the covariance in the random walk process of Section 3 (third
row). We print the fitted decay parameters and corresponding ‘effective number of neighbors’.

include BatchNorm [6] which forms an orthogonal challenge for decentralized SGD. Please refer to
Appendix E for full details on the experimental setup. Our set of topologies (Appendix B) includes
regular graphs like rings and toruses, but also irregular graphs such as a binary tree [22] and social
network [5], and a time-varying exponential scheme [1]. We focus on the initial phase of training,
25k steps in our case, where both train and test loss converge close to linearly. Using a large learning
rate in this phase is found to be important for good generalization [10].

Figure 4 shows the loss reached after the first 2.5k SGD steps for all topologies and for a dense grid
of learning rates. The curves have the same global structure as those for isotropic quadratics Figure 1:
(sparse) averaging yields a small increase in speed for small learning rates, but a large gain over
training alone comes from being able to increase the learning rate. The best schemes support almost
the same learning rate as 32 fully-connected workers, and get close in performance.

8

↑ Cifar-10 training loss after 2.5k steps (∼25 epochs)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Spectral gap→

×

×

×
×
×0.2

0.4
0.6
0.8
1.0
1.2
1.4
1.6

1 2 4 8 16 32
Effective num. neighbors (γ = 0.951, tuned)→

×

×

×
×

×

Figure 6: Cifar-10 training loss after 2.5k steps for all studied topologies with their optimal learning
rates. Colors match Figure 4, and× indicates fully-connected graphs with varying number of workers.
After fitting a decay parameter γ = 0.951 that captures problem specifics, the effective number of
neighbors (left) as measured by variance reduction in a random walk (like in Section 3) explains the
relative performance of these graphs much better than the spectral gap of these topologies (right).

We also find that the random walks introduced in Section 3 are a good model for variance between
workers in deep learning. Figure 5 shows the empirical covariance between the workers after 100
SGD steps. Just like for isotropic quadratics, the covariance is accurately modeled by the covariance
in the random walk process for a certain decay rate γ.

Finally, we observe that the effective number of neighbors computed by the variance reduction in a
random walk (Section 3) accurately describes the relative performance under tuned learning rates of
graph topologies on our task, including for irregular and time-varying topologies. This is in contrast
to the topology’s spectral gaps, which we find to be not predictive. We fit a decay rate γ = 0.951 that
seems to capture the specifics of our problem, and show the correlation in Figure 6.

In Appendix F.1, we replicate the same experiments in a different setting. There, we use larger graphs
(of 64 workers), a different model and data set (an MLP on Fashion MNIST [24]), and no momentum
or weight decay. The results in this setting are qualitatively comparable to the ones presented above.

6 Conclusion

We have shown that the sparse averaging in decentralized learning allows larger learning rates to be
used, and that it speeds up training. With the optimal large learning rate, the workers’ models are not
guaranteed to remain close to their global average. Enforcing global consensus is unnecessary in the
i.i.d. setting and the small learning rates it would require are counter-productive. With the optimal
learning rate, models do remain close to some local average in a weighted neighborhood around them.
The workers benefit from a number of ‘effective neighbors’, smaller than the whole graph, that allow
them to use a large learning rate while retaining sufficient consensus within the ‘local neighborhood’.

Based on our insights, we encourage practitioners of sparse distributed learning to look beyond the
spectral gap of graph topologies, and to investigate the actual ‘effective number of neighbors’ that
is used. We also hope that our insights motivate theoreticians to be mindful of assumptions that
artificially limit the learning rate.

We show experimentally that our conclusions hold in deep learning, but extending our theory to
the non-convex setting is an important open direction that could reveal interesting new phenomena.
Furthermore, an extension of our semi-local analysis to the heterogeneous setting where workers
optimize different objectives could shed further light on the practical performance of D-SGD.

9

Acknowledgments and Disclosure of Funding

This project was supported by SNSF grant 200020_200342.

We thank Lie He for valuable conversations and for identifying the discrepancy between a topology’s
spectral gap and its empirical performance. We also thank Raphaël Berthier, Aditya Vardhan Varre
and Yatin Dandi for their feedback on the manuscript.

10

References
[1] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael G. Rabbat. Stochastic gradient

push for distributed deep learning. In Proc. ICML, volume 97, pages 344–353, 2019.

[2] B. Le Bars, Aurélien Bellet, Marc Tommasi, and Anne-Marie Kermarrec. Yes, topology matters
in decentralized optimization: Refined convergence and topology learning under heterogeneous
data. CoRR, abs/2204.04452, 2022.

[3] Raphaël Berthier, Francis R. Bach, and Pierre Gaillard. Accelerated gossip in networks of given
dimension using jacobi polynomial iterations. SIAM J. Math. Data Sci., 2(1):24–47, 2020.

[4] Yatin Dandi, Anastasia Koloskova, Martin Jaggi, and Sebastian U. Stich. Data-heterogeneity-
aware mixing for decentralized learning. CoRR, abs/2204.06477, 2022.

[5] Allison Davis, Burleigh Bradford Gardner, and Mary R Gardner. Deep South: A social
anthropological study of caste and class. Univ of South Carolina Press, 1930.

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proc. ICML, volume 37, pages 448–456, 2015.

[7] Sham Kakade, Shai Shalev-Shwartz, Ambuj Tewari, et al. On the duality of strong convexity and
strong smoothness: Learning applications and matrix regularization. Unpublished Manuscript,
2(1):35, 2009.

[8] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U. Stich. A
unified theory of decentralized SGD with changing topology and local updates. In Proc. ICML,
volume 119, pages 5381–5393, 2020.

[9] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (Canadian Institute for Advanced
Research).

[10] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial
large learning rate in training neural networks. In NeurIPS, pages 11669–11680, 2019.

[11] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic
gradient descent. In NeurIPS, pages 5330–5340, 2017.

[12] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. In Proc. ICML, volume 80, pages 3049–3058, 2018.

[13] Tao Lin, Sai Praneeth Karimireddy, Sebastian U. Stich, and Martin Jaggi. Quasi-global
momentum: Accelerating decentralized deep learning on heterogeneous data. In Proc. ICML,
volume 139, pages 6654–6665, 2021.

[14] Paolo Di Lorenzo and Gesualdo Scutari. NEXT: in-network nonconvex optimization. IEEE
Trans. Signal Inf. Process. over Networks, 2(2):120–136, 2016.

[15] Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In Proc.
ICML, volume 139, pages 7111–7123, 2021.

[16] Giovanni Neglia, Chuan Xu, Don Towsley, and Gianmarco Calbi. Decentralized gradient
methods: does topology matter? In AISTATS,, volume 108, pages 2348–2358, 2020.

[17] Dominic Richards and Patrick Rebeschini. Optimal statistical rates for decentralised non-
parametric regression with linear speed-up. In NeurIPS, pages 1214–1225, 2019.

[18] Dominic Richards and Patrick Rebeschini. Graph-dependent implicit regularisation for dis-
tributed stochastic subgradient descent. J. Mach. Learn. Res., 21:34:1–34:44, 2020.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

[20] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. d2: Decentralized training over
decentralized data. In Proc. ICML, volume 80, pages 4855–4863, 2018.

11

[21] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decentralized training over
decentralized data. In Proc. ICML, volume 80, pages 4855–4863, 2018.

[22] Thijs Vogels, Lie He, Anastasia Koloskova, Sai Praneeth Karimireddy, Tao Lin, Sebastian U.
Stich, and Martin Jaggi. Relaysum for decentralized deep learning on heterogeneous data. In
NeurIPS, pages 28004–28015, 2021.

[23] Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi, and Soummya Kar. MATCHA:
speeding up decentralized SGD via matching decomposition sampling. CoRR, abs/1905.09435,
2019.

[24] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017.

[25] Bicheng Ying, Kun Yuan, Yiming Chen, Hanbin Hu, Pan Pan, and Wotao Yin. Exponential
graph is provably efficient for decentralized deep training. In NeurIPS, pages 13975–13987,
2021.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [No]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

Contents of the Appendix

A Notation 14

B Topologies 14

C Random quadratics 17
C.1 Objective . 17
C.2 Algorithm . 17
C.3 Linear convergence of an unrolled error vector . 18
C.4 Random walks with gossip averaging . 18
C.5 Converging random walk . 20
C.6 The rate for D-SGD . 21

D (Strongly)-Convex case, missing proofs and additional results 22
D.1 Preliminaries on Bregman divergences . 22
D.2 Main result . 22
D.3 Obtaining Corollary II . 26
D.4 Deterministic algorithm . 26

E Cifar-10 experimental setup 27

F Additional experiments 28
F.1 Results on Fashion MNIST . 29
F.2 Heterogeneous data . 30
F.3 The role of γ in the experiments . 31

13

A Notation

Table 1 defines some notation and conventions used throughout this paper and in the appendix.

Table 1: Notation

Bold symbol v Vector
Bold uppercase M Matrix
N d(0, 1) Standard normal distribution

with d independent dimensions
〈x,y〉 Inner product x>y
‖T‖2 Spectral norm
‖T‖F Frobenius norm
P⊗Q Kronecker product
1 Vector of all ones

B Topologies

The static topologies that we consider in this work are drawn in Figure 7. Figures 8 and 9 show the
gossip matrices we use in detail.

14

Fully connected Two cliques Hypercube

Torus (4x8) Social network Ring

Binary tree Star Solo

Figure 7: Spring-layout drawings of the static graph topologies considered used this paper. The
nodes represent workers, and an edge between two workers indicates that they are connected. The
thickness of a edges is proportional to its averaging weight.

15

Fully connected
Weights: 0, 1/32

Two cliques
Weights: 0, 1/15.11, 1/16, 1/17

Hypercube
Weights: 0, 1/6

Torus (4x8)
Weights: 0, 1/5

Social network Ring
Weights: 0, 1/3

Binary tree
Weights: 0, 1/1.33, 1/4

Star
Weights: 0, 1/1.03, 1/32

Solo
Weights: 0, 1/1

Figure 8: Gossip matrices corresponding to the graph topologies drawn in Figure 7. x and y axes
represent workers, and the color of each coordinate in the plots indicates the gossip weight between
each pair of workers. The brigher, the higher the weight.

Weights: 0, 1/2 Weights: 0, 1/2 Weights: 0, 1/2 Weights: 0, 1/2 Weights: 0, 1/2

Figure 9: Gossip matrices for the time-varying exponential graph [1, 25]. The product of log n
consecutive gossip matrices equals to the fully-connected averaging matrix with wij = 1/n ∀i, j.

16

C Random quadratics

C.1 Objective

We study the simple problem of minimizing an isotropic d-dimensional quadratic,

x? = argmin
x∈Rd

f(x)

where the objective function f(x) = 1
2‖x‖2 is considered to be the expectation over an infinite

dataset with random normal features and labels 0:

f(x) = Ed∼Nd(0,1)
1

2
〈d,x〉2 . (12)

The optimum of this objective is at x? = 0 without loss of generality, because any shifted quadratic
would behave the same in the algorithm studied. We will access this objective function through
stochastic gradients of the form g(x) = dd>x. The stochasticity of these gradients disappears at the
optimum, like in an over-parameterized model.

The difficulty of this problem depends on the dimensionality d. For a lower-dimensional problem,
the ‘stochastic Hessian’ dd> is closer to the true hessian I than for a high dimensional one. This
level of stochasticity is captured by the following quantity:

Definition C (Noise level). ζ = supx
Ed‖dd>x‖2
‖x‖2 .

For our random normal data with batch size 1, this notion of noise level corresponds directly to the
dimensionality of the data as ζ = d+ 2.

C.2 Algorithm

The objective (12) is collaboratively optimized by n workers. At every time step t, each worker i
has its own copy of the ‘model’ x(t)

i ∈ Rd. In the D-SGD algorithm, workers iteratively compute

stochastic gradient estimates g(t)
i = d

(t)
i d

(t)
i

>
x
(t)
i , where d(t)

i are i.i.d. fromN d(0, 1). The stochastic
gradients are unbiased: Eg

(t)
i = ∇f(x(t)

i) = x
(t)
i .

Workers interleave stochastic gradient updates with gossip averaging:

x
(0)
i = x(0) ∀i

x
(t+1)
i = W(x

(t)
i − ηg

(t)
i),

where η is the learning rate and

W(xi) =

n∑
j=1

wijxj .

This linear operation can be interpreted as matrix multiplication, but one operating on each coordinate
of the model independently. W is an n×nmatrix, and not a d×dmatrix as the notation may suggest.
The averaging weights wij encode the connectivity of the communication topology: non-zero wij
implies that workers i and j are directly connected. We make several assumptions about the gossip
weights in this analysis:
Assumption D. Constant gossip weights: The weights wij do not change between steps of D-SGD.
Assumption E. Symmetric gossip weights: wij = wji.
Assumption F. Doubly stochastic gossip weights: wij ≥ 0 ∀i, j,∑j wij = 1 ∀i,∑i wij = 1 ∀j.
Assumption G. Regular topology: all workers have k directly-connected neighbors, and wij = c
for some constant c, and for each edge where i 6= j.
Definition H. Spectrum of W. Let the eigenvalues of W be λ1 ≥ λ2 ≥ . . . ≥ λn. We call the
corresponding eigenvectors v1, . . . ,vn. Under assumption F, λ1 = 1, and we call 1−λ2 the spectral
gap of W.

The assumptions on constant gossip weights and regular topologies are mainly here to ease the
analysis. We experimentally observe that our findings hold for time-varying topologies and infinite
graphs, too, and that they approximately hold for irregular graphs.

17

C.3 Linear convergence of an unrolled error vector

We will study the convergence of the algorithm by tracking the error matrix E ∈ Rn×n. The
coordinates of this matrix are the expected covariance between each pair of workers in the network.

E
(t)
ij = E

〈
x
(t)
i ,x

(t)
j

〉
.

We sometimes flatten the error matrix into a vector e ∈ Rn2

, such that eni+j = Eij . The diagonal
entries of this matrix describe the worker’s error on the objective, and as all workers converge to the
optimum at zero, each entry of the matrix will converge to zero. Our analysis of E quantity starts
with a key observation:

Lemma 1. There exists an n2 × n2 ‘transition’ matrix T such that e(t+1) = Te(t) ∀t.

Proof. Because both gossip averaging and the gradient updates are linear, this follows from expanding
the inner product.

The transition matrix T depends on the gossip matrix W and on the learning rate η. Its spectral gap
describes the convergence of the algorithm. D-SGD converges linearly if the norm ‖T‖2 < 1.

We separate T into a product T = TgossipTgrad, where Tgrad and Tgossip respectively capture the
gradient update and gossip steps of the algorithm. We find that

Tgossip = W ⊗W

and that Tgrad is diagonal. It only operates element-wise, such that[
Tgrade

]
ni+j

=

{
(1− η)2eni+j + (ζ − 1)η2eni+j i = j (same worker),
(1− η)2eni+j i 6= j (different workers).

(13)

This follows directly from expanding the inner product 〈xi − ηgi,xj − ηgj〉. The terms with i = j
behave differently than the ones where i 6= j, because the noise cancels if i 6= j.

C.4 Random walks with gossip averaging

Before we study the convergence of D-SGD on the random quadratic objective, we first take a step
back and inspect a particular random walk process, where workers average their random walk iterates
through gossip averaging.

Let z(t) ∈ Rn be a vector containing (scalar) iterates of n workers in the following process:

z(0) = 0, (14)

z(t+1) = W
(√

γz(t) + ξ(t)
)

where ξ(t) ∼ Nn(0, 1). (15)

We call the parameter 0 < γ ≤ 1 the ‘decay rate’. Note that the name random walk refers to iterative
addition of random noise to the workers iterates, and not to a ‘random walk’ between nodes of the
graph.

For this random walk, we will track the covariance matrix C ∈ Rn×n across workers (and its flattened
version c ∈ Rn2

). Its coordinates are

C
(t)
ij = E[z(t)i z

(t)
j].

Lemma 2. For static, symmetric and doubly-stochastic topologies (Assumptions D, E and F), the
Eigen decomposition of the covariance is

C(t) =

n∑
i=1

c
(t)
i viv

>
i ,

with 0 ≤ c
(t)
i ≤ λ2

i

1−γλ2
i

. Here (λi,vi) are the eigenvalue/eigenvector pairs of W. As t → ∞,

c
(t)
i =

λ2
i

1−γλ2
i

with equality.

18

Proof. We can unroll the iterations:

z(t) =

t∑
k=1

Wkγ(k−1)/2ξ(t−k)

and use the temporal independence of ξ(t) to write

C(t) = E[z(t)z(t)
>
] =

t∑
k=1

γkW2k E[ξ(t−k)ξ(t−k)
>
] =

t∑
k=1

γkW2k.

Using commutativity of W and its Eigen decomposition (Assumptions E, F), we can decompose it as

C(t) =

n∑
i=1

viv
>
i

(
t∑

k=1

γk−1λ2ki

)
︸ ︷︷ ︸

c
(t)
i

Because all terms of parenthesized expression are non-negative, and its limit equals λ2
i

1−γλ2
i

, this
proves the Lemma.

Lemma 3. When the topology is regular (Assumption G) in addition to the assumptions of Lemma 2,
workers in the random walk process have equal variance:

Var[z
(t)
i] =

1

n
Tr[C(t)] =

1

n

n∑
i=1

c
(t)
i .

Proof. The variances of zi are the diagonal entries of the covariance matrix. By regularity, and
because workers are initialized equally, all workers should have the same variance. Var[z

(t)
i] is

therefore equal to the average diagonal entry of C(t)
i . The second equality is a standard property of

the trace.

Lemma 4. Under the assumptions of Lemma 3, the variance Var[z
(t)
i] increases over time:

Var[z
(t)
i] ≤ Var[z

(t+1)
i] ≤ lim

t′→∞
Var[z

(t′)
i] ∀t.

Proof. If we write Var[z
(t)
i] as 1

n

∑n
i=1 c

(t)
i using Lemma 3, the statement of this Lemma follows

from the realization in Lemma 2 that c(t)i increases over time to the limit λ2
i

1−γλ2
i

for all i.

Note that while the results above are for static gossip matrices, random walks and these variance
quantities can be analogously defined time-varying topologies. Those just lack a simple exact form.
The stronger the averaging of the gossip process, the lower the variance. We capture this in the
following quantity:

Definition I (Effective number of neighbors).

nW(γ) =

1
1−γ

limt→∞
1
n

∑n
i=1 Var[z

(t)
i]

,

where z are the iterates from a random walk with gossip averaging, with decay parameter γ. The
numerator is the variance of the random walk process without any gossip averaging (W = I).

19

C.5 Converging random walk

The covariance of the random walk process C and the error matrix of D-SGD iterates E share
clear similarities. The quantities are both iteratively updated by an affine transformation. The main
difference between them, however, is that C converges to a non-zero constant while E converges
linearly to zero (or it diverges.)

In the next section, we draw a clear connection between the two processes, but first, we define a
modified version of the random walk process that further highlights their similarity.

Definition J (Scaled random walk). Let 0 < r < 1 be a scalar. We define a scaled version of the
random walk iterates, such that

y(t) = (1− r)t/2z(t),
B(t) = (1− r)tC(t), and

Var[y
(t)
i] = (1− r)tVar[z(t)i]

Because the sequence z(t) converges to a non-zero stationary point, the scaled sequence y(t) converges
to zero with a linear rate r.

Lemma 5. Under the assumptions of Lemma 3, the variance Var[y
(t)
i] is bounded as

Var[y
(t)
i] ≤ (1− r)t

(1− γ)nW(γ)
,

with equality as t→∞.

Proof. From Lemma 4, we know that (1−r)tVar[z(t)i] ≤ (1−r)t limt′→∞Var[z
(t′)
i], with equality

as t→∞. Because the variance Var[z
(t)
i] is equal across workers i (Lemma 3), the Lemma follows

from rearranging Definition I.

Lemma 6. The covariance vector b (the flattened version of B) of this scaled random walk process
follows the recursion b(t+1) = Tgossiput(b

(t)), where

ut(b
(t))ni+j =

{
γ(1− r)b(t)

ni+j + (1− r)t+1 i = j (same worker),
γ(1− r)b(t)

ni+j i 6= j (different workers).

Proof. The entries ut(b(t))ni+j are inner products:

ut(b
(t))ni+j = (1− r)t+1

〈√
γy

(t)
i + ξ

(t)
i ,
√
γy

(t)
j + ξ

(t)
j

〉
= γ(1− r)b(t)

ni+j + (1− r)t+1 E
〈
ξ
(t)
i , ξ

(t)
j

〉
.

The inner product between noise contributions ξ(t)i and ξ
(t)
j are 1 if i = j and 0 otherwise.

Lemma 7. The covariance b follows the recursion b(t+1) ≥ TgossipTr.w.b(t) (element-wise), where

[Tr.w.b(t)]ni+j =

{
γ(1− r)b(t)

ni+j + (1− r)(1− γ)nW(γ)b
(t)
ni+j i = j,

γ(1− r)b(t)
ni+j i 6= j.

(16)

In the limit of t→∞, this is true with equality.

Proof. From Lemma 5, we have that b(t)
ni+i = Var[y

(t)
i] ≤ (1−r)t

(1−γ)nW(γ) , with equality as t → ∞.

The entries of Tr.w.b(t) are therefore all smaller than or equal to the entries of ut(b(t)) from Lemma 6,
which proves the Lemma.

20

C.6 The rate for D-SGD

Theorem III (D-SGD on random quadratics). Under assumptions D, E, F, and G, if the pair of the
learning rate η and r satisfy

r = 1− (1− η)2 − (ζ − 1)η2

nW

(
(1−η)2
1−r

) , (17)

the error of D-SGD with learning rate η on the random quadratic objective with noise parameter ζ
converges with rate r:

n∑
i=1

E‖x(t)
i ‖2 ≤ (1− r)t

n∑
i=1

E‖x(0)
i ‖2.

This rate becomes exact as t→∞.

Proof. If the condition (17) is satisfied, the expected error iterates E (Equation 13) of the D-SGD
algorithm follow the transition matrix (16) of Lemma 7 with γ = (1−η)2

1−r . The choice of γ ensures
that γ(1− r) = (1− η)2, and the condition (17) that (ζ − 1)η2 = (1− r)(1− γ)nW(γ).

From Lemma 7, we know that a sequence that has this transition matrix TgossipTr.w.b(t) (16) converges
at least as fast as the iterates of the corresponding scaled random walk process B, with equality in the
limit as t→∞.

Since B converges to zero with a rate r, this now implies the same rate for the error matrix E. The
sum

∑n
i=1 E‖x

(t)
i ‖2 in the statement of this theorem is the trace of the matrix E(t), and therefore it

converges to zero with the same rate. This completes the proof.

21

D (Strongly)-Convex case, missing proofs and additional results

D.1 Preliminaries on Bregman divergences

Throughout this section, we will use Bregman divergences, which are defined for a differentiable
function h and two points x, y ∈ Rd as:

Dh(x, y) = h(x)− h(y)−∇h(y)>(x− y). (18)
We assume throughout this paper that the functions we consider are twice continuously differentiable
and strictly convex on dom h, and that ∇h(x) = miny h(y) − x>y is uniquely defined (although
milder assumptions could be used). Among the many properties of these divergences, an important
one is that if h is L smooth and µ strongly-convex, then

µ

2
‖x− y‖2 ≤ Dh(x, y) ≤

L

2
‖x− y‖2 (19)

Another important property is called duality, which states that:
Dh(x, y) = Dh∗(∇h(y),∇h(x)), (20)

where h∗ is the convex conjugate of h.

D.2 Main result

This section is devoted to proving Theorem IV, from which Theorem I can be deduced directly by
taking ω =M0 and p = 1/2. We recall Assumption B, which is at the heart of Theorem IV.

Assumption B. The stochastic gradients are such that: (I) ξ(t)i and ξ(`)j are independent for all t, ` and
i 6= j. (II) E [f

ξ
(t)
i
] = f for all t, i (III) E ‖∇f

ξ
(t)
i
(x?)‖2 ≤ σ2 for all t, i, where x? is a minimizer of

f . (IV) f
ξ
(t)
i

is convex and ζ-smooth for all t, i. (V) f is µ-strongly-convex for µ ≥ 0 and L-smooth.

Note that Assumption B (IV) is stated in this form for simplicity, but it can be relaxed by asking
directly that E

[
‖∇fξ,i(x(t))−∇fξ,i(x?)‖2

]
≤ 2ζDf (x

?, x(t)), which can also be implied by
assuming that each fξ is ζξ-smooth, with E

[
ζξDfξ(x

?, x(t))
]
≤ ζDf (x

?, x(t)) (see Equation (28)).
These weaker forms would be satisfied by the toy problem of Section 3.
Theorem IV. Denote x(t) the iterates obtained by D-SGD, LM = I−M, and p the probability to
perform a communication step (xt+1 = Wxt). Parameter β is such that I−W < βLM. For some
ω > 0, denote:

Lt = ‖x(t) − x?‖2M + ω‖x(t)‖2LM
. (21)

Then, if η is such that:

η ≤ M0β

L

p

1− p , (22)

η ≤ 1

4 (M0ζ + L)
(23)

we have that:

Lt ≤ [1− (1− p)ηµ]tL0 +
ησ̃2

µ
, (24)

with σ̃2 = σ2
M + ωσ2

LM
, where E ‖∇f

ξ
(t)
i
(x?)‖2M ≤ σ2

M (and similarly for LM).

In the convex case (µ = 0), we have:

E

[
1

T

T−1∑
t=0

Df (Mx(t),x?)

]
≤ 1

1− p
L0

ηT
+ ησ̃2 (25)

Note that the factors 2 in Equation (23) are simplifications to make the result more readable but could
be improved.

Proof. We now proceed to the proof of the theorem. To show that the Lyapunov Lt decreases over
iterations, we will study how each quantity ‖x(t) − x?‖2M and ‖x(t)‖2LM

evolves through time. In
particular, we will first consider the case of computation updates (so, local gradient updates), and
then the case of gossip updates.

22

1 - Computation updates In this case, we assume that the update is of the form

x(t+1) = x(t) − η∇fξt(x(t)). (26)
This happens with probability 1 − p, and expectations are taken with respect to ξt. To avoid
notation clutter, we use notations∇fξ and∇fξ,i, which are such that∇fξ,i(x(t)) = (∇fξ(x(t)))i =

∇f
ξ
(t)
i
(x

(t)
i).

Distance to optimum We bound the distance to optimum as follows, using that Mx? = x?, and
E
[
∇fξ(x(t))

]
= ∇f(x(t)):

E
[
‖x(t+1) − x?‖2M

]
= ‖x(t) − x?‖2M − 2η E

[
(x(t) − x?)>M∇fξ(x(t))

]
+ η2‖∇fξ(x(t))‖2M

= ‖x(t) − x?‖2M − 2η(Mx(t) − x?)>∇f(x(t)) + η2 E
[
‖∇fξ(x(t))‖2M

]
.

Then, we expand the middle term in the following way:

−∇f(x(t))>(Mx(t) − x?) = −∇f(x(t))>(x(t) − x?)−∇f(x(t))>(Mx(t) − x(t))

= −Df (x
(t),x?)−Df (x

?,x(t)) +Df (Mx(t),x(t))− f(Mx(t)) + f(x(t))

= −Df (Mx(t),x?)−Df (x
?,x(t)) +Df (Mx(t),x(t))

≤ −µ
2
‖x(t) − x?‖2M2 −Df (x

?,x(t)) +
L

2
‖Mx(t) − x(t)‖2, (27)

where in the last time we used the µ-strong convexity and L-smoothness of f . For the noise term, we
use that fact that (∇fξ(x(t)))i and (∇fξ(x(t)))j are independent for i 6= j, so that
1

2
E
[
‖∇fξ(x(t))‖2M

]
= E

[
‖∇fξ(x(t))−∇fξ(x?)‖2M

]
+ E

[
‖∇fξ(x?)‖2M

]
=

n∑
i=1

Mii E
[
‖∇fξ,i(x(t))−∇fξ,i(x?)‖2

]
+ E

[
‖∇fξ(x?)‖2M

]
+

n∑
i=1

∑
j 6=i

Mij E
[
[∇fξ,i(x(t))−∇fξ,i(x?)]>[∇fξ,j(x(t))−∇fξ,j(x?)]

]
=

n∑
i=1

Mii E
[
‖∇fξ,i(x(t))−∇fξ,i(x?)‖2

]
+ ‖∇f(x(t))‖2M + E

[
‖∇fξ(x?)‖2M

]
.

We now use for all i ∈ {1, . . . , n} the ζ-smoothness of fξ,i, which implies the ζ−1-strong convexity
of f∗ξ,i [7], so that:

E
[
‖∇fξ,i(x(t))−∇fξ,i(x?)‖2

]
= 2E

[
D 1

2‖·‖2
(∇fξ,i(x(t)),∇fξ,i(x?))

]
≤ 2

ζ−1
E
[
Df∗ξ,i

(∇fξ,i(x(t)),∇fξ,i(x?))
]

≤ 2ζ E
[
Dfξ,i(x

?,x(t))
]

(28)

= 2ζDf (x
?,x(t))

For the expected gradient term, we can use that:

‖∇f(x(t))‖2M ≤ ‖∇f(x(t))−∇f(x?)‖2 ≤ 2LDf (x
?,x(t)),

so that in the end,

E
[
‖∇fξ(x(t))‖2M

]
≤ 4(ζM0 + L)Df (x

?,x(t)) + 2σ2
M, (29)

where M0 = maxiMii, and E
[
‖∇fξ(x?)‖2M

]
≤ σ2

M, the locally averaged variance at optimum.
Plugging this into the main equation, we obtain that:

E
[
‖x(t+1) − x?‖2M

]
≤ ‖x(t) − x?‖2M − ηµ‖x(t) − x?‖2M2 + 2η2σ2

M

− 2η (1− 2η [ζM0 + L])Df (x
?,x(t)) +

L

2
‖Mx(t) − x(t)‖2

23

The last step is to write that M2 = M−MLM, so that:

E
[
‖x(t+1) − x?‖2M

]
≤ (1− ηµ)‖x(t) − x?‖2M + ηµ‖x(t) − x?‖2MLM

+ 2η2σ2
M

− 2η (1− 2η [ζM0 + L])Df (x
?,x(t)) + ηL‖Mx(t) − x(t)‖2

At this point, we can use that MLM ≤ I/4,

µ‖x(t) − x?‖2MLM
≤ µ

4
‖x(t) − x?‖2 ≤ 1

2
Df (x

?,x(t)), (30)

so that

E
[
‖x(t+1) − x?‖2M

]
≤ (1− ηµ)‖x(t) − x?‖2M + ηL‖Mx(t) − x(t)‖2

− 2η (3/4− 2η [ζM0 + L])Df (x
?,x(t)) + 2η2σ2

M

(31)

Distance to consensus We now bound the distance to consensus in the case of a communication
update. More specifically, we write that:

E
[
‖x(t+1)‖2LM

]
= ‖x(t)‖2LM

− 2η∇f(x(t))>LMx(t) + η2 E
[
‖∇fξt(x(t))‖2LM

]
Then, we develop the middle term as:

−∇f(x(t))>LMx(t) = −∇f(x(t))>(I−M)x(t)

= ∇f(x(t))>(Mx(t) − x(t))

= −Df (Mx(t),x(t)) + f(Mx(t))− f(x(t))

≤ −µ
2
‖Mx(t) − x(t)‖2 + f(Mx(t))− f(x(t))

By convexity of f (since the expected function is the same for all workers), we have that

f(Mx(t)) ≤ f(x(t)). (32)

We finally decompose LM
2 = LM(I−M), so that:

−2η∇f(x(t))>LMx(t) ≤ −ηµ‖x(t) − x?‖2LM
+ ηµ‖x(t)‖2MLM

For the noise term, we obtain exactly the same derivations as in the previous setting, but this time
with matrix LM = I −M instead. Using the same bounding, and Mmin = mini(M)ii, we thus
obtain:

E
[
‖∇fξ(x(t))‖2LM

]
≤ 4(ζ(1−Mmin) + L)Df (x

?,x(t)) + 2σ2
LM

. (33)

In particular, we have that:

E
[
‖x(t+1) − x?‖2LM

]
≤ (1− ηµ)‖x(t) − x?‖2LM

+ ηµ‖x(t)‖2MLM
+ 2η2σ2

LM

+ 4η2(ζ(1−Mmin) + L)Df (x
?,x(t)).

Similarly to before, we use that

µ‖x(t)‖2MLM
= µ‖x(t) − x?‖2MLM

≤ µ

4
‖x(t) − x?‖2 ≤ 1

2
Df (x

?,x(t)), (34)

so that for computation updates, the distance to consensus evolves as:

E
[
‖x(t+1) − x?‖2LM

]
≤ (1−ηµ)‖x(t)−x?‖2LM

+2η

[
1

4
+ 2η(ζ(1−Mmin) + L)

]
Df (x

?,x(t))+2η2σ2
LM

(35)
Combining Equation (35) with Equation (31) leads to:

L(t+1) ≤ (1− ηµ)Lt + ηL‖Mx(t) − x(t)‖2 + 2η2σ̃2

− η (1− 4η [ζ(M0 + ω(1−Mmin)) + (1 + ω)L])Df (x
?,x(t)),

(36)

with σ̃2 = σ2
M + ωσ2

LM
.

24

2 - Communication updates We write:
‖x(t+1) − x?‖2LM

= ‖x(t) − x?‖2WLMW

≤ ‖x(t) − x?‖2WLM

= ‖x(t) − x?‖2LM
− ‖x(t) − x?‖2LWLM

For distance to optimum part in communication update, we obtain:
‖x(t+1) − x?‖2M = ‖x(t) − x?‖2WMW ≤ ‖x(t) − x?‖2M (37)

We now introduce β, the strong convexity of LW = I−W relative to LM:
LW ≥ βLM. (38)

Therefore, we obtain that for communication updates,
L(t+1) ≤ Lt − ωβ‖x(t) − x?‖2LM

2 . (39)

Putting terms back together We now put everything together, assuming that communication
steps happen with probability p (and so computations steps with probability 1− p). Thus, we mix
Equations (36) and (39) to obtain:

E
[
L(t+1)

]
≤ (1− (1− p)ηµ)Lt + 2(1− p)η2σ̃2

+ [(1− p)ηL− ωpβ] ‖x(t)‖2LM
2

− η(1− p) (1− 4η [ζ(M0 + ω(1−Mmin)) + (1 + ω)L])Df (x
?,x(t)).

In particular, we obtain the linear decrease of the Lyapunov Lt under the following conditions:

η ≤ ωβ

L

p

1− p
η ≤ 1

4 (ζ [M0 + ω(1−Mmin)] + (1 + ω)L)

Under these conditions, we have that

E
[
L(t+1)

]
≤ (1− (1− p)ηµ)Lt + (1− p)η2σ̃2, (40)

and we can simply chain this relation to finish the proof of the theorem.

Convex case In the convex case (µ = 0), the proof is very similar, except that we keep the
Df (Mx(t),x?) term from Equation (27). In particular, under the same step-size conditions as the
strongly convex case, this leads to:

E
[
L(t+1)

]
≤ Lt + 2(1− p)η2σ̃2 − η(1− p)Df (Mx(t),x?). (41)

This leads to:

E

[
1

T

T−1∑
t=0

Df (Mx(t),x?)

]
≤ 1

1− p
L0

ηT
+ 2ησ̃2, (42)

which finishes the proof of the theorem.

Evaluating β There are two important graph quantities: M0 and β. If we choose M as in Equa-
tion (9), then its eigenvalues are equal to (1−γ)λ2

i

1−γλ2
i

, where λi is the i-th eigenvalue of W. Therefore,

λLM
i =

1− λ2i
1− γλ2i

. (43)

In particular, we have that for all i,

1− λi ≥ β
1− λ2i
1− γλ2i

, (44)

so that we can take

β =
1− γλ22
1 + λ2

≥ 1− γλ2
2

, (45)

where we use λ2 ≤ 1 to simplify the results. In particular, β does not depend on the spectral gap of
W (which is equal to 1− λ2) as long as γ is not too large. Yet, an interesting phenomenon happens:
a larger graph also implies more effective neighbors for a given γ.

25

Choice of ω A reasonable value for ω is to simply take it as ω =M0. Indeed,

• The second condition almost does not benefit from ω ≤M0 (factor 2 at most).
• If the first condition dominates, such that taking ω ≥M0 would loosen it, then instead one

can reduce γ. This will lead to a higher value for both M0 (and so for ω) and β. Note that,
again, increasing M0 does not make the second condition stronger than what it would have
been with just increasing ω by more than a factor 2.

With this choice, we thus obtain that:

η ≤ min

(
M0β

L

p

1− p ,
1

4 (M0ζ(2−Mmin) + (1 +M0)L)

)
, (46)

and Theorem IV is obtained by taking M0 ≤ 1 and Mmin ≥ 0.

D.3 Obtaining Corollary II

In this section, we discuss the derivations leading to Corollary II. To do so, we start by making the
simplifying assumption that

ζ

n
≥ L. (47)

Using this, and writing nW(γ) = 1/M0, the condition from Equation (23) simplifies to:

η ≤ LnW(γ)

16ζ
. (48)

We always want this condition to be tight, and not Equation (22) the communication one, which is
only there to allow us to use larger values of nW(γ). In particular, we want that:

LnW(γ)

16ζ
≤ β

nW(γ)L
. (49)

When we increase γ, nW(γ) increases and β decreases. We thus want to take the highest γ such that
(49) is verified (potentially with an equality if nW(γ) < n).

D.4 Deterministic algorithm

So far, we have analyzed the randomized variant of D-SGD, in which at each step, there is a coin flip
to decide whether to perform a communication or computation step. We now show how to extend the
analysis to the case in which:

x(t+1) = Wx(t) − η∇fξ(Wx(t)) (50)
Note that D-SGD is often presented as xt+1 = W(xt − η∇fξ(xt)), but it turns out that the analysis
is easier when considering it in the form of Equation (50). Yet, it comes down to the same algorithm
(alternating communication and computation steps), and the difference simply is whether the error is
evaluated after a communication step or a local gradient step. The results in the previous section did
not depend on the value of xt, so we can perform the same derivations with Wxt instead of xt, so
that Equation (36) now writes:

L(x(t+1)) = (1− ηµ)L(Wx(t)) + ηL‖MWx(t) −Wx(t)‖2 + 2η2σ̃2

− η (1− 4η [ζ(M0 + ω(1−Mmin)) + (1 + ω)L])Df (x
?,Wx(t)),

(51)

where L(x) = ‖x− x?‖2M + ω‖x‖2LM
, so that L(t) = L(x(t)). In particular, choosing η such that

the second line is always negative (as before) leads to:
L(x(t+1)) = (1− ηµ)L(Wx(t)) + ηL‖x(t)‖2WLM

2W + 2η2σ̃2. (52)
Similarly, using Equation (39), we obtain that

L(Wx(t)) ≤ L(x(t))− ωβ‖x(t) − x?‖2LM
2 . (53)

Combining Equations (52) and (53) and using that WLM
2W 4 LM

2, we obtain:
L(t+1) ≤ (1− ηµ)L(t) + (ηL− (1− ηµ)ωβ)‖x(t)‖2LM

2 + 2η2σ̃2. (54)
Thus, we obtain similar guarantees (up to a factor 1− ηµ which is small) for the deterministic and
randomized algorithms. Note that in this case, constant β can be replaced by a slightly better constant
β̃ which would be such that:

LMLW ≥ β̃ WLM
2W. (55)

26

E Cifar-10 experimental setup

Table 2 describes the details of our experiments with D-SGD with VGG-11 on Cifar-10.

Table 2: Default experimental settings for Cifar-10/VGG-11

Dataset Cifar-10 [9]
Data augmentation Random horizontal flip and random 32× 32 cropping
Data normalization Subtract mean (0.4914, 0.4822, 0.4465) and divide standard deviation (0.2023, 0.1994, 0.2010)
Architecture VGG-11 [19]
Training objective Cross entropy
Evaluation objective Top-1 accuracy

Number of workers 32 (unless otherwise specified)
Topology Ring (unless otherwise specified)
Gossip weights Metropolis-Hastings (1/3 for ring, wij = 1/(max(ni, nj) + 1), worker i has ni direct neighbors)
Data distribution Identical: workers can sample from the whole dataset
Sampling With replacement (i.i.d.), no shuffled passes

Batch size 16 patches per worker
Momentum 0.9 (heavy ball / PyTorch default)
Learning rate Exponential grid or tuned for lowest training loss after 25 epochs
LR decay Step-wise,×0.1 at epoch 75% and 90% of training
LR warmup None
Epochs 100 (full training) or only 25 (initial phase), based on total number of gradient accesses across workers
Weight decay 10−4

Normalization scheme no normalization layers
Exponential moving average x(t)

ema = 0.95x(t−1)
ema + 0.05x(t). This influences evaluation, not training

Repetitions per training Just 1 per learning rate, but experiments are very consistent across similar learning rates
Reported metrics Loss after 2.5 k steps: to reduce noise, we take two measures: (I) we use exponential moving average of

the model parameters, and (II) we fit a parametric model log(l) = at + b to the 25 loss evaluations
(t, l) closest to t = 2500. We then evaluate this function at t = 2500.

27

F Additional experiments

In the main paper, we have focussed on the training loss in the initial phase of training of Cifar-10.
We do find that our findings there do correlate with test accuracy after a complete training with 100
epochs. Figure 10 shows the test accuracy as training progresses, for plots ordered by improving
training loss after 2.5k steps.

Alone

0k 5k 10k 15k 20k
0.6
0.7
0.8
0.9
1.0
↑ Test accuracy

SGD Steps→

Star

0k 5k 10k 15k 20kSGD Steps→

Binary tree

0k 5k 10k 15k 20kSGD Steps→
Ring

0k 5k 10k 15k 20k
0.6
0.7
0.8
0.9
1.0
↑ Test accuracy

SGD Steps→

Social network

0k 5k 10k 15k 20kSGD Steps→

Time-varying exponential

0k 5k 10k 15k 20kSGD Steps→
Torus (4x8)

0k 5k 10k 15k 20k
0.6
0.7
0.8
0.9
1.0
↑ Test accuracy

SGD Steps→

Two cliques

0k 5k 10k 15k 20kSGD Steps→

Hypercube

0k 5k 10k 15k 20kSGD Steps→
Fully connected

0k 5k 10k 15k 20k
0.6
0.7
0.8
0.9
1.0
↑ Test acc.

SGD Steps→

Figure 10: Test accuracy over the course of training a VGG-11 network on Cifar-10. See Appendix E
for all details on the experimental setup. The plots are ordered by improving training loss after 2.5k
SGD steps. This ordering correlates well with the speed of improvements in test accuracy.

28

2.3

0.2

1.55

1.15

0.5

0.001 0.01 0.1

↑ Cifar-10 training loss after 2.5k steps (∼25 epochs)

Learning rate→

2 workers
4 workers
8 workers
16 workers
32 workers

Alone

Figure 11: Training loss reached after 2.5k SGD steps with fully-connected topologies of varying
size. Averaging with more workers speeds up convergence for fixed learning rates, but also allows
larger learning rates to be used. This plot serves as a reference for Figure 4, which shows similar
plots for a variety of graph topologies.

F.1 Results on Fashion MNIST

We replicated our main experiments (Cifar-10/VGG) on another dataset and another network architec-
ture. We chose for the Fashion MNIST dataset [24] and a simple multi-layer perceptron architecture
with one hidden layer of 5000 neurons and ReLU activations. We list the details of our experimental
setup in Table 3. We varied two key parameters compared to our Cifar-10 results: we used 64 workers
instead of 32, and used SGD without momentum and without weight decay. Because this task is
easier than Cifar-10, the initial phase where both training and test loss converge at similar rates is
shorter. We therefore consider the first 500 steps as the ‘initial phase’, as opposed to 2500.

Figures 12 and 13 correspond to figures 4 and 6 from the main paper. We find that the conclusions
from the paper also hold in this different experimental setting.

Table 3: Experimental settings for Fashion MNIST. Differences with Cifar-10 in red.

Dataset Fashion MNIST [24]
Data augmentation None
Data normalization Subtract mean 0.2860 and divide standard deviation 0.3530
Architecture MLP (28× 28→ ReLU→ 5000→ ReLU→ 10)
Training objective Cross entropy
Evaluation objective Top-1 accuracy

Number of workers 64 (unless otherwise specified)
Topology Ring (unless otherwise specified)
Gossip weights Metropolis-Hastings (1/3 for ring, wij = 1/(max(ni, nj) + 1), worker i has ni direct neighbors)
Data distribution Identical: workers can sample from the whole dataset
Sampling With replacement (i.i.d.), no shuffled passes

Batch size 16 patches per worker
Momentum 0.0
Learning rate Exponential grid or tuned for lowest training loss after 500 steps
LR decay None, in the initial phase of training
LR warmup None
Epochs 500 steps
Weight decay 0
Normalization scheme no normalization layers
Exponential moving average x(t)

ema = 0.95x(t−1)
ema + 0.05x(t). This influences evaluation, not training

Repetitions per training Just 1 per learning rate, but experiments are very consistent across similar learning rates
Reported metrics Loss after 500 steps: to reduce noise, we take two measures: (I) we use exponential moving average of

the model parameters, and (II) we fit a parametric model log(l) = at + b to the 25 loss evaluations
(t, l) closest to t = 500. We then evaluate this function at t = 500.

29

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.01 0.1 1

↑MLP training loss on FashionMNIST training loss after 500 steps

Learning rate→

Binary tree

Fully connected
Hypercube

Ring

Solo
Star

Time-varying exponential
Torus (8x8)
Two cliques

Figure 12: Training loss reached after 500 SGD steps with a variety of 64-worker graph topologies.
In all cases, averaging yields a small increase in speed for small learning rates, but a large gain over
training alone comes from being able to increase the learning rate. While the star has a better spectral
gap (0.0156) than the ring (0.0032), it performs worse, and does not allow large learning rates.

↑MLP training loss on FashionMNIST after 500 steps

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Spectral gap→

×
×
×
×××

0.20

0.25

0.30

0.35

0.40

0.45

0.50

12 4 8 16 32 64
Effective num. neighbors (γ = 0.902, tuned)→

×
×
×

× × ×

Figure 13: Fashion MNIST training loss after 500 steps for all studied topologies with their optimal
learning rates. Colors match Figure 12, and × indicates fully-connected graphs with varying number
of workers. After fitting a decay parameter γ = 0.902 that captures problem specifics, the effective
number of neighbors (left) as measured by variance reduction in a random walk (like in Section 3)
explains the relative performance of these graphs much better than the spectral gap of these topologies
(right).

F.2 Heterogeneous data

While our experimental and theoretical data only describe the setting in which workers optimize
objectives with a shared optimum, we believe that our insights are meaningful for heterogeneous
settings as well. With heterogeneous data, we observe two regimes: in the beginning of training,
when the worker’s distant optima are in a similar direction, everything behaves identical to the
homogeneous setting. In this regime, our insights seem to apply directly. Heterogeneity only plays
a role later during the training, when it leads to conflicting gradient directions. This behavior is
illustrated on a toy problem in Figure 14. We run D-SGD on our isotropic quadratic toy problem
(d = 100, n = 32), but where the optima are removed from zero as a normal distribution with
standard deviations 0, 10−7, and 10−3 respectively. The (constant) learning rates are tuned for each
topology in the homogeneous setting.

30

D-SGD on random quadratics, with varying target heterogeneity
Homogeneous targets (i.i.d.)

0 50 100 150 200 250 300 350 400
1e-20
1e-18
1e-16
1e-14
1e-12
1e-10
1e-08
1e-06
1e-04
1e-02
1e+00
↑ Avg. square distance to optimum

Steps→

Slightly heterogeneous targets

0 50 100 150 200 250 300 350 400
Steps→

Very heterogeneous targets

0 50 100 150 200 250 300 350 400
Steps→

Fully connected

Ring

Solo

Time-var. exp.

Figure 14: Convergence curves on our isotropic random quadratics problem (Section 3, with d = 100,
n = 32), but where the optima are removed from zero as a zero-mean normal distribution with
standard deviations 0, 10−7, and 10−3 respectively. Constant learning rates are tuned independently
for each topology in the homogeneous setting. Heterogeneity does not affect the initial phase of
training, and our insights about maximum learning rates and the quality of communication topologies
hold in this regime.

F.3 The role of γ in the experiments

In Figure 5, we optimize γ independently for each topology, minimizing the Mean Squared Error
between the normalized covariance matrix measured from checkpoints of Cifar-10 training and the
covariance in a random walk with the decay parameter γ. The bottom two rows of Figure 15 below
show how Figure 5 would change, if you used a γ that is either much too low, or too high.

In Figure 6, we choose a value of γ (shared between all topologies) that yields a good correspondence
between the performance of fully connected topologies (with 2, 4, 8, 16 and 32 workers) and the
other topologies. We opt for sharing a single γ here, to test whether this metric could have predictive
power for the quality of graphs. Figure 16 below shows how the figure changes if you use a value of
γ that is either much too low, or much too high.

31

Gos
sip

ma
trix

Me
asu

red
cov

.
onC

ifar
-10

Cov
aria

nce
in

ran
dom

wal
k

(fitt
ed)

Cov
aria

nce
in

ran
dom

wal
k

(too
low

)
Cov

aria
nce

in
ran

dom
wal

k
(too

high
)

Two cliques

nW(γ := 0.948)

= 17.8

nW(γ := 0.800)
= 16.5

nW(γ := 0.995)

= 25.1

Torus (4x8)

nW(γ := 0.993)

= 29.4

nW(γ := 0.800)
= 11.4

nW(γ := 0.995)

= 30.2

Star

nW(γ := 0.986)

= 5.1

nW(γ := 0.800)
= 1.4

nW(γ := 0.995)

= 10.2

Social network

nW(γ := 0.992)

= 27.3

nW(γ := 0.800)
= 7.9

nW(γ := 0.995)

= 28.9

Ring

nW(γ := 0.983)

= 13.9

nW(γ := 0.800)
= 5.1

nW(γ := 0.995)

= 21.5

Hypercube

nW(γ := 0.997)

= 31.3

nW(γ := 0.800)
= 14.6

nW(γ := 0.995)

= 31.0

Binary tree

nW(γ := 0.984)

= 12.3

nW(γ := 0.800)
= 3.8

nW(γ := 0.995)

= 20.1

Figure 15: Extension of Figure 5. Measured covariance in Cifar-10 (second row) between workers
using various graphs (top row). After 10 epochs, we store a checkpoint of the model and train
repeatedly for 100 SGD steps, yielding 100 models for 32 workers. We show normalized covariance
matrices between the workers. These are very well approximated by the covariance in the random
walk process of Section 3 (third row). We print the fitted decay parameters and corresponding
‘effective number of neighbors’. The bottom two rows show how Figure 5 would change, if you used
a γ that is either much too low, or too high.

Too low

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1 2 4 8 16 32
Effective num. neighbors (γ = 0.800)→

×
×
×

×
×

About right

1 2 4 8 16 32
Effective num. neighbors (γ = 0.950)→

×
×
×

×
×

Too high

1 2 4 8 16 32
Effective num. neighbors (γ = 0.995)→

×
×
×

×
×

Figure 16: Extension of Figure 6, demonstrating how the fit changes if you use a value of γ that is
either too low (left) or too high (right).

32

	Notation
	Topologies
	Random quadratics
	Objective
	Algorithm
	Linear convergence of an unrolled error vector
	Random walks with gossip averaging
	Converging random walk
	The rate for D-SGD

	(Strongly)-Convex case, missing proofs and additional results
	Preliminaries on Bregman divergences
	Main result
	Obtaining Corollary II
	Deterministic algorithm

	Cifar-10 experimental setup
	Additional experiments
	Results on Fashion MNIST
	Heterogeneous data
	The role of in the experiments

