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Abstract

In multi-agent coverage control problems, agents navigate their environment to
reach locations that maximize the coverage of some density. In practice, the density
is rarely known a priori, further complicating the original NP-hard problem.
Moreover, in many applications, agents cannot visit arbitrary locations due to a
priori unknown safety constraints. In this paper, we aim to efficiently learn the
density to approximately solve the coverage problem while preserving the agents’
safety. We first propose a conditionally linear submodular coverage function that
facilitates theoretical analysis. Utilizing this structure, we develop MACOPT, a
novel algorithm that efficiently trades off the exploration-exploitation dilemma
due to partial observability, and show that it achieves sublinear regret. Next, we
extend results on single-agent safe exploration to our multi-agent setting and
propose SAFEMAC for safe coverage and exploration. We analyze SAFEMAC and
give first of its kind results: near optimal coverage in finite time while provably
guaranteeing safety. We extensively evaluate our algorithms on synthetic and real
problems, including a biodiversity monitoring task under safety constraints, where
SAFEMAC outperforms competing methods.

1 Introduction

In multi-agent coverage control (MAC) problems, multiple agents coordinate to maximize coverage
over some spatially distributed events. Their applications abound, from collaborative mapping [1],
environmental monitoring [2], inspection robotics [3] to sensor networks [4]. In addition, the coverage
formulation can address core challenges in cooperative multi-agent RL [5, 6], e.g., exploration [7],
by providing high-level goals. In these applications, agents often encounter safety constraints that
may lead to critical accidents when ignored, e.g., obstacles [8] or extreme weather conditions [9, 10].

Deploying coverage control solutions in the real world presents many challenges: (i) for a given
density of relevant events, this is an NP hard problem [11]; (ii) such density is rarely known in
practice [2] and must be learned from data, which presents a complex active learning problem as
the quantity we measure (the density) differs from the one we want to optimize (its coverage); (iii)
agents often operate under safety-critical conditions, [8–10], that may be unknown a priori. This
requires cautious exploration of the environment to prevent catastrophic outcomes. While prior work
addresses subsets of these challenges (see Section 7), we are not aware of methods that address them
jointly.

† Joint supervision. Code available at https://github.com/manish-pra/SafeMaC
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Figure 1: The three drones aim to maximize the gorilla nests’ coverage (grey shaded circle) while
avoiding unsafe extreme weather zones (red cross pattern). The contours (yellow is high and purple
is low) represent the density of gorilla nests (blue dots). The density and the constraint are a-prior
unknown. a) To be safe, drones apply a conservative strategy and do not explore, which results in
poor coverage. In b), the drones maximize coverage but get destroyed in extreme weather. c) shows
SAFEMAC solution. The drones strike a balance, trading off between learning the density and the
constraints, and thus achieve near-optimal coverage while always being safe.

This work makes the following contributions toward efficiently solving safe coverage control with
a-priori unknown objectives and constraints. Firstly, we model this multi-agent learning task as
a conditionally linear coverage function. We use the monotonocity and the submodularity of this
function to propose MACOPT, a new algorithm for the unconstrained setting that enjoys sublinear
cumulative regret and efficiently recommends a near-optimal solution. Secondly, we extend GOOSE
[12], an algorithm for single agent safe exploration, to the multi-agent case. Combining our extension
of GOOSE with MACOPT, we propose SAFEMAC, a novel algorithm for safe multi-agent coverage
control. We analyze it and show it attains a near-optimal solution in a finite time. Finally, we demon-
strate our algorithms on a synthetic and two real world applications: safe biodiversity monitoring and
obstacle avoidance. We show SAFEMAC finds better solutions than algorithms that do not actively
explore the feasible region and is more sample efficient than competing near-optimal safe algorithms.

2 Problem Statement

We present the safety-constrained multi-agent coverage control problem (Fig. 1) that we aim to solve.

Coverage control. Coverage control models situations where we want deploy a swarm of dynamic
agents to maximize the coverage of a quantity of interest, see Fig. 1. Formally, given a finite1 set of
possible locations V , the goal of coverage control is to maximize a function F : 2V → R that assigns
to each subset, X ⊆ V , the corresponding coverage value. For N agents, the resulting problem
is argmaxX : |X|≤N F (X). The discrete domain V can be represented by a graph, where nodes
represent locations in the domain, and an edge connects node v to v′ if the agent can go from v to v′.
This corresponds to a deterministic MDP where locations are states and edges represent transitions.

Sensing region. Depending on the application, we may use different definitions of F . Here, we
model cases where agent i at location xi covers a limited sensing region around it, Di. While Di

can be any connected subset of V , in practice it is often a ball centered at xi. Given a function
ρ : V → R denoting the density of a quantity of interest at each v ∈ V , our coverage objective is

F (X; ρ, V ) =
∑
xi∈X

∑
v∈Di−

ρ(v)/|V |, (1)

where Di− := Di \D1: i−1 indicates the elements in V covered by agent i but not agents 1: i− 1,
D1: i−1 = ∪i−1

j=1D
j and |V | denotes cardinality of the domain V .

Safety. In many real-world problems, agents cannot go to arbitrary locations due to safety concerns.
To model this, we introduce a constraint function q : V → R and we consider safe all locations
v satisfying q(v) ≥ 0. Such constraint restricts the space of possible solutions of our problem in
two ways. First, it prevents agents from monitoring from unsafe locations. Second, depending on
its dynamics, agent i may be unable to safely reach a disconnected safe area starting from xi

0, see

1Continuous domains can be handled via discretization
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Appendix A.3. We denote with R̄ϵq ({x
i
0}) the largest safely reachable region starting from xi

0 and
with B a collection of batches of agents such that all agents in the same batch B share the same
safely reachable set, ∀i, j ∈ B : R̄ϵq ({x

i
0})∩ R̄ϵq ({x

j
0}) ̸= ∅, see Appendix A for formal definitions.

Based on this, we define the safely reachable control problem∑
B∈B

max
XB∈R̄ϵq

(XB
0 )

F (XB ; ρ, R̄ϵq (X
B
0 )), (2)

where XB
0 = {xi

0}i∈B are the starting locations of all agents in B and R̄ϵq (X
B
0 ) =

⋃
i∈B R̄ϵq ({x

i
0})

indicates the largest safely reachable region from any point xi
0 for all i in B (since the agents have

the same dynamics, R̄ϵq (X
B
0 ) = R̄ϵq ({x

i
0}),∀i ∈ B). In safety-critical monitoring, there may be

unreachable safe regions. However, since agents should be able to collect measurements if required,
we focus only on covering the safely reachable region.

Unknown density and constraint. In practice, the density ρ and the constraint q are often unknown
a priori. However, the agents can iteratively obtain noisy measurements of their values at target
locations. We consider synchronous measurements, i.e., we wait until all agents have collected the
desired measurement for the current iteration before moving to the next one. Here, we focus on the
high-level problem of choosing informative locations, rather than the design of low-level motion
planning 2 . Therefore, our goal is to find an approximate solution to the problem in Eq. (2) preserving
safety throughout exploration, i.e., at every location visited by the agents, while taking as few
measurements as possible in case the dynamics of the agents are deterministic and known as in [12].

3 Background

This section presents foundational ideas that our method builds on. In particular, it discusses (i)
monotone submodular functions and (ii) previous work on single-agent safe exploration.

Submodularity. Optimizing a function defined over the power set of a finite domain, V , scales com-
binatorially with the size of V in general. In special cases, we can exploit the structure of the objective
to find approximate solutions efficiently. Monotone submodular functions are one example of this.

A set function F : 2V → R is monotone if for all A ⊆ B ⊂ V we have F (A) ≤ F (B). It is
submodular if ∀A ⊆ B ⊆ V, v ∈ V \B, we have, F (A ∪ {v})− F (A) ≥ F (B ∪ {v})− F (B). In
coverage control, this means adding v to A yields at least as much increase in coverage than adding
v to B, if A ⊆ B. Crucially, [13] guarantees that the greedy algorithm produces a solution within
a factor of (1− 1/e) of the optimal solution for problems of the type argmaxX:|X|≤N F (X; ρ, V ),
when F is monotone and submodular. In practice, the greedy algorithm often outperforms this
worst-case guarantee [14] and guaranteeing a solution better than (1− 1/e) factor is NP hard [15].

The coverage function in Eq. (1) is a conditionally linear, monotone and submodular function (proof
in Appendix B), which lets us use the results above to design our algorithm for safe coverage control.

Goal-oriented safe exploration. GOOSE [12] is a single-agent safe exploration algorithm that
extends unconstrained methods to safety-critical cases. Concretely, it maintains under- and over-
approximations of the feasible set, called pessimistic and optimistic safe sets. It preserves safety by re-
stricting the agent to the pessimistic safe set. It efficiently explores the objective by letting the original
unconstrained algorithm recommend locations within the optimistic safe set. If such recommendations
are provably safe, the agent evaluates the objective there. Otherwise, it evaluates the constraint at a se-
quence of safe locations to prove that such recommendation is either safe, which allows it to evaluate
the objective, or unsafe, which triggers the unconstrained algorithm to provide a new recommendation.

Assumptions. To guarantee safety, GOOSE makes two main assumptions. First, it assumes there
is an initial set of safe locations, X0, from where the agent can start exploring. Second, it assumes
the constraint is sufficiently well-behaved, so that we can use data to infer the safety of unvisited
locations. Formally, it assumes the domain V is endowed with a positive definite kernel kq(·, ·),
and that the constraint’s norm in the associated Reproducing Kernel Hilbert Space [16] is bounded,
∥q∥kq ≤ Bq . This lets us use Gaussian Processes (GPs) [17]to construct high-probability confidence
intervals for q. We specify the GP prior over q through a mean function, which we assume to be

2Agents can use their transition graph to find a path between two goals. In a continuous domain, the path can
be tracked with a controller (e.g., MPC)

3



zero everywhere w.l.o.g., µ(v) = 0,∀v ∈ V , and a kernel function, k, that captures the covariance
between different locations. If we have access to T measurements, at VT = {vt}Tt=1 perturbed by
i.i.d. Gaussian noise, yT = {q(vt)+ ηt}Tt=1 with ηt ∼ N (0, σ2), we can compute the posterior mean
and covariance over the constraint at unseen locations v, v′ as µT (v) = k⊤T (v)(KT + σ2I)−1yT and
kt(v, v

′) = k(v, v′) − k⊤T (v)(KT + σ2I)−1kT (v
′), where kT (v) = [k(v1, v), ..., k(vT , v)]

⊤,KT

is the positive definite kernel matrix [k(v, v′)]v,v′∈VT
and I ∈ RT×T denotes the identity matrix.

In this work, we make the same assumptions about the safe seed and the regularity of q and ρ.

Approximations of the feasible set. Based on the GP posterior above, GOOSE builds monotonic con-
fidence intervals for the constraint at each iteration t as lqt (v) := max{lqt−1(v), µ

q
t−1(v)−β

q
t σ

q
t−1(v)}

and uq
t (v) := min{uq

t−1(v), µ
q
t−1(v) + βq

t σ
q
t−1(v)}, which contain the true constraint function for

every v ∈ V and t ≥ 1, with high probability if βq
t is selected as in [18] or Section 5. GOOSE uses

these confidence intervals within a set S ⊆ V together with the Lq-Lipschitz continuity of q, to
define operators that determine which locations are safe in plausible worst- and best-case scenarios,

pt(S) = {v ∈ V, |∃z ∈ S : lqt (z)− Lqd(v, z) ≥ 0}, (3)

o
ϵq
t (S) = {v ∈ V, |∃z ∈ S : uq

t (z)− ϵq − Lqd(v, z) ≥ 0}. (4)

Notice that the pessimistic operator relies on the lower bound, lq, while the optimistic one on the
upper bound, uq. Moreover, the optimistic one uses a margin ϵq to exclude "barely" safe locations
as the agent might get stuck learning about them. Finally, to disregard locations the agent could
not safely reach or from where it could not safely return, GOOSE introduces the Rergodic(·, ·) operator.
Rergodic(pt(S), S) indicates locations in S or locations in pt(S) reachable from S and from where the
agent can return to S along a path contained in pt(S). Combining pt(S) and Rergodic(·, ·), GOOSE
defines the pessimistic and ergodic operator P̃t(·), which it uses to update the pessimistic safe set.
Similarly, it defines Õt(·) using o

ϵq
t (·) to compute the optimistic safe set.

4 MACOPT and SAFEMAC

This section presents MACOPT and SAFEMAC, our algorithms for unconstrained and safety-constrained
multi-agent coverage control, which we then formally analyze in Section 5.

4.1 MACOPT: unconstrained multi-agent coverage control

Greedy sensing regions. In sequential optimization, it is crucial to balance exploration and exploita-
tion. GP-UCB [19] is a theoretically sound strategy to strike such a trade-off that works well in
practice. Agents evaluate the objective at locations that maximize an upper confidence bound over the
objective given by the GP model such that locations with either a high posterior mean (exploitation) or
standard deviation (exploration) are visited. We construct a valid upper confidence bound for the cov-
erage F (X) starting from our confidence intervals on ρ, by replacing the true density ρ with its upper
bound uρ

t in Eq. (1). Next, we apply the greedy algorithm to this upper bound (Line 3 of Algorithm 1)
to select N candidate locations for evaluating the density. However, this simple exploration strategy
may perform poorly, due to the fact that in order to reduce the uncertainty over the coverage F at X ,
we must learn the density ρ at all locations inside the sensing region,

⋃N
i=1 D

i, rather than simply at X .
It is a form of partial monitoring [20], where the objective F differs from the quantity we measure, i.e.,
the density ρ. Next, we explain how to choose locations where to observe the density for a given X .

Uncertainty sampling. Given location assignments X for the agents, we measure the density to
efficiently learn the function F (X). Intuitively, agent i observes the density where it’s most uncertain
within the area it covers that is not covered by agents {1, . . . i−1}, i.e., Di−

t (Line 4 of Alg. 2, Fig. 2a).

Stopping criterion. The algorithm terminates when a near-optimal solution is achieved. Intuitively,
this occurs when the uncertainty about the coverage value of the greedy recommendation is low. For-
mally, we require the sum of the uncertainties over the sampling targets to be below a threshold, i.e. ,
wt =

∑N
i=1 u

ρ
t−1(x

g,i
t )−lρt−1(x

g,i
t ) ≤ ϵρ (Line 3 of Algorithm 2). Importantly, this stopping criterion

requires the confidence intervals to shrink only at regions that potentially maximize the coverage.

MACOPT. Now, we introduce MACOPT in Algorithm 2. At round t, we select the sensing locations
for the agents, Xt, by greedily optimizing the upper confidence bound of the coverage. Then, each
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(b) Illustration of multi-agent GOOSE

Figure 2: a) The contours represent the density uncertainty, and the red ×’s correspond to the
maximum coverage locations evaluated by the GREEDY Algorithm 1. While these locations maximize
coverage, they may not be informative about the coverage since the uncertainty can be low. Therefore,
the agents collect measurements at the maximum uncertainty of the density in a disc (green ×’s, xg,i

t ),
also known as uncertainty sampling. b) In a constrained environment, SAFEMAC evaluates xg,i

t for all
agents in the optimistic set So,ϵq

t (violet) and set it as a next goal. It forms an expander region (dark
blue) to safely expand the pessimistic safe set Sp

t (green) toward the goal.

agent i collects noisy density measurements at the points of highest uncertainty within Di−
t . Finally,

we update our GP over the density and, if the sum of maximum uncertainties within each sensing
region is small, we stop the algorithm.

4.2 SAFEMAC: safety-constrained multi-agent coverage control

Intuition. We adopt a perspective similar to GOOSE as we separate the exploration of the safe set
from the maximization of the coverage. Given an over and under approximation of the safe set (whose
computation is discussed later), we want to explore optimistically optimal goals for each agent, similar
to MACOPT. To this end, we find the maximizers of the density upper bound in the optimistic safe set
with the GREEDY algorithm. Then, we define sampling goals to learn the coverage at those locations.

Phases of SAFEMAC. Coverage values depend both on the density and the feasible region (Eq. (2)).
Thus, there are two sensible sampling goals given a disk assignment: i) optimistic coverage: if we are
uncertain about the density within the disks, we target locations with the highest density uncertainty
(Line 6 of Algorithm 4); ii) optimistic exploration: if we know the density within the disk but there are
locations under it that we cannot classify as either safe (in Sp) or unsafe (in V \So,ϵq ), we target those
with the highest constraint uncertainty among them (Line 8). If all the goal locations are safe with high
probability, which can only happen during optimistic coverage, we safely evaluate the density there
(Line 19). Otherwise, we explore the constraint with a goal directed strategy that aims at classifying
them as either safe or unsafe similar to GOOSE (Line 9-12). In case this changes the topological
connection of the optimistic feasible set, we recompute the disks as this may change GREEDY’s output
(Line 15-17). We repeat this loop until we know the feasibility of all the points under the disks
recommended by GREEDY and their density uncertainty is low (Line 4). Next, we explain how the
multiple agents coordinate their individual safe regions to evaluate a goal (MACOPT in batches), how
the agents progress toward their goals (safe expansion) and finally we describe SAFEMAC convergence.

MACOPT in batches. In the multi-agent setting of GOOSE (see Fig. 2b), each agent i maintains Sp,i
t a

pessimistic (or So,ϵq,i
t an optimistic) belief of the safe locations, obtained by iteratively applying P̃t(·)

the pessimistic ( or Õt(·) the optimistic) ergodic operators (see Section 3) to the previous pessimistic
belief Sp,i

t−1 (Line 11 of Algorithm 4). Since the agents cannot navigate to an arbitrary location in
the constrained case, SAFEMAC computes coverage maximizers on a restricted region, obtained by
ignoring the known unsafe locations. To denote such a restricted region, we define a union set Su,i

t :=

S
o,ϵq,i
t ∪ Sp,i

t , which is the largest set known to be optimistically or pessimistically safe up to time t.
Moreover, if the agents are topologically disconnected, they cannot travel from one safe region to an-
other and the best strategy for any batch of agents is to maximize coverage locally. For this, we form a
collection of batchesBt, such that any batch B ∈ Bt contains agents that lie in topologically connected
regions determined by the union set (Line 13-14 ). SAFEMAC computes a GREEDY solution for each
B ∈ Bt in their corresponding Su,B

t := ∪i∈BS
u,i
t . This is the largest set where the agents can find an
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Algorithm 1 Greedy UCB (GREEDY)

1: Inputs uρ
t−1, l

ρ
t−1, B, Su

t

2: for i = 1, 2, ..., |B| do
3: xi

t←argmax
xi

∑
v∈Di\D1:i−1

t ∩Su
t

uρ
t−1(v)

4: xg,i
t ← argmax

v∈Di\D1:i−1
t ∩Su

t

uρ
t−1(v)− lρt−1(v)

5: wt ←
∑|B|

i=1 u
ρ
t−1(x

g,i
t )− lρt−1(x

g,i
t )

6: Return XB
t , wt

Algorithm 2 MACOPT

1: Inputs X0, ϵρ, V , GPρ, t← 1
2: X1, w1 ← GREEDY(uρ

0, l
ρ
0 , [N ], V )

3: while wt > ϵρ do
4: ∀i, xg,i

t ←argmax
v∈Di−

t

uρ
t−1(v)− lρt−1(v)

5: ∀i, yiρt
= ρ(xg,i

t ) + ηρ, Update GP
6: t← t+ 1
7: Xt,wt←GREEDY(uρ

t−1, l
ρ
t−1,[N ],V )

8: Recommend Xt

Algorithm 3 Safe Expansion (SE)

1: Inputs So,ϵq
t , Sp

t , x
g
t

2: At(p)←{v∈S
o,ϵq
t \pt(S

p
t )|h(v) = p}

3: W
ϵq
t ← {v ∈ Sp

t |u
q
t (v)− lqt (v) > ϵq}

4: α⋆ ← maxα s.t. |Gϵq
t (α)| > 0

5: if Optimization problem feasible then
6: vt←argmaxv∈G

ϵq
t (α⋆)u

q
t (v)−l

q
t (v)

7: Update GP with yt = q(vt) + ηq

Algorithm 4 SAFEMAC

1: Inputs X0, Lq , ϵρ, V , GPρ, GPq

2: ∀i, Sp,i
0 ←− X0, So,ϵq,i

0 ←− V , t← 1
3: X1, w1 ← GREEDY(uρ

0, l
ρ
0 , [N ], V )

4: while ∀i, (So,ϵq,i
t−1 \S

p,i
t−1) ∩ Di

t ̸= ∅ or wt > ϵρ
do

5: if wt > ϵρ then
6: ∀i, xg,i

t ←argmax
v∈Di−

t

uρ
t−1(v)− lρt−1(v)

7: else
8: ∀i, xg,i

t ← argmax
v∈(S

o,ϵq,i

t−1 \Sp,i
t−1)∩Di

t

uq
t−1(v)− lqt−1(v)

9: if ∃ i ∈ [N ], xg,i
t ̸∈ Sp,i

t then
10: SE(So,ϵq,i

t−1 , Sp,i
t−1, x

g,i
t ),∀i :xg,i

t ̸∈ Sp,i
t

11: Sp,i
t ← P̃t(S

p,i
t−1), S

o,ϵq,i
t ←Õ

ϵq
t (Sp,i

t−1),∀i
12: t← t+ 1
13: ∀i, B′t(i) = {j ∈ [N ]|Su,i

t ∩ Su,j
t ̸= ∅}

14: Bt =
⋃

i∈[N ] B′t(i)
15: if for any B ∈ Bt, Su,B

t ̸= Su,B
t−1 then

16: Xt, wt←GREEDY(uρ
t−1, l

ρ
t−1, B, Su,B

t )
17: ∀i, xg,i

t ←argmax
v∈Di−

t

uρ
t−1(v)− lρt−1(v)

18: if ∀i, xg,i
t ∈ Sp,i

t and wt > ϵρ then
19: ∀i, yiρt

= ρ(xg,i
t ) + ηρ

20: Update GP i.e, compute uρ
t , l

ρ
t

21: t← t+ 1
22: Xt,wt← GREEDY(uρ

t−1, l
ρ
t−1,B, Su,B

t−1 )

23: Recommend Xt

optimistically safe path to travel. Analogous to Bt, we define Bpt as collection of batches where any
B ∈ Bpt contains agents which are topologically connected in pessimistic set and Sp,B

t := ∪i∈BS
p,i
t .

Safe expansion. Safe expansion is the sub-routine inspired by GOOSE for goal-oriented exploration
of the safe set that we use to learn about the feasibility of sampling targets. It uses a heuristic h to
assign priority scores p to points that are optimistically but not pessimistically safe. Those determine
locations whose feasibility is relevant to learn that of the sampling targets ( Line 2 of Algorithm 3).
A simple and effective choice for the heuristic is the inverse of the distance to the targets. Then, it
identifies safe locations where the constraint is not yet known ϵq-accurately (Line 3). Among them, it
determines the α-immediate expanders, i.e., those that could potentially add locations with priority
α to the pessimistic set, Gϵq

t (α) = {v ∈ W
ϵq
t |∃z ∈ At(α) : u

q
t (v)− Lqd(v, z) ≥ 0}. In Line 4, it

selects the non-empty α-expander set with the highest priority. In Line 6 - 7, the agent evaluates the
constraint at the location with the highest uncertainty in this set (see [12] for details).

SAFEMAC convergence. The optimistic coverage phase switches to optimistic exploration phase,
when density uncertainty under the disks is low (wt ≤ ϵρ). In the exploration, either the topological
connection of the optimistic feasible set changes or will classify the uncertain region as pessimistically
safe. In the former case, SAFEMAC will recompute a new coverage location and switch to the coverage
phase. Alternatively, if the uncertain region is pessimistically safe, SAFEMAC has converged since the
density uncertainty in the exploration phase is already low. The phases show an interesting dynamics;
SAFEMAC continuously iterates between the optimistic exploration and the optimistic coverage
phase until we know about the feasibility of the disk and their uncertainty is low. In the worst case,
SAFEMAC might explore the entire environment. In this case the sample complexity will be similar
to a two-stage algorithm, where we explore the whole domain and then optimize coverage in the
resulting known environment. However, in practice, SAFEMAC is much better than this worst case.
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5 Analysis

We now analyze MACOPT’s convergence and SAFEMAC’s optimality and safety properties.

MACOPT. To measure the progress of MACOPT, we study its regret, i.e., the difference between
its solution and the one we could find if we knew the true density. Since control coverage consists
in maximizing a monotone submodular function, we cannot efficiently compute the true optimum
even for known densities. However, we can efficiently find a solution that is at least (1− 1/e) within
the optimum. Thus, we quantify performance using the following notion of cumulative regret,

Regact(T ) =

(
1− 1

e

) T∑
t=1

F (X⋆; ρ, V )−
T∑

t=1

F (Xt; ρ, V ), (5)

where F (X⋆; ρ, V ) is the optimal coverage. We now state one of our main results, which guarantees
that the cumulative regret of MACOPT grows sublinearly in time (proof in Appendix D).

Theorem 1. Let δ ∈ (0, 1), βρ
t
1/2

= Bρ+4σρ

√
γρ
Nt + ln(1/δ) and CD = maxxi∈V |Di|/|V | ≤ 1.

With probability at least 1− δ, MACOPT’s regret defined in Eq. (5) is bounded by O(
√
Tβρ

T γ
ρ
NT ),

Pr

{
Regact(T ) ≤

√
8CDNTβρ

T γ
ρ
NT

log(1 +Nσ−2
ρ )

}
≥ 1− δ. (6)

The proof of 1 builds on two key ideas. First, we exploit the conditional linearity of the submodular
objective to bound the cumulative regret defined in Eq. (5) with a sum of per agent regrets. Secondly,
we bound the per agent regret with the information capacity γρ

NT , a quantity that measures the largest
reduction in uncertainty about the density that can be obtained from NT noisy evaluations of it.
Since γρ

NT [21] grows sublinearly with T for commonly used kernels, so does MACOPT’s regret
in Eq. (6). The immediate corollary of the above theorem, when the MACOPT stopping criteria is
reached (Line 3 of Algorithm 2) guarantees a near optimal solution up to ϵρ precision.

Corollary 1. Let t⋆ρ be the smallest integer, such that
t⋆ρ

βt⋆ρ
γNt⋆ρ

≥ 8C2
DN2

log(1+Nσ−2)ϵ2ρ
, then there exists a

t < t⋆ρ such that w.h.p, MACOPT terminates and achieves, F (Xt; ρ, V ) ≥ (1− 1
e )F (X⋆; ρ, V )− ϵρ.

SAFEMAC. This section presents our main result for safety-constrained multi-agent coverage
control. In particular, Theorem 2 (proof in Appendix E) guarantees that SAFEMAC safely achieves
near-optimal safe coverage in finite time.

Theorem 2. Let δ ∈ (0, 1), ϵρ ≥ 0, ∥ρ∥kρ ≤ Bρ, βρ
t
1/2

= Bρ + 4σρ

√
γρ
Nt + 1 + ln(1/δ), γρ

Nt
denote the information capacity associated with the kernel kρ. Let q(·) be Lq-Lipschitz continuous
and ϵq, β

q
t , γq

Nt be defined analogously. Given X0 ̸= ∅, q(xi
0) ≥ 0 for all i ∈ [N ]. Then, for any

heuristic ht : V → R, with probability at least 1 − δ, we have q(x) ≥ 0, for any x along the
state trajectory pursued by any agent in SAFEMAC. Moreover, let t⋆ρ be the smallest integer such

that
t⋆ρ

βt⋆ρ
γNt⋆ρ

≥ 8C2
DN2

log(1+Nσ−2)ϵ2ρ
, with CD = max

xi∈V

|Di|
|V | ≤ 1 and let t⋆q be the smallest integer such

that
t⋆q

βt⋆q
γNt⋆q

≥ C|R̄0(X0)|
ϵ2q

, with C = 8/ log(1 + σ−2
q ) then, there exists t ≤ t⋆q + t⋆ρ, such that with

probability at least 1− δ,∑
B∈Bt

F (XB
t ; ρ, R̄0(X

B
0 )) ≥

(
1− 1

e

) ∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))− ϵρ. (7)

The theoretical analysis has two components: (i) we show SAFEMAC’s coverage is near-optimal at
convergence (Lemma 10), and (ii) we prove it converges in finite time. Since SAFEMAC learns the
constraint and the density, we must bound the sample complexity for both to prove (ii). For the
constraint, we extend the results for single-agent GOOSE to our multi-agent setting (Appendix F).
For the density, we use results from Theorem 1 to show that, within a coverage phase, the cumulative
regret is sublinear. Next, we use additivity of the information gain (Lemma 13) between any pair
of coverage phases to bound the sample complexity of density for the subsequent coverage phases.
Combining these results, we obtain Theorem 2.

Intermediate recommendation. Theorem 2 guarantees that SAFEMAC converges to a safe and near-
optimal solution. Can it also make sensible recommendations before the stopping criteria are met?
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Figure 3: The contours in: a) show the synthetic density and the obstacles marked by the black blocks,
b) show the Gorilla nests distribution with weather constraints marked by the black dashed line, and
its contours with grey dashed line. c) Compares MACOPT with UCB in the safe gorilla environment.
MACOPT does a more principled exploration of the coverage and does not stick to a local minimum.

Ideally, such recommendations should (i) be safely reachable and (ii) ensure a minimum coverage.
To satisfy (i), they should be in the pessimistic safe set, Sp

t . To satisfy (ii), their coverage should
be computed according to F (·; lρt−1, S

p
t ), i.e., assuming a worst-case density, lρt−1, and a worst-case

feasible set, Sp
t . If the greedy recommendation Xt is in Sp

t , we can recommend it at intermediate
steps. However, this is not always the case and we need an alternative. To this end, we compute X l,B

t ,
i.e., the greedy solution w.r.t. the worst-case objective, F (·; lρt−1, S

p,B
t )∀B ∈ Bpt . At any time T ,

SAFEMAC recommends the best of either strategy up to time T according to the worst-case objective.
In Appendix E.1, we show that such recommendation is also near optimal at convergence.

6 Experiments

This section compares MACOPT and SAFEMAC to existing methods (or their extensions) on synthetic
and real-world problems. We validate our theoretical claims and observe their superiority. We set
βq = 3 and βρ = 3 for all t ≥ 1, it ensures safety as well as efficient exploration in practice [12].
Experiment details and extended empirical analysis are in Appendix G.

Environments. We perform our experiments with N = 3 agents in a 30 × 30 grid world where
states are evenly spaced over [0, 3]2. Each agent’s disk is defined as the region an agent can reach in
r = 5 steps in the defined grid. We normalize coverage with a maximum value

∑
v∈R̄0(X0)

ρ(v)/|V |.
Below, we present the 3 environments we consider.

i) In synthetic data, both the density ρ and the constrain q are sampled from a GP with zero mean and
Matérn Kernel with ν = 2.5, scale σk = 1, and lengthscale l = 2. The observations are perturbed by
i.i.d noiseN (0, 10−3). ii) In obstacles, we sample maps with several block-shaped obstacles (Fig. 3a)
and we aim to maximize coverage while avoiding dangerous collisions. At v, each agent senses the
distance to the nearest obstacle dm(v), which could be given by sensors such as 1D-Lidars. We use
q′(v) = 1/(1 + exp(−1.5dm(v))), to map the distance between [0, 3] and saturate the constraint
value for large distances, and we set q(v) = q′(v)− 0.5 to avoid collisions. The density is sampled
from the same GP as the synthetic case. iii) In gorilla nest, we simulate a bio-diversity monitoring
task, where we aim to cover areas with high density of gorilla nests with a quadrotor in the Kagwene
Gorilla Sanctuary (Fig. 3b) . Regions affected by adverse weather (e.g. rain and storms) are unsafe
for the drone due to higher chances of crashes and should be avoided. As a proxy for bad weather,
we use the cloud coverage data over the KGS from OpenWeather [22]. The nest density is obtained
by fitting a smooth rate function [23] over Gorilla nest counts [24].

MACOPT. We compare MACOPT to UCB, a baseline that skips the uncertainty sampling step from
Section 4.1 and obtains measurements at the centers of the GREEDY sensing regions. We further
develop two sample-efficient extensions of MACOPT: i) Correlated upper bound (CUB), a variant
of MACOPT that constructs tighter upper confidence bound of the coverage function utilizing the
covariance of density, instead of using the sum of density UCB. ii) Hallucinated uncertainty sampling
(H), a variant of MACOPT that samples at the most informative location for each agent i, after
hallucinating sampling locations of {1, . . . i− 1} agents. Please see Appendix D.1 for theoretical
analysis. Fig. 3c shows a comparison in the gorilla environment on a day of good weather, i.e. when
all locations are safe. Here, UCB gets stuck in a local optimum as it does not reduce the uncertainty
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Figure 4: Comparison of SAFEMAC with PASSIVEMAC and Two-Stage in all environments at conver-
gence (a) and (b) and during optimization for the gorilla environment in (c). SAFEMAC trades-off
learning about density and constraints, such that it finds a solution comparable to Two-Stage more
efficiently, whereas PASSIVEMAC gets stuck in a local optimum.

of the density, whereas MACOPT explores more and achieves a higher coverage value up to 25%.
Moreover, variants of MACOPT account for correlation and condition on other agents’ measurement
locations, which results in achieving the same coverage but more efficiently.

SAFEMAC. We compare SAFEMAC with two baselines: i) a two-stage algorithm [25], that first fully
explores the feasible region, and then uses MACOPT to maximize the coverage; ii) PASSIVEMAC,
a baseline inspired by [26] that runs MACOPT in the pessimistic set and passively measures the
constraint in the process. Figs. 4a and 4b show the coverage at convergence and the number of
samples to converge for SAFEMAC and the two baselines across all the environments. The results
are averaged over 50 instances produced using different seeds and samples for every environment.
In Fig. 4b, the y-axis is normalized with the maximum number of samples in the instance and then
averaged over all instances. PASSIVEMAC converges quickly but gets stuck in a local optimum as it
does not actively explore the constraint. SAFEMAC and Two-Stage converge to much higher coverage
values. However, SAFEMAC is up to 50% more sample efficient thanks to its goal-oriented exploration.
Fig. 4c shows the coverage value of the intermediate safe recommendations (Section 5) in the gorilla
environment as a function of the number of samples. It confirms the previous results: SAFEMAC finds
solutions comparable to Two-Stage more efficiently and PASSIVEMAC gets stuck in a local optimum.

Scalability. SAFEMAC utilizes the GREEDY algorithm, which is linear in the number of nodes (domain
size). In each iteration, SAFEMAC computes a greedy solution N times (one for each agent), which
makes it linear in the number of agents. We model density and constraint using GP, which scales cu-
bically with the number of samples. To demonstrate scalability in practice, we conducted experiments
with N = 3, 6, 10, 15 agents each with domain length of 30, 40, 50 and 60 in Appendix G.1

7 Related work

Our work relates to multiple fields. We highlight the most relevant connections, referencing surveys
where possible; an exhaustive overview is beyond the scope of this paper.

Bayesian optimization. In BO, an agent sequentially evaluates a noisy objective, seeking to max-
imize it [27]. In contrast, the quantity we measure differs from our objective. Partial monitoring [28]
addresses such issues in an abstract setting [20, 29]. We exploit special structure in our problem. In
coverage control with unknown density, this challenge is often addressed by learning the density uni-
formly over the domain [30, 31]. In contrast, MACOPT learns the density only at promising locations.

Coverage control. MAC with known densities is a well-studied NP hard [32] problem. Many
algorithms use efficient heuristics to converge quickly to a local optimum. One popular strategy
is Lloyd’s algorithm [33], which has been studied in different settings, e.g., with known densities
[34, 35], a-priori unknown densities [31, 36–38], using graph neural networks [39], taking into
account agent’s dynamics and constraints [40], or in case of non-identical robots [41]. These methods
apply to continuous state and action spaces and show convergence to local optima, but lack optimality
guarantees [30, 31, 40] and sample complexity bounds. Moreover, their extension to non-convex,
disconnected domains is not trivial [42]. Coverage control is also studied in the episodic setting
to learn the unknown policy or the environment using deep RL methods [43, 44].
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Submodular optimization. Submodular functions are ubiquitous in machine learning [45] as they
can be efficiently approximately maximized under different kinds of constraints [46]. For example,
the GREEDY algorithm can be used in case of cardinality constraints [13] to maximize quantities like
mutual information [47] or weighted coverage functions [15]. Online submodular maximization aims
at optimizing unknown submodular functions from noisy measurements [48]. It has multiple applica-
tions, including optimization of numerical solvers [49], information gathering [50] and crowd-sourced
image collection summarization [51]. Particularly related to ours is the work in [52], which proposes
an algorithm for contextual news recommendation for linear user preferences with strong regret guar-
antees. In contrast to that setting, we consider dynamic agents, safety constraints and partial feedback.

Safety. Depending on the safety formulation and the assumptions, many algorithms have been pro-
posed for safe learning in dynamical systems, e.g., based on model predictive control [53], curriculum
learning [54], Lyapunov functions [55, 56], reachability [57], CMDPs [58], behavioral system theory
[59], and more [60–62]. Here, we focus on the setting that is most closely related to ours, i.e., one
with unknown but sufficiently regular instantaneous constraints that must be satisfied at all times. For
stateless problems, e.g. BO, [26, 63] propose algorithms with safety and optimality guarantees with
different exploration strategies. For stateful problems, [64] studies the pure exploration case, while
[25] extends the two-stage approach from [63]. These approaches may be sample inefficient as they
may explore the constraint in regions irrelevant for the objective. GOOSE [12] addresses this problem
for both the stateful and stateless setting. The only work in this context that addresses multi-agent prob-
lems is [65]. However, their objective differs from ours, and they do not establish safety guarantees.

8 Conclusion

We present two novel algorithms for multi-agent coverage control in unconstrained (MACOPT) and
safety critical environments (SAFEMAC). We show MACOPT achieves sublinear cumulative regret, de-
spite the challenge of partial observability. Moreover, we prove SAFEMAC achieves near optimal cov-
erage in finite time while navigating safely. We demonstrate the superiority of our algorithms in terms
of sample efficiency and coverage in real-world applications such as safe biodiversity monitoring.

Currently, our algorithms choose informative targets but do not plan informative trajectories, which
is crucial in robotics. We aim to address this in future work. Finally, while in many real-world
applications the density and the constraints are as regular as assumed here, in some they are not.
In these cases, our optimality and safety guarantees would not apply.
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A Definitions

A.1 Notations

Problem Formulation
F ≜ Submodular function, F : 2V → R
V ≜ Domain
v ≜ An element in the domain V
F (·; ·, ·)≜ Coverage objective defined in Eq. (1)
i ≜ Agent index
ρ ≜ Density function, ρ : V → R
q ≜ Constraint function, q : V → R
Di ≜ Sensing region around agent i
D1:i ≜ ∪ij=1D

j , union of sensing regions of
agents 1 : i

Di− ≜ Di \ D1:i−1, region occupied by
agent i, but not by 1 : i− 1 agents

D̃i ≜ Sensing region occupied by greedy
optimal location of agent i

D̃i− ≜ D̃i \D1:i−1

CD ≜ maxi |Di|/|V | ≤ 1, Maximum frac-
tion of area covered by an agent

N ≜ Total number of agents
Batch Operation

B ≜ A batch of agents, {1, 2 . . . |B|}
B′t(i) ≜ {j ∈ [N ]|Su,i

t ∩ Su,j
t ̸= ∅}, agents

connected in union set with agent i
Bt ≜

⋃
i∈[N ] B′t(i). Collection of batches

sharing the union set.
B ≜ Collection of batches sharing the

largest reachable set (R̄ϵq (X
B
0 ))

Bpt ≜ Collection of batches sharing the pes-
simistic set
X Notations

xi
t ≜ Planned location of agent i at time t

xg,i
t ≜ Goal of agent i at time t, defined by

Line 6 and Line 8 in Algorithm 4
x̃i ≜ Greedy location of agent i, Eq. (19)
Xt ≜ ∪i∈[N ]{xi

t}, A set of agents at time t
XB

t ≜ ∪i∈B{xi
t}, Agents in B at time t

XB
⋆ ≜ Optimal location of batch B agents

X⋆ ≜ ∪B∈BX
B
⋆

X1:i ≜ A set of agents 1 to i

xg,1:N
1:T ≜ A set of 1 : N agents’ goal locations

up to time T
Density (ρ) and Constraint (q) GP

lqt ≜ LCB of the constraint at time t
uq
t ≜ UCB of the constraint at time t

βq
t ≜ Scaling, defined as per [18]

Lq ≜ Lipschitz constant
ϵq ≜ Statistical confidence up to which

constraint function q is learnt
d(v, z) ≜ Distance metric
σq ≜ Standard deviation of constraint ob-

servations noise
σq
t ≜ Posterior standard deviation of q GP

Bq ≜ Norm bound of q, ∥q∥kq ≤ Bq

ηq ≜ Noise in constraint observations
lρt ≜ LCB of the density at time t
uρ
t ≜ UCB of the density at time t

βρ
t ≜ Scaling, defined as per [18]

wt ≜
∑N

i=1 u
ρ
t−1(x

g,i
t ) − lρt−1(x

g,i
t ), sum

of highest uncertainty below disks
ϵρ ≜ Accuracy threshold for learning the

density, w ≤ ϵρ
σρ
t ≜ Posterior standard deviation of ρ GP

σρ ≜ Standard deviation of density obser-
vations noise

Bρ ≜ Norm bound of ρ, ∥ρ∥kρ ≤ Bρ

δ ≜ ∈ (0, 1) for high probability
H(yA) ≜ Shannon entropy
I(yA; ρ) ≜ H(yA)−H(yA|ρ), Information gain
γ ≜ Information capacity
γρ
NT ≜ supA⊂V I(YA; ρ), A is set of NT

obs. γρ
NT := γNTρ ,ρ is clear in T .

γq
NT ≜ supA⊂V I(YA; q), A is set of NT

obs. γq
NT := γNTq ,q is clear in T .

Tr ≜ Trace of a Matrix
Kρ ≜ Posterior kernel matrix with ρ obs.
λi,t ≜ Eigenvalue of the kernel matrix
ηρ ≜ Noise in the density observations

Time
t ≜ Any round of the algorithm
T ≜ Algorithm termination time
t⋆q ≜ Maximum number of q observations
t⋆ρ ≜ Maximum number of ρ observations
t⋆ρ

1 ≜ Maximum number of density obser-
vations for the first coverage phase

δt⋆ρ
n ≜ Maximum number of density obs.

from (n−1)th to nth coverage phase
δtnρ ≜ Number of density obs. from (n −

1)th to nth coverage phase
tnρ ≜ Number of density observations till

nth coverage phase
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GOOSE and Safe Expansion
pt(S) ≜ pessimistic operator {v ∈ V, |∃z ∈ S : lqt (z)− Lqd(v, z) ≥ 0}
o
ϵq
t (S) ≜ optimistic operator {v ∈ V, |∃z ∈ S : uq

t (z)− ϵq − Lqd(v, z) ≥ 0}
P̃t(·) ≜ Pessimistic expansion operator
Õt(·) ≜ Optimistic expansion operator
R̄ϵq ({x

i
0}) ≜ Maximum safely reachable set up to ϵq , Eq. (12)

R̄ϵq (X
B
0 ) ≜ ∪i∈BR̄ϵq ({x

i
0})

Sp,i
t ≜ Pessimistic set of agent i, P̃t(S

p,i
t−1)

Sp,B
t ≜ ∪i∈BS

p,i
t

Sp
t ≜ Pessimistic set of all N agents

S
o,ϵq,i
t ≜ Optimistic set of agent i, Õϵq

t (Sp,i
t−1)

S
o,ϵq,B
t ≜ ∪i∈BS

o,ϵq,i
t

S
o,ϵq
t ≜ Optimistic set of all N agents

Su,i
t ≜ Union set, So,ϵq,i

t ∪ Sp,i
t

Su,B
t ≜ ∪i∈BS

u,i
t

Su
t ≜ Union set of all N agents

Rsafe
ϵq (S) ≜ True safety constraint operator, Eq. (8)

Rreach
n (S) ≜ n step reachability in the graph, Eq. (9)

R̃reach(S) ≜ limn→∞ Rreach
n (S)

Rn
ϵq (S) ≜ n step safely reachable set in the graph, Eq. (12)

R̄ϵq (S) ≜ limn→∞ R n
ϵq (S)

W
ϵq
t ≜ Set of locations whose safety is not ϵq-accurate, Algorithm 3

G
ϵq
t (α) ≜ A set of potential immediate expanders, Algorithm 3

p ≜ Priority, Algorithm 3
h(v) ≜ Heuristic function, Algorithm 3
At(α) ≜ Subset of locations with equal priority, Algorithm 3

Regret
F (X) ≜ F (X; ρ, V ), short notation when ρ and V are obvious
∆(xi|X1:i−1; ρ, V ) ≜ Marginal coverage gain by agent i, Eq. (17)
∆(xi|X1:i−1) ≜ ∆(xi|X1:i−1; ρ, V ), short notation when ρ and V are obvious
Regact(T ) ≜ Actual regret in unconstrained case, Eq. (5)
OPT i

l ≜ Per agent cumulative optimal gain, Eq. (21)
Regi(T ) ≜ Per agent regret, Eq. (22)
OPT ≜

∑T
t=1 F (X⋆)

ractt ≜ Simple actual regret, constrained case, Eq. (29)
rO
t ≜ Simple actual regret in union set, constrained case, Eq. (29)
rt ≜ Simple per agent regret, constrained case, Eq. (29)
RegO

act(T ) ≜ Cumulative actual regret, Eq. (30)
RegO

l (T ) ≜ Sum of cumulative per agent regret, Eq. (30)

18



A.2 GOOSE operators

We denote with G = (V, E) the undirected graph describing the dependency among locations, V
indicates the vertices of the graph, i.e., the state space of the problem and E ⊆ V × V denotes the
edges. In our setting, there are N identical agents having the same transition dynamics. Each agent
can have a separate R̃ϵq ({x

i
0}).

The baseline as per true safety constraint operator:

Rsafe
ϵq (S) = S ∪ {v ∈ V \S, |∃z ∈ S : q(z)− ϵq − Lqd(v, z) ≥ 0} (8)

Now, we define reachability operator as all the locations that can be reached starting from set S.

Rreach(S) = S ∪ {v ∈ V \S, |∃z ∈ S : (z, v) ∈ E},
Rreach

n (S) = Rreach
n (Rreach

n−1(S)) with Rreach
1 (S) = Rreach(S) (9)

R̃reach(S) = lim
n→∞

Rreach
n (S), (10)

For defining R̄ϵq (S),

Rϵq (S) = Rsafe
ϵq (S) ∩ R̃reach(S)

Rn
ϵq (S) = Rϵq (R

n-1
ϵq (S)) with R1

ϵq (S) = Rϵq (S) (11)

R̄ϵq (S) = lim
n→∞

R n
ϵq (S) (12)

Optimistic and pessimistic constrain satisfaction operators:

o
ϵq
t (S) = {v ∈ V, |∃z ∈ S : uq

t (z)− ϵq − Lqd(v, z) ≥ 0}
p
ϵq
t (S) = {v ∈ V, |∃z ∈ S : lqt (z)− ϵq − Lqd(v, z) ≥ 0}

In this section, for simplicity, we have considered an undirected graph. This results in the same
reachability and returnability operators since the edges are bidirectional. The extension to the directed
graph is easy by using the reachability, the returnability and the ergodic operator. (Appendix A of
Turchetta et al. [12] does it for the directed graph, so we did not repeat it here)

The optimistic and pessimistic expansion operators are given by,

O
ϵq
t (S) = o

ϵq
t (S) ∩ R̃reach(S)

O
ϵq,n
t (S) = O

ϵq
t (O

ϵq,n−1
t (S)) with O

ϵq,1
t (S) = O

ϵq
t (S)

Õ
ϵq
t (S) = lim

n→∞
O

ϵq,n
t (S)

Pessimistic expansion operator

P
ϵq
t (S) = p

ϵq
t (S) ∩ R̃reach(S)

P
ϵq,n
t (S) = P

ϵq
t (P

ϵq,n−1
t (S)) with P

ϵq,1
t (S) = P

ϵq
t (S)

P̃
ϵq
t (S) = lim

n→∞
P

ϵq,n
t (S)

This gives the optimistically and pessimistically, safe and reachable set respectively as:

S
o,ϵq
t = Õ

ϵq
t (Sp

t−1)

Sp
t = P̃ 0

t (S
p
t−1)

Now in our setting with N agents, we denote with S
o,ϵq,i
t and Sp,i

t , the optimistic and the pessimistic
set respectively of agent i. The union set for any agent i is defined as,

Su,i
t := S

o,ϵq,i
t ∪ Sp,i

t (13)
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x2

D2−
x1

D1
x3

D3−
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{4, 5}}

Figure 5: Disconnected safe regions: Agents are partitioned into two batches. Agent 1 covers D1

(green), 2 covers D2− (orange) and 3 covers D3− (yellow).

A.3 Batching operation

For a set of agents, we partition them in batches, such that each batch B contains the agents that
share at least a node in the union set. The total collection of batches, B, is defined as,

Bt =
⋃

i∈[N ]
B′t(i) where B′t(i) = {j ∈ [N ] |Su,i

t ∩ Su,j
t ̸= ∅} (14)

Analogous to Bt, we define Bpt (or B) as collection of batches where any B ∈ Bpt (or B) contains
agents which are topologically connected in the pessimistic (or maximum safely reachable) set.
Precisely,

Bpt =
⋃

i∈[N ]
B′t(i) where B′t(i) = {j ∈ [N ] |Sp,i

t ∩ Sp,j
t ̸= ∅} (15)

B =
⋃

i∈[N ]
B′(i) where B′(i) = {j ∈ [N ] | R̄ϵq ({x

i
0}) ∩ R̄ϵq ({x

j
0}) ̸= ∅} (16)

The resulting batch collection are mutually exclusive that is ∀ B1, B2 ∈ Bt, B1 ̸= B2, B1 ∩B2 = ∅
and also,

∑
B∈Bt

|B| = N .
For any batch B we can define their combined union set, pessimistic set and the maximum safely
reachable set as ,

Su,B
t := ∪i∈BS

u,i
t , Sp,B

t := ∪i∈BS
p,i
t , R̄ϵq (X

B
0 ) = ∪i∈BR̄ϵq ({x

i
0}).

B Disk Coverage as a submodular function

Set functions Function F : 2V → R that assign each subset A ⊆ V a value F (A).

Discrete Derivative For a set function F : 2V → R , A ⊆ V , and e ∈ V , let ∆F (e|A) :=
F (A ∪ {e})− F (A) is discrete derivative of F at A with respect to e.

Submodular functions A function F(.) is a submodular if, ∀A ⊆ B ⊆ V and ∀e ∈ V \B
F (A ∪ {e})− F (A) ≥ F (B ∪ {e})− F (B),

∆F (e|A) ≥ ∆F (e|B).

For the disk coverage function F (A), defined in Eq. (1),

F (X; ρ, V ) =
∑
xi∈X

∑
v∈Di−

ρ(v)/|V |,

We can write marignal gain as,

F (A ∪ {e})− F (A) =
∑

xi∈A∪{e}

∑
v∈Di−

ρ(v)/|V | −
∑
xi∈A

∑
v∈Di−

ρ(v)/|V |

=
∑
xi∈A

∑
v∈Di−

ρ(v)/|V |+
∑

xi∈{e}

∑
v∈Di\D1:|A|

ρ(v)/|V | −
∑
xi∈A

∑
v∈Di−

ρ(v)/|V |

=
∑

xi∈{e}

∑
v∈Di\D1:|A|

ρ(v)/|V |
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≥
∑

xi∈{e}

∑
v∈Di\D1:|B|

ρ(v)/|V | (Since, A ⊆ B, |Di \D1:|A|| ≥ |Di \D1:|B||

=
∑

xi∈B∪{e}

∑
v∈Di−

ρ(v)/|V | −
∑
xi∈B

∑
v∈Di−

ρ(v)/|V |

= F (B ∪ {e})− F (B)

=⇒ F (A ∪ {e})− F (A) ≥ F (B ∪ {e})− F (B)

This shows that the coverage function defined in Eq. (1) is a Submodular function.

Monotonicity is directly implied by the definition of F (A), as an additive function of ρ. Since,
ρ(v) ≥ 0, ∀v ∈ V =⇒ F (A) ≤ F (B), if A ⊆ B.
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C Agent wise regret bound

In this section, we upper bound the actual ("greedy") regret with the per agent regret in the uncon-
strained and the constrained case. The proof methodology to bound with per agent regret is motivated
from [52]. We first define marginal gain and agent-wise regret. Then we give a proposition for the
submodularity rate equation, which will be central to our lemmas. Finally, we bound the actual regret
with the sum of per agent regret for unconstrained and then constrained case in

Marginal coverage gain:

∆(xi
t|X1:i−1

t ; ρ, V ) = F (X1:i−1
t ∪ {xi

t}; ρ, V )− F (X1:i−1
t ; ρ, V )

=
∑

xi
t∈X1:i

t

∑
v∈Di−

t

ρ(v)/|V | −
∑

xi
t∈X1:i−1

t

∑
v∈Di−

t

ρ(v)/|V |

=
∑

v∈Di−
t

ρ(v)/|V | (17)

Using, X1:0 = {∅}, F (X1:0) = 0, it follows that,

N∑
i=1

∆(xi
t|X1:i−1

t ; ρ, V ) = F (X1:N
t ; ρ, V ) (18)

Tilde Notations:

x̃i
t = argmax

xi
t

∆(xi
t|X1:i−1

t ; ρ, V ) (19)

Proposition 1 (Eq. (3-7), [46], Submodular rate equation). For a monotone Submodular function F
the following holds,

max
xi

F (X1:i−1 ∪ {xi})− F (X1:i−1) ≥ F (X⋆)− F (X1:i−1)

N
, (20)

where X1:i is the set of i agents being picked greedily and N is the number of agents in X⋆.

Proof. Let X⋆ = {x1
⋆, . . . , x

N
⋆ }

F (X⋆) ≤ F (X⋆ ∪X1:i−1) (With monotonicity of F )

= F (X1:i−1) +

N∑
j=1

∆(xj
⋆|X1:i−1 ∪ {x1

⋆, . . . , x
j−1
⋆ }) (Telescopic sum)

≤ F (X1:i−1) +
∑
x∈X⋆

∆(x|X1:i−1) (Follows by Submodularity of F )

≤ F (X1:i−1) +
∑
x∈X⋆

(F (X1:i)− F (X1:i−1))

(since, xi is added greedily to maximize ∆(x|X1:i−1))

≤ F (X1:i−1) +N(F (X1:i)− F (X1:i−1)) (N agents in X⋆)

=⇒ F (X⋆)− F (X1:i−1)

N
≤ F (X1:i)− F (X1:i−1)

The proposition follows directly since xi is added greedily to X1:i−1.

C.1 Unconstrained case

Note that for unconstrained case domain V and utility ρ is obvious, so for convenience we use short
hand notation, i.e, F (·; ρ, V ) = F (·) and ∆(·; ρ, V ) = ∆(·).
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Locally optimal gain. Let us define OPT i
l as the local optimal coverage gained by agent i, given all

the locations of agents 1 : i− 1, formally given by,

OPT i
l =

T∑
t=1

(
max
xi
t

F (X1:i−1
t ∪ {xi

t})− F (X1:i−1
t )

)
=

T∑
t=1

∆(x̃i
t|X

1:i−1
t ) (21)

We denote with OPT , the optimal coverage, precisely OPT =
∑T

t=1 F (X⋆).

Per agent regret. Let us define local regret, as the difference in coverage gain in picking state x̃i
t vs

the picked location xi
t (this disparity is due to not knowing the actual density)

Regi(T ) =

T∑
t=1

∆(x̃i
t|X

1:i−1
t )−

T∑
t=1

∆(xi
t|X1:i−1

t ) = OPT i
l −

T∑
t=1

∆(xi
t|X1:i−1

t ) (22)

Actual regret. The actual regret is given by,

Regact(T ) =
(
1− 1

e

) T∑
t=1

F (X⋆)−
T∑

t=1

F (Xt) =
(
1− 1

e

)
OPT −

T∑
t=1

F (Xt) (23)

To prove. In this section we aim to show that actual regret bounded by sum of per agent regret,
precisely,

Regact(T ) ≤
N∑
i=1

Regi(T )

N∑
i=1

Regi(T ) ≥
(
1− 1

e

)
OPT −

T∑
t=1

F (X1:N
t ) (Using defi. of Regact(T ) from Eq. (23))

Lemma 1. For all N agents’ local per agent regret Regi(T ), we have,
T∑

t=1

∆(xi
t|X1:i−1

t ) ≥ 1

N

(
OPT −

T∑
t=1

F (X1:i−1
t )

)
−Regi(T ) (24)

Proof.

∆(x̃i
t|X

1:i−1
t ) = max

xi
t

F (X1:i−1
t ∪ {xi})− F (X1:i−1

t ) (Using definition)

≥ F (X⋆)− F (X1:i−1
t )

N
(Using Eq. (20) from Proposition 1)

OPT i
l ≥

1

N

( T∑
t=1

F (X⋆)−
T∑

t=1

F (X1:i−1
t )

)
(Sum over time)

=
1

N

(
OPT −

T∑
t=1

F (X1:i−1
t )

)
(Using definition of OPT )

T∑
t=1

∆(xi
t|X1:i−1

t ) ≥ 1

N

(
OPT −

T∑
t=1

F (X1:i−1
t )

)
−Regi(T ) (Using def. of Regi(T ) Eq. (22))

Lemma 2. For any time t, Xt being the recommended location by MACOPT, we have
T∑

t=1

F (X1:N
t ) ≥

(
1− 1

e

)
OPT −

N∑
i=1

Regi(T ) (25)

And using definition of Regact(T ) from Eq. (23), this further implies that,

Regact(T ) ≤
N∑
i=1

Regi(T ) (26)
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Proof. The proof is similar to the Lemma 2 from [52]. We begin to prove by induction,

OPT −
T∑

t=1

F (X1:i
t ) ≤

(
1− 1

N

)i

OPT +

i∑
m=1

Regml (T ) (27)

Our main goal, i.e, Eq. (25) can be proved by substituting i = N and using the inequality
(1− 1/N)N < 1/e in Eq. (27).

For i = 0, corresponds to no agent case. So it’s trivial.

Let’s consider gap to optimal value, when i elements are already selected,

δi = OPT −
T∑

t=1

F (X1:i
t ) (LHS of Eq. (27))

= OPT −
T∑

t=1

i∑
m=1

∆(xm
t |X1:m−1

t ) (Sum marginal gain; Using Eq. (18))

δi−1 = OPT −
T∑

t=1

i−1∑
m=1

∆(xm
t |X1:m−1

t )

=⇒ δi = δi−1 −
T∑

t=1

∆(xi
t|X1:i−1

t ) (Subtract δi−1 from δi)

=⇒
T∑

t=1

∆(xi
t|X1:i−1

t ) = δi−1 − δi (28)

This says that the gap to optimal reduces by
∑T

t=1 ∆(xi
t|X1:i−1

t ) after adding element xi
t ∀ t.

T∑
t=1

∆(xi
t|X1:i−1

t ) ≥ 1

N
(δi−1)−Regi(T ) (From Eq. (24) and δi definition)

=⇒ δi−1 − δi ≥ 1

N
(δi−1)−Regi(T ) (From Eq. (28))

=⇒ δi ≤
(
1− 1

N

)
δi−1 +Regi(T )

≤
(
1− 1

N

)2

δi−2 +
2∑

m=1

Regi(T )

(Subs δi−1, Doing the telescopic bound)
...

≤
(
1− 1

N

)i

δ0 +

i∑
m=1

Regi(T )

=
(
1− 1

N

)i

OPT +

i∑
m=1

Regi(T )

OPT −
T∑

t=1

F (X1:i
t ) ≤

(
1− 1

N

)i

OPT +

i∑
m=1

Regml (T ) (Using δi definition)

Hence proved.
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C.2 Constrained case

Simple regret. We define for a particular t, simple regret ractt and per agent local regret rt respectively
as:

ractt = (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))−

∑
B∈Bt

∑
i∈B

∆(xi
t|X1:i−1

t ; ρ, Su,B
t ),

rO
t = (1− 1

e
)
∑
B∈Bt

F (XB
⋆ ; ρ, Su,B

t )−
∑
B∈Bt

∑
i∈B

∆(xi
t|X1:i−1

t ; ρ, Su,B
t )

rt =
∑
B∈Bt

∑
i∈B

∆(x̃i|X1:i−1
t ; ρ, Su,B

t )−∆(xi
t|X1:i−1

t ; ρ, Su,B
t ) (29)

Cumulative regret. The actual cumulative regret RegO
act(T ) and the per agent cumulative regret

RegO
l (T ) are respectively given by,

RegO
act(T ) =

T∑
t=1

ractt and RegO
l (T ) =

T∑
t=1

rt (30)

On bounding per batch regret.

Optimal coverage in a batch B

OPTt = F (XB
⋆ ; ρ, Su,B

t )

OPT i
t = max

xi
F (X1:i−1

t ∪ {xi}; ρ, Su,B
t )− F (X1:i−1

t ; ρ, Su,B
t )

= max
xi

∆(xi|X1:i−1
t ; ρ, Su,B

t ) = ∆(x̃i|X1:i−1
t ; ρ, Su,B

t )

riB(t) = ∆(x̃i|X1:i−1
t ; ρ, Su,B

t )−∆(xi
t|X1:i−1

t ; ρ, Su,B
t ) (31)

To prove:

F (XB
t ; ρ, Su,B

t ) ≥
(
1− 1

e

)
OPTt −

∑
i∈B

riB(t) (32)

Proposition 2. Let NB be the number of agents in batch B and for all such agents per agent regret
is riB(t). Then the following holds,

∆(xi
t|X1:i−1

t ; ρ, Su,B
t ) ≥ 1

NB

(
OPTt − F (X1:i−1

t ; ρ, Su,B
t )

)
− riB(t) (33)

Proof.

∆(x̃i
t|X

1:i−1
t ; ρ, Su,B

t ) = max
xi
t

F (X1:i−1
t ∪ {xi}; ρ, Su,B

t )− F (X1:i−1
t ; ρ, Su,B

t )

(Using definition)

≥ F (X⋆; ρ, S
u,B
t )− F (X1:i−1

t ; ρ, Su,B
t )

NB
(Using Eq. (20) from Proposition 1)

OPT i
t ≥

1

NB

(
OPTt − F (X1:i−1

t ; ρ, Su,B
t )

)
(Using definition of OPTt and OPT i

t )

∆(xi
t|X1:i−1

t ; ρ, Su,B
t ) ≥ 1

NB

(
OPTt − F (X1:i−1

t ; ρ, Su,B
t )

)
− riB(t)

(Using def. of riB(t) Eq. (31))
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Lemma 3. For any time t, XB
t being the recommended location by SAFEMAC in the union set Su,B

t ,
we have

F (XB
t ; ρ, Su,B

t ) ≥
(
1− 1

e

)
OPTt −

∑
i∈B

riB(t), (34)

Proof. The proof is similar to the Lemma 2 from [52]. We begin to prove by induction,

OPTt − F (X1:i
t ; ρ, Su,B

t ) ≤
(
1− 1

NB

)i

OPTt +

i∑
m=1

riB(t) (35)

For i = 0, corresponds to no agent case. So it’s trivial.

Let’s consider gap to optimal value, when i elements are already selected,

δi = OPTt − F (X1:i
t ; ρ, Su,B

t ) (LHS of Eq. (35))

= OPTt −
i∑

m=1

∆(xm
t |X1:m−1

t ; ρ, Su,B
t ) (sum of marginal gain)

δi−1 = OPTt −
i−1∑
m=1

∆(xm
t |X1:m−1

t ; ρ, Su,B
t )

=⇒ δi = δi−1 −∆(xi
t|X1:i−1

t ; ρ, Su,B
t ) (Subtract δi−1 from δi)

=⇒ ∆(xi
t|X1:i−1

t ; ρ, Su,B
t ) = δi−1 − δi (36)

This says that the gap to optimal reduces by ∆(xi
t|X1:i−1

t ; ρ, Su,B
t ) after adding element xi

t.

∆(xi
t|X1:i−1

t ; ρ, Su,B
t ) ≥ 1

NB
(δi−1)− riB(t) (From Eq. (33) and δi definition)

=⇒ δi−1 − δi ≥ 1

NB
(δi−1)− riB(t) (From Eq. (28))

=⇒ δi ≤
(
1− 1

NB

)
δi−1 + riB(t)

≤
(
1− 1

NB

)2

δi−2 +

2∑
m=1

riB(t)

(Subs δi−1, Doing the telescopic bound)
...

≤
(
1− 1

NB

)i

δ0 +

i∑
m=1

riB(t)

=
(
1− 1

NB

)i

OPTt +

i∑
m=1

riB(t)

OPTt − F (X1:i
t ; ρ, Su,B

t ) ≤
(
1− 1

NB

)i

OPTt +

i∑
m=1

riB(t) (Using δi definition)

Our main goal, i.e, Eq. (34) can be proved by substituting i = N and using the inequality (1 −
1/N)N < 1/e in Eq. (35). Hence proved.

On combining all the batches.
Lemma 4. For any time t, Xt being the location recommended by SAFEMAC, we have

ractt ≤ rO
t ≤ rt (37)

This further implies that,

RegO
act(T ) ≤ RegO

l (T ) (38)
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Proof. For a batch B of agents, using Eq. (35) from Lemma 3 and substituting riB(t) from Eq. (31)
we know that,

(1− 1

e
)F (XB

⋆ ; ρ, Su,B
t )−

∑
i∈B

∆(xi
t|X1:i−1

t ; ρ, Su,B
t )

≤
∑
i∈B

∆(x̃i|X1:i−1
t ; ρ, Su,B

t )−∆(xi
t|X1:i−1

t ; ρ, Su,B
t )

By summing over all the B ∈ Bt, we get

rO
t = (1− 1

e
)
∑
B∈Bt

F (XB
⋆ ; ρ, Su,B

t )−
∑
B∈Bt

∑
i∈B

∆(xi
t|X1:i−1

t ; ρ, Su,B
t )

≤
∑
B∈Bt

∑
i∈B

∆(x̃i|X1:i−1
t ; ρ, Su,B

t )−∆(xi
t|X1:i−1

t ; ρ, Su,B
t ) (39)

Note that in Eq. (29), both the XB
⋆ represents optimal agent’s location in their respective coverage set

i.e, R̄ϵq (x
i
0) and Su,B

t , hence both the XB
⋆ are different. Since,

⋃
i∈B R̄ϵq ({x

i
0}) ⊆ S

o,ϵq,B
t ⊆ Su,B

t

=⇒
∑

B∈B F (XB
⋆ ; ρ, R̄ϵq (X

B
0 )) ≤

∑
B∈Bt

F (XB
⋆ ; ρ, Su,B

t ),

Moreover on using Eq. (29), Eq. (39) and we can conclude,

ractt ≤ rO
t ≤ rt.

This further implies Eq. (38) using definition in Eq. (30). Hence Proved
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D Proof. for Theorem 1 (MACOPT)

Theorem 1. Let δ ∈ (0, 1), βρ
t
1/2

= Bρ+4σρ

√
γρ
Nt + ln(1/δ) and CD = maxxi∈V |Di|/|V | ≤ 1.

With probability at least 1− δ, MACOPT’s regret defined in Eq. (5) is bounded by O(
√
Tβρ

T γ
ρ
NT ),

Pr

{
Regact(T ) ≤

√
8CDNTβρ

T γ
ρ
NT

log(1 +Nσ−2
ρ )

}
≥ 1− δ. (6)

Proof. The proof for Theorem 1 goes in the following steps:

1. We first exploit the conditional linearity of the submodular objective to bound the cumulative
regret defined in Eq. (5) with a sum of per agent regret (

∑N
i=1 Regi(T )). Precisely, we show

Regact(T ) ≤
∑N

i=1 Regi(T ) in Lemma 2.

2. We next bound the per agent regret with the information capacity γρ
NT , a quantity that

measures the largest reduction in uncertainty about the density that can be obtained from
NT noisy evaluations of it.

• For this, we quantify the information MACOPT acquires through the noisy density
observations in Lemma 5, through the information gain I(yA; ρ) = H(yA)−H(yA|ρ),
where H denotes the Shannon entropy and A is the set of locations evaluated by
MACOPT.

• Next we bound the per agent regret Regi(T ) with the information gain in Lemma 6-7
which is in turn bounded by the maximum information capacity.

Finally, Theorem 1 is a direct consequence of Lemma 2 and Lemma 7.

In the end of the section, we proof Corollary 1 which guarantees near optimal result in finite time.

Lemma 5. The information gain for the points observed by MACOPT can be expressed as:

I(Yxg,1:N
1:T

; ρ) =
1

2

T∑
t=1

log(det(I + σ−2
ρ Kρ

xg,1:N
t

)) =
1

2

T∑
t=1

N∑
i=1

log(1 + σ−2
ρ λi,t),

where xg,1:N
1:T is the set of goal locations set by MACOPT for all 1 : N agents up to time T . Kρ

xg,1:N
t

is

the positive definite kernel matrix formed by the observed locations and λi,t represents eigenvalue of
the matrix.

Proof. We can precisely quantify this notion through the information gain

I(Yxg,1:N
1:T

; ρ) = H(Yxg,1:N
1:T

)−H(Yxg,1:N
1:T
|ρ) (40)

where H denotes the Shannon entropy. It can be defined as,

H(Yxg,1:N
1:T

) = H(Y 1:N
T |Yxg,1:N

1:T−1
) +H(Yxg,1:N

1:T−1
) (Defined Y 1:N

T := {y1T , y2T , ..., yNT })

=
1

2
log(det(2πe(σ2I +Kρ

xg,1:N
T

))) +H(Y 1:N
T−1|Yxg,1:N

1:T−2
) + ... (41)

=
1

2
N log(2πeσ2) +

1

2
log(det(I + σ−2

ρ Kρ

xg,1:N
T

)) +H(Y 1:N
T−1|Yxg,1:N

1:T−2
) + ... (42)

=
1

2

T∑
t=1

N log(2πeσ2) +
1

2

T∑
t=1

log(det(I + σ−2
ρ Kρ

xg,1:N
t

)) (43)

For Eq. (41), we used that, Y 1:N
T ∼ N (µρ

T−1(x
g,1:N
T ), σ2I + Kρ

xg,1:N
T

) is jointly a multivariate

Gaussian. Eq. (42) follows by simplifying det, precisely, 1
2 log(det(2πe(σ

2I + Kρ

xg,1:N
T

))) =
1
2 log((2πeσ

2)
N
det(I+σ−2

ρ Kρ

xg,1:N
T

)) and finally Eq. (43) by recursively repeating above 2 steps till
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t = 1. H(Yxg,1:N
1:T
|ρ) = 1

2

∑T
t=1 N log(2πeσ2) is the entropy because of the noise. On substituting

this, with Eq. (43) in Eq. (40) we obtain,

I(Yxg,1:N
1:T

; ρ) =
1

2

T∑
t=1

log(det(I + σ−2
ρ Kρ

xg,1:N
t

))

=
1

2

T∑
t=1

log(

N∏
i=1

(1 + σ−2
ρ λi,t)) (Using Eq. 45)

=
1

2

T∑
t=1

N∑
i=1

log(1 + σ−2
ρ λi,t) (44)

Hence Proved.

Log mat inequality:

log(det(I + σ−2
ρ Kρ)) = log(det(RR⊤ + σ−2

ρ RΛR⊤)) (Kρ = RΛR⊤, RR⊤ = I)

= log(det(R(I + σ−2
ρ Λ)R⊤))

= log(det(RR⊤)) + log(det(I + σ−2
ρ Λ)) (k is dimension of Kρ)

= log(

k∏
i=1

(1 + σ−2
ρ λi)) (45)

Lemma 6. Till any time T , βρ
t
1/2

= Bρ + 4σρ

√
γρ
Nt + 1 + ln(1/δ), if |ρ(v) − µρ

t−1(v)| ≤
β
1/2
t σρ

t−1(v) for all v ∈ V , then the agent wise cumulative regret Regi(T ), is bounded by∑T
t=1 2

√
βρ
t

∑
v∈Di−

t
σρ
t−1(v)/|V | for agent i.

Proof. For notation convenience: Di−
t := Di

t\D1:i−1
t and D̃i−

t := D̃i
t\D1:i−1

t

In MACOPT xi
t is defined such that,

xi
t = argmax

v

∑
v∈Di−

t

µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v) (46)

Due to our picking strategy,∑
v∈D̃i−

t

ρ(v) ≤
∑

v∈D̃i−
t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
≤

∑
v∈Di−

t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
(47)

This first inequality follows due to upper bound and the second one follows based on how xi
t is picked

(Eq. (46)).

Regi(T ) =

T∑
t=1

∆(x̃i
t|X

1:i−1
t )−

T∑
t=1

∆(xi
t|X1:i−1

t ) (with definition Eq. (22))

=

T∑
t=1

( ∑
v∈D̃i−

t

ρ(v)−
∑

v∈Di−
t

ρ(v))
)
/|V | (Using defi. ∆(.|X1:i−1

t ) Eq. (17))

≤
T∑

t=1

( ∑
v∈Di−

t

µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)−

∑
v∈Di−

t

ρ(v)
)
/|V | (From Eq. (47))

≤
T∑

t=1

( ∑
v∈Di−

t

µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)−

∑
v∈Di−

t

µρ
t−1(v)−

√
βρ
t σ

ρ
t−1(v)

)
/|V |

(Since, ρ(v) ≥ µρ
t−1(v)−

√
βρ
t σ

ρ
t−1(v) ∀ v)
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=

T∑
t=1

2
√
βρ
t

∑
v∈Di−

t

σρ
t−1(v)/|V | (48)

Lemma 7. Let δ ∈ (0, 1) and let βρ
t
1/2

= Bρ + 4σρ

√
γρ
Nt + 1 + ln(1/δ). Then for N agents,

∀T ≥ 1 the following holds with probability 1− δ,

(

N∑
i=1

Regi(T ))2 ≤
8CDNTβρ

T I(Yxg,1:N
1:T

; ρ)

log(1 +Nσ−2
ρ )

≤
8CDNTβρ

T γ
ρ
NT

log(1 +Nσ−2
ρ )

Proof. By sum over all the N agents from Lemma 6, we get

N∑
i=1

Regi(T ) ≤
N∑
i=1

T∑
t=1

2
√

βρ
t

∑
v∈Di−

t

σρ
t−1(v)/|V | (49)

Let’s consider, part of Eq. (49), that is(
2
√
βρ
t

N∑
i=1

∑
v∈Di−

t

σρ
t−1(v)/|V |

)2

≤ 4βρ
t

N∑
i=1

∑
v∈Di−

t

(
σρ
t−1(v)

)2

/|V | (50)

≤ 4βρ
t

N∑
i=1

|Di−
t |

(
argmax

Di−
σρ
t−1(v)

)2

/|V | (51)

≤ 4βρ
t CD

N∑
i=1

(
σρ
t−1(x

g,i
t )

)2

(52)

= 4βρ
t CD

N∑
i=1

λi,t = 4βρ
t CD

N∑
i=1

σ2
ρσ

−2
ρ λi,t (53)

≤ 4βρ
t CD

N∑
i=1

σ2
ρC1 log(1 + σ−2

ρ λi,t) (54)

≤ 8CDNβρ
t

log(1 +Nσ−2
ρ )

N∑
i=1

1

2
log(1 + σ−2

ρ λi,t) (55)

Eq. (50) follows from Cauchy-Schwarz inequality and using that
∑N

i=1 |Di−| ≤ |V |. Eq. (51)

follows since
∑

v∈Di−
t
(σρ

t−1(v))
2 ≤ |Di−|maxv∈Di−

t
(σρ

t−1(v))
2. We define CD = maxi |Di|

|V |

denoting maximum coverage fraction possible by a disk. Eq. (53) follows from
∑N

i=1(σ
ρ
t−1(x

g,i
t ))2 =

Tr(Kρ) =
∑N

i=1 λi,t. Since, s ≤ C1 log(1 + s) for s ∈ [0, Nσ−2
ρ ], where C1 = Nσ−2

ρ / log(1 +

Nσ−2
ρ ) ≥ 1.Eq. (54) follows for s = σ−2

ρ λi,t ≤ σ−2
ρ λmax ≤ σ−2

ρ

∑
i λi,t = σ−2

ρ Tr(Kρ) ≤
σ−2
ρ N, (wlog k(v, v) ≤ 1).

From Eq. (49),( N∑
i=1

Regi(T )
)2

≤ T

T∑
t=1

(
2
√

βρ
t

N∑
i=1

∑
v∈Di−

t

σρ
t−1(v)/|V |

)2

(Cauchy-Schwarz inequality)

≤ T

T∑
t=1

8CDNβρ
t

log(1 +Nσ−2
ρ )

N∑
i=1

1

2
log(1 + σ−2

ρ λi,t) (Using Eq. (55))

=
8CDNTβρ

T

log(1 +Nσ−2
ρ )

I(Yxg,1:N
1:T

; ρ) (Since βρ
t is non-decreasing, using Eq. (44))
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≤
8CDNTβρ

T γ
ρ
NT

log(1 +Nσ−2
ρ )

(γρ
NT = supxg,1:N

1:T ⊂V I(Yxg,1:N
1:T

; ρ))

=⇒
N∑
i=1

Regi(T ) ≤

√
8CDNTβρ

T γ
ρ
NT

log(1 +Nσ−2
ρ )

(56)

Hence Proved.

Theorem 1 follows from Lemma 6, Lemma 7 and Eq. (26),

Regact(T ) ≤
N∑
i=1

Regi(T ) ≤

√
8CDNTβρ

T γ
ρ
NT

log(1 +Nσ−2
ρ )

Proof for the corollary 1:

Corollary 1. Let t⋆ρ be the smallest integer, such that
t⋆ρ

βt⋆ρ
γNt⋆ρ

≥ 8C2
DN2

log(1+Nσ−2)ϵ2ρ
, then there exists a

t < t⋆ρ such that w.h.p, MACOPT terminates and achieves, F (Xt; ρ, V ) ≥ (1− 1
e )F (X⋆; ρ, V )− ϵρ.

Proof. The proof for the corollary goes in the following 2 steps. First, we show that once wt ≤ ϵρ
implies F (Xt; ρ, V ) ≥ (1− 1

e )F (X⋆; ρ, V )− ϵρ. Secondly, in Lemma 8 we show MACOPT achieves

wt ≤ ϵρ, at t < t⋆ρ where t⋆ρ be the smallest integer satisfying
t⋆ρ

βt⋆ρ
γNt⋆ρ

≤ 8C2
DN2

log(1+Nσ−2)ϵ2ρ
.

Similar to steps in Lemma 6 for a fix t, (Eq. (48)), we get

∆(x̃i|X1:i−1
t )−∆(xi

t|X1:i−1
t ) ≤ 2

√
βρ
t

∑
v∈Di−

t

σρ
t−1(v)/|V |

≤ 2
√

βρ
t CD max

v∈Di−
t

σρ
t−1(v)

From Eq. (37) (for constrained case) one can show for unconstrained case,

(1− 1

e
)F (X⋆; ρ, V )−

N∑
i

∆(xi
t|X1:i−1

t ) ≤
N∑
i

∆(x̃i|X1:i−1
t )−∆(xi

t|X1:i−1
t )

≤
N∑
i

2
√
βρ
t CD max

v∈Di−
t

σρt−1
(v) ≤ ϵρ

=⇒ F (Xt; ρ, V ) ≥ (1− 1

e
)F (X⋆; ρ, V )− ϵρ

Lemma 8. Let δ ∈ (0, 1) and βρ
t as in [18], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρ
Nt + 1 + ln(1/δ) and t⋆ρ is

the smallest integer such that
t⋆ρ

βt⋆ρ
γNt⋆ρ

≥ 8C2
DN2

log(1+Nσ−2)ϵ2ρ
, then with probability 1− δ that there exists

tρ < t⋆ρ such that wtρ+1 ≤ ϵρ, where wt = 2
√
βρ
t CD

N∑
i=1

max
v∈Di−

t

σρ
t−1(v) ≤ ϵρ.

Proof. It is defined that,

wt := 2
√
βρ
t CD

N∑
i=1

max
v∈Di−

t

σρ
t−1(v)

=⇒ w2
t ≤ 4βρ

t C
2
DN

N∑
i=1

(
σρ
t−1(x

g,i
t )

)2

(57)

=⇒
( T∑

t=1

wt

)2

≤ T

T∑
t=1

w2
t ≤ (CDN)T

T∑
t=1

4βρ
t CD

N∑
i=1

(
σρ
t−1(x

g,i
t )

)2

(58)
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≤ (CDN)
8CDNTβρ

T γ
ρ
NT

log(1 +Nσ−2
ρ )

(59)

Eq. (57) follows from Cauchy-Schwarz inequality and xg,i
t = argmax

v∈Di−
t

σρt−1(v). The RHS of Eq. (57)

resembles Eq. (52) in Lemma 7, with an additional factor of (CDN). Eq. (58) directly follows from
Cauchy-Schwarz inequality and Eq. (57). Following the steps in Lemma 7 will result in Eq. (59).

Since,

t⋆ρ
βt⋆ρ

γρ
Nt⋆ρ

≥ 8C2
DN2

log(1 +Nσ−2)ϵ2ρ

=⇒ (CDN)1/2

√√√√ 8CDNβt⋆ρ
γρ
Nt⋆ρ

t⋆ρ log(1 +Nσ−2)
≤ ϵρ (Rearranging terms)

∑t⋆ρ
t=1 wt

t⋆ρ
≤ (CDN)1/2

√√√√ 8CDNβt⋆ρ
γρ
Nt⋆ρ

t⋆ρ log(1 +Nσ−2)
≤ ϵρ (From Eq. (59))

=⇒ min
t∈[1,t⋆ρ]

wt ≤ ϵρ (
t⋆ρ min

t∈[1,t⋆ρ]
wt

t⋆ρ
≤

∑t⋆ρ
t=1 wt

t⋆ρ
)

Hence there exists tρ < t⋆ρ, such that wtρ+1 ≤ ϵρ.

D.1 Variants of MACOPT

• Hallucinated uncertainty sampling: Let Mt and Ht be the sets of measurements collected
by MACOPT and MACOPT-H respectively at time t. In any iteration, I(YMt

; ρ) ≤ I(Y⋆; ρ),
where I(Y⋆; ρ) is the maximum information under the disc constraints. Since mutual
information is a submodular function [19], it is a typical submodular maximization under
partition matroid constraint (disc constraint). The greedy algorithm (Hallucianted strategy)
yields a 1/2− times the optimal solution [13]. Hence, using I(YHt

; ρ) ≥ 1/2I(Y⋆; ρ), we
get I(YMt

; ρ) ≤ 2I(YHt
; ρ). Analogous to Lemma 7, for MACOPT-H we obtain,

RegHact(T ) ≤

√
16CDNTβρ

T γ
ρ
NT

log(1 +Nσ−2
ρ )

The regret bound worsens by two folds to account for the greedy selection in a partition
matroid constraint. But practically, it can improve sample efficiency in environments with
high coverage to domain (CD) ratio.

• Correlated upper bound: The coverage function is a linear functional of density. For
any agent i, F ({xi}) =

∑
v∈Di− ρ(v). Since density is correlated, we can construct

a tighter upper bound(in contrast to the sum of density UCB) of the coverage function
utilizing the covariance of density. Practically, the sampling rule is given by xi

t =

argmaxv
∑

v∈Di−
t

µρ
t−1(v) +

√
β′
t

√∑
v∈Di−

t
σ2
t−1(v) +

∑
v,v′∈Di−

t
σt−1(v, v′). We be-

lieve theoretical analysis for constructing confidence bounds for linear functionals of a
sample from RKHS can be carried out utilizing ideas from Mutnỳ and Krause [66].
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E Proof. for Theorem 2 (SAFEMAC)

Theorem 2. Let δ ∈ (0, 1), ϵρ ≥ 0, ∥ρ∥kρ ≤ Bρ, βρ
t
1/2

= Bρ + 4σρ

√
γρ
Nt + 1 + ln(1/δ), γρ

Nt
denote the information capacity associated with the kernel kρ. Let q(·) be Lq-Lipschitz continuous
and ϵq, β

q
t , γq

Nt be defined analogously. Given X0 ̸= ∅, q(xi
0) ≥ 0 for all i ∈ [N ]. Then, for any

heuristic ht : V → R, with probability at least 1 − δ, we have q(x) ≥ 0, for any x along the
state trajectory pursued by any agent in SAFEMAC. Moreover, let t⋆ρ be the smallest integer such

that
t⋆ρ

βt⋆ρ
γNt⋆ρ

≥ 8C2
DN2

log(1+Nσ−2)ϵ2ρ
, with CD = max

xi∈V

|Di|
|V | ≤ 1 and let t⋆q be the smallest integer such

that
t⋆q

βt⋆q
γNt⋆q

≥ C|R̄0(X0)|
ϵ2q

, with C = 8/ log(1 + σ−2
q ) then, there exists t ≤ t⋆q + t⋆ρ, such that with

probability at least 1− δ,∑
B∈Bt

F (XB
t ; ρ, R̄0(X

B
0 )) ≥

(
1− 1

e

) ∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))− ϵρ. (7)

Proof. The proof for Theorem 2 goes in the following two steps:

1. SAFEMAC’s coverage is near-optimal at the convergence

• We first bound the actual regret with the sum of per agent regret in Lemma 4. Precisely,
we show the following (Eq. (38)),

RegO
act(Tρ) ≤ RegO

l (Tρ)

• Next, we establish in Lemma 9 that the RegO
l (Tρ) grows sublinear with the density

measurements.
• Next, we show that if wt < ϵρ, the coverage is near optimal (Lemma 10). The condition
wt < ϵρ will eventually happen since RegO

l (Tρ) is sublinear and hence over time will
shrink to zero.

• Finally using Lemma 14, the near optimality in the pessimistic set can be established at
convergence when the 2nd termination condition is satisfied, precisely {So,ϵq,i

t \Sp,i
t )∩

Di
t,∀i ∈ [N ]} = ∅

2. SAFEMAC converges in a finite time t < t⋆q + t⋆ρ, where t⋆ρ be the smallest integer such that
t⋆ρ

βt⋆ρ
γNt⋆ρ

≥ 8C2
DN2

log(1+Nσ−2
ρ )ϵ2ρ

and t⋆q be the smallest integer such that
t⋆q

βt⋆q
γNt⋆q

≥ C1|R̄0(X0)|
ϵ2q

,

with C1 = 8/ log(1 + σ−2
q ).

• Since SAFEMAC runs by iterating between the coverage and the exploration phase, we
decouple it and analyze both the phases separately. Starting with the coverage phase,
In Proposition 3, we establish a bound on density samples required to terminate the
first coverage phase

• Next, in the Lemma 11, we show that cumulative regret grows sublinear with the
density measurements for any coverage phase and utilizes this to bound the density
samples between two consecutive coverage phases in Lemma 12

• Utilizing the above two statements, we present the sample complexity bound to termi-
nate the nth coverage phase till convergence, using that the information gain is additive
for consecutive coverage phases in Lemma 13

• For the exploration phase, the worst case time complexity bound is given by the multi-
agent version of the GOOSE in Lemma 19 when the agents safely explore the complete
domain. The resulting worst case time bound for SAFEMAC is sum of the time bound
of the coverage and the exploration phase.

So, near optimality at convergence in Theorem 2 is a direct consequence of Lemma 10 and Lemma 14
and the finite time argument of Theorem 2 is a direct consequence of Lemma 13 and Lemma 19.
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Lemma 9. Let δ ∈ (0, 1) and βρ
t as in [18], i.e., βρ

t
1/2

= Bρ + 4σ
√
γρ
t + 1 + ln(1/δ). With proba-

bility at least 1− δ, SAFEMAC’s sum of per agent regret RegO
l (Tρ) is bounded by O(

√
Tρβ

ρ
T γ

ρ
NT ).

Precisely,

RegO
l (Tρ) ≤

√
8CDNTρβ

ρ
t γ

ρ
NT

log(1 +Nσ−2
ρ )

where Tρ is density samples per agent and RegO
l (Tρ) =

∑Tρ

t=1 rt where rt =∑
B∈Bt

∑
i∈B ∆(x̃i|X1:i−1

t ; ρ, Su,B
t )−∆(xi

t|X1:i−1
t ; ρ, Su,B

t )

Proof. Given.

RegO
l (Tρ) =

Tρ∑
t=1

rt

=

Tρ∑
t=1

∑
B∈Bt

∑
i∈B

∆(x̃i|X1:i−1
t ; ρ, Su,B

t )−∆(xi
t|X1:i−1

t ; ρ, Su,B
t )

WLOG, every batch B, is indexed by iterator i = 1 to |B| sequentially.
Let x̃i = argmax∆(xi

t|X1:i−1
t ; ρ, Su,B

t ) and D̃i
t is a disk around x̃i. For notation convenience:

Di−
t := Di

t\D1:i−1
t ∩ Su,B

t and D̃i−
t := D̃i

t\D1:i−1
t ∩ Su,B

t

SAFEMAC picks the agent at xi
t greedily in the set B. Following the steps in Lemma 10 we can bound

simple agent-wise local regret as rt or simply from Eq. (66) by summing over all the B ∈ Bt, we
get,

rt =
∑
B∈Bt

∑
i∈B

∆(x̃i
t|X1:i−1

t ;ρ, Su,B
t )−∆(xi

t|X1:i−1
t ; ρ, Su,B

t )

≤
∑
B∈Bt

∑
i∈B

2
√

βρ
t

∑
v∈Di−

t

σρ
t−1(v)/|V | (From Eq. (65))

≤
∑
B∈Bt

∑
i∈B

2
√

βρ
t CD max

v∈Di−
t

σρ
t−1(v) = wt (From Eq. (66))

On bounding simple regret.

rt ≤
∑
B∈Bt

∑
i∈B

2
√

βρ
t

∑
v∈Di−

t

σρ
t−1(v)/|V |

=⇒ r2t ≤
( ∑

B∈Bt

∑
i∈B

2
√
βρ
t

∑
v∈Di−

t

σρ
t−1(v)/|V |

)2

≤ 4βρ
t

∑
B∈Bt

∑
i∈B

∑
v∈Di−

t

(
σρ
t−1(v)

)2

/|V | = 4βρ
t

N∑
i=1

∑
v∈Di−

t

(
σρ
t−1(v)

)2

/|V | (60)

≤ 8CDNβρ
t

log(1 +Nσ−2
ρ )

N∑
i=1

1

2
log(1 + σ−2

ρ λi,t) (61)

Eq. (60) follows by Cauchy–Schwarz inequality and
∑

B∈Bt

∑
i∈B |D

i−
t | ≤ |V |. Eq. (61) follows

the steps in Eqs. (50) to (55).

On bounding cumulative regret with mutual information.( Tρ∑
t=1

rt

)2

≤ Tρ

Tρ∑
t=1

r2t (Using Cauchy–Schwarz inequality)
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≤ Tρ

Tρ∑
t=1

8CDNβρ
t

log(1 +Nσ−2
ρ )

N∑
i=1

1

2
log(1 + σ−2

ρ λi,t) (Using Eq. (61))

=
8CDNTρβ

ρ
T

log(1 +Nσ−2
ρ )

Tρ∑
t=1

N∑
i=1

1

2
log(1 + σ−2

ρ λi,t)

(Since βρ
t is non-decreasing & βρ

T := βρ
Tρ

)

=
8CDNTρβ

ρ
T I(Yxg,1:N

1:Tρ

; ρ)

log(1 +Nσ−2
ρ )

(Using Eq. (44))

≤
8CDNTρβ

ρ
T γ

ρ
NT

log(1 +Nσ−2
ρ )

(γρ
NT = supXm

1:Tρ
⊂V I(YXm

1:Tρ
; ρ))

=⇒
Tρ∑
t=1

rt ≤

√
8CDNTρβ

ρ
T γ

ρ
NT

log(1 +Nσ−2
ρ )

(62)

=⇒ RegO
l (Tρ) ≤

√
8CDNTρβ

ρ
T γ

ρ
NT

log(1 +Nσ−2
ρ )

This lemma nicely connects the near optimal coverage in the reachable set i.e, (1 −
1
e )

∑
B∈B F (XB

⋆ ; ρ, R̄ϵq (X
B
0 )), with the coverage in a possibly disjoint optimistic sets. (Note

that the only requirement is that the optimistic set needs to always superset R̄ϵq (X0).

The agents observe the location only if all the agents can reach the max uncertain point under their
disk i.e, 2

√
βρ
t maxv∈Di−

t
σρ
t−1(v). (Accordingly, information gain is defined, and Tρ above is a

counter when all the agents obtain density measurements).
Lemma 10 (SAFEMAC Near-Optimality). For any t ≥ 1, if wt ≤ ϵρ at SAFEMAC’s recommendation
Xt then with high probability,∑

B∈Bt

F (XB
t ; ρ, Su,B

t ) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))− ϵρ,

where wt =
∑

B∈Bt

∑
i∈B 2

√
βρ
t CD maxv∈Di−

t
σρ
t−1(v).

Proof. Given. SAFEMAC recommends a location for the agent i ∈ B greedily in the Su,B
t set as per,

xi
t = argmax

v

∑
v∈Di−

t

µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v) (63)

Let x̃i
t = argmax∆(xi

t|X1:i−1
t ; ρ, Su,B

t ) and D̃i−
t := D̃i

t\D1:i−1
t ∩Su,B

t , where D̃i
t is a disk around

x̃i. Based on this picking strategy,∑
v∈D̃i−

t

ρ(v) ≤
∑

v∈D̃i−
t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
(Follows due to upper confidence bound)

≤
∑

v∈Di−
t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
(Since, Eq. (63), xi

t is greedily picked)

∑
v∈D̃i−

t

ρ(v) ≤
∑

v∈Di−
t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
(64)

On bounding simple regret. With definition rt =
∑

B∈Bt

∑
i∈B ∆(x̃i

t|X1:i−1
t ; ρ, Su,B

t ) −
∆(xi

t|X1:i−1
t ; ρ, Su,B

t ).
Consider,

∆(x̃i
t|X1:i−1

t ; ρ, Su,B
t )−∆(xi

t|X1:i−1
t ; ρ, Su,B

t )
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=
( ∑

v∈D̃i−
t

ρ(v)−
∑

v∈Di−
t

ρ(v)
)
/|V | (Note Di−

t and D̃i−
t )

≤
( ∑

v∈Di−
t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
−

∑
v∈Di−

t

ρ(v)
)
/|V |

(Using Eq. (64))

≤
(∑
v∈Di−

t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
−
(
µρ
t−1(v)−

√
βρ
t σ

ρ
t−1(v)

))
/|V |

(Since, ρ(v) ≥ µρ
t−1(v)−

√
βρ
t σ

ρ
t−1(v) ∀ v)

= 2
√
βρ
t

∑
v∈Di−

t

σρ
t−1(v)/|V | (65)

≤ 2
√
βρ
t CD max

v∈Di−
t

σρ
t−1(v) (66)

The last inequality follows since
∑

v∈Di−
t

σρ
t−1(v) ≤ |Di−|maxv∈Di−

t
σρ
t−1(v) and |Di−

t |
|V | ≤

maxi |Di
t|

|V | = CD.Now,

rt =
∑
B∈Bt

∑
i∈B

∆(x̃i
t|X1:i−1

t ; ρ, Su,B
t )−∆(xi

t|X1:i−1
t ; ρ, Su,B

t )

≤
∑
B∈Bt

∑
i∈B

2
√

βρ
t CD max

v∈Di−
t

σρ
t−1(v) (from Eq. (66))

= wt ≤ ϵρ

From Eq. (37), (1− 1
e )

∑
B∈B F (XB

⋆ ; ρ, R̄ϵq (X
B
0 ))−

∑
B∈Bt

F (XB
t ; ρ, Su,B

t ) = ractt ≤ rt

=⇒
∑
B∈Bt

F (XB
t ; ρ, Su,B

t ) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))− ϵρ

Proposition 3. Let δ ∈ (0, 1) and βρ
t as in [18], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρ
Nt + 1 + ln(1/δ) and

t⋆ρ
1 is the smallest integer such that

t⋆ρ
1

βρ

t⋆ρ
1I(Yx

g,1:N

1:t⋆ρ
1
;ρ)
≥ 8C2

DN2

log(1+Nσ−2
ρ )ϵ2ρ

, then with probability 1−δ that

there exists t1ρ < t⋆ρ
1 such that wt1ρ+1 ≤ ϵρ, where wt =

∑
B∈Bt

∑
i∈B

2
√

βρ
t CD max

v∈Di−
t

σρ
t−1(v) ≤ ϵρ.

Proof. Similar to Eq. (59), It is defined that,

wt := 2
√

βρ
t CD

N∑
i=1

max
v∈Di−

t

σρ
t−1(v)

=⇒ w2
t ≤ 4βρ

t C
2
DN

N∑
i=1

(
σρ
t−1(x

g,i
t )

)2

(67)

=⇒
( Tρ∑

t=1

wt

)2

≤ Tρ

Tρ∑
t=1

w2
t ≤ (CDN)Tρ

Tρ∑
t=1

4βρ
t CD

N∑
i=1

(
σρ
t−1(x

g,i
t )

)2

(68)

≤ (CDN)
8CDNTρβ

ρ
Tρ
I(Yxg,1:N

1:Tρ

; ρ)

log(1 +Nσ−2
ρ )

(69)
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Eq. (67) follows from Cauchy-Schwarz inequality and xg,i
t = argmax

v∈Di−
t

σρt−1(v). The RHS of Eq. (67)

resembles Eq. (52) in Lemma 7, with an additional factor of (CDN). Eq. (68) directly follows from
Cauchy-Schwarz inequality and Eq. (67). Following the steps in Lemma 9 will result in Eq. (69).

Since, it is given that
t⋆ρ

1

βρ
t⋆ρ

1I(Yxg,1:N

1:t⋆ρ
1
; ρ)
≥ 8C2

DN2

log(1 +Nσ−2
ρ )ϵ2ρ

(70)

=⇒ (CDN)1/2

√√√√8CDNβρ
t⋆ρ

1I(Yxg,1:N

1:t⋆ρ
1
; ρ)

t⋆ρ
1 log(1 +Nσ−2

ρ )
≤ ϵρ (Rearranging terms)

∑t⋆ρ
1

t=1 wt

t⋆ρ
1 ≤ (CDN)1/2

√√√√8CDNβρ
t⋆ρ

1I(Yxg,1:N

1:t⋆ρ
1
; ρ)

t⋆ρ
1 log(1 +Nσ−2

ρ )
≤ ϵρ (From Eq. (62) in Lemma 9)

=⇒ min
t∈[1,t⋆ρ

1]
wt ≤ ϵρ (

t⋆ρ
1 min

t∈[1,t⋆ρ
1]

wt

t⋆ρ
1 ≤

∑t⋆ρ
1

t=1 wt

t⋆ρ
1 )

Hence there exists t1ρ < t⋆ρ
1, such that wt1ρ+1 ≤ ϵρ.

For notation convenience we denote with RegO
l (δt

⋆
ρ
n) := RegO

l (t
n−1
ρ + δt⋆ρ

n) − RegO
l (t

n−1
ρ ) =∑tn−1

ρ +δt⋆ρ
n

t=tn−1
ρ +1

rt and I(Yδt⋆ρ
n ; ρ) = I(Yxg,1:N

t
n−1
ρ +1:t

n−1
ρ +δt⋆ρ

n

; ρ).

Lemma 11. Let the coverage phase be terminated for the (n− 1)
th time at tn−1

ρ , and δt⋆ρ
n be the

maximum number of density measurements required to terminate coverage phase for the nth time.
Let δ ∈ (0, 1) and βρ

t as in [18], i.e., βρ
t
1/2

= Bρ + 4σρ

√
γρ
Nt + 1 + ln(1/δ), then with probability

at least 1− δ the following inequality holds,

RegO
l (δt

⋆
ρ
n) ≤

(
δt⋆ρ

n

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

w2
t

)1/2

≤ (CDN)1/2

√√√√8δt⋆ρ
nCDNβρ

tn−1
ρ +δt⋆ρ

nI(Yδt⋆ρ
n ; ρ)

log(1 +Nσ−2
ρ )

Proof. With definitions,

RegO
l (δt

⋆
ρ
n) =

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

rt ≤
tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

wt

=⇒
(
RegO

l (δt
⋆
ρ
n)
)2 ≤ tn−1

ρ +δt⋆ρ
n∑

t=tn−1
ρ +1

wt ≤ δt⋆ρ
n

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

w2
t (Using, Cauchy-Schwarz inequality)

Now, the RHS of the inequality can be simplified as,

δt⋆ρ
n

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

w2
t ≤ (CDN)δt⋆ρ

n

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

8CDNβρ
t

log(1 +Nσ−2
ρ )

N∑
i=1

1

2
log(1 + σ−2

ρ λi,t) (using Eq. (68))

≤
8δt⋆ρ

nN2βρ

tn−1
ρ +δt⋆ρ

n

log(1 +Nσ−2
ρ )

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

N∑
i=1

1

2
log(1 + σ−2

ρ λi,t)

(since, βρ
t is non-decreasing and using definition of mutual information we get,)

=⇒RegO
l (δt

⋆
ρ
n) ≤

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

wt ≤
(
δt⋆ρ

n

tn−1
ρ +δt⋆ρ

n∑
t=tn−1

ρ +1

w2
t

)1/2

≤ (CDN)1/2

√√√√8δt⋆ρ
nCDNβρ

tn−1
ρ +δt⋆ρ

nI(Yδt⋆ρ
n ; ρ)

log(1 +Nσ−2
ρ )

(71)
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Lemma 12. Let δ ∈ (0, 1) and βρ
t as in [18], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρ
Nt + 1 + ln(1/δ) and

δt⋆ρ
n is the smallest integer after tn−1

ρ such that
δt⋆ρ

n

βρ

t
n−1
ρ +δt⋆ρ

n
I(Yδt⋆ρ

n ;ρ)
≥ 8C2

DN2

log(1+Nσ−2
ρ )ϵ2ρ

, then we

know with probability 1 − δ that there exists δtnρ < δt⋆ρ
n such that w

tn−1
ρ +δtnρ+1

≤ ϵρ, where

wt =
∑

B∈Bt

∑
i∈B 2

√
βρ
t CD maxv∈Di−

t
σρ
t−1(v) ≤ ϵρ.

Proof. Given,

δt⋆ρ
n

βρ

tn−1
ρ +δt⋆ρ

nI(Yδt⋆ρ
n ; ρ)

≥ 8C2
DN2

log(1 +Nσ−2
ρ )ϵ2ρ

=⇒ (CDN)1/2

√√√√8CDNβρ

tn−1
ρ +δt⋆ρ

nI(Yδt⋆ρ
n ; ρ)

δt⋆ρ
n log(1 +Nσ−2

ρ )
≤ ϵρ

∑tn−1
ρ +δt⋆ρ

n

tn−1
ρ +1

wt

δt⋆ρ
n ≤ ϵρ (Using Eq. (71) in Lemma 11)

=⇒ min
t∈[tn−1

ρ +1,tn−1
ρ +δt⋆ρ

n]
wt ≤ ϵρ

Hence there exists δtnρ < δt⋆ρ
n, such that w

tn−1
ρ +δtnρ+1

≤ ϵρ.

Lemma 13. Let δ ∈ (0, 1) and βρ
t
1/2

= Bρ+4σρ

√
γρ
Nt + 1 + ln(1/δ) and t⋆ρ is the smallest integer

such that
t⋆ρ

βρ
t⋆ρ

γρ
Nt⋆ρ

≥ 8C2
DN2

log(1+Nσ−2
ρ )ϵ2ρ

, then for any n ≥ 1, tn−1
ρ + δtnρ < t⋆ρ.

Proof.

tn−1
ρ + δtnρ <

8C2
DN2βρ

tn−1
ρ

I(Yxg,1:N

1:t
n−1
ρ

; ρ)

log(1 +Nσ−2
ρ )ϵ2ρ

+
8C2

DN2βρ

tn−1
ρ +δtnρ

I(Yδtnρ
; ρ)

log(1 +Nσ−2
ρ )ϵ2ρ

(using Eq. (70), since t1ρ < t⋆ρ
1)

<
8C2

DN2βρ

tn−1
ρ +δtnρ

log(1 +Nσ−2
ρ )ϵ2ρ

(I(Yxg,1:N

1:t
n−1
ρ

; ρ) + I(Yδtnρ
; ρ)

(Since, βρ
t is non decreasing function)

=

8C2
DN2βρ

tn−1
ρ +δtnρ

I(Yxg,1:N

1:t
n−1
ρ +δtnρ

; ρ)

log(1 +Nσ−2
ρ )ϵ2ρ

(Since mutual info is additive)

<
8C2

DN2βρ

tn−1
ρ +δtnρ

γρ

N(tn−1
ρ +δtnρ )

log(1 +Nσ−2
ρ )ϵ2ρ

(72)

Using Eq. (72) and since, t⋆ρ ≥
8C2

DN2βρ
t⋆ρ

γρ
Nt⋆ρ

log(1+Nσ−2
ρ )ϵ2ρ

, we get tn−1
ρ + δtnρ < t⋆ρ.

Lemma 14. When SAFEMAC converges, i.e, U := {So,ϵq,i
t \Sp,i

t ) ∩ Di
t,∀i ∈ [N ]} = ∅, then the

following inequality holds,∑
B∈Bt

F (XB
t ; ρ, Sp,B

t ) =
∑
B∈Bt

F (XB
t ; ρ, Su,B

t )

Proof. Since, U = ∅,

{(So,ϵq,i
t \Sp,i

t ) ∩Di
t,∀i ∈ [N ]} = ∅
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=⇒ (S
o,ϵq,i
t ∩Di

t) ⊆ (Sp,i
t ∩Di

t) ∀i ∈ [N ]

= (Su,i
t ∩Di

t) ∀i ∈ [N ] (Since Su,i
t := Sp,i

t ∪ S
o,ϵq,i
t )

Based on the last equality, it directly follows,∑
B∈Bt

F (XB
t ; ρ, Sp,B

t ) =
∑
B∈Bt

F (XB
t ; ρ, Su,B

t ).

E.1 Intermediate recommendation is near-optimal at SAFEMAC’s convergence

Lemma 15. Let δ ∈ (0, 1) and βρ
t as in [18], i.e., βρ

t
1/2

= Bρ + 4σρ

√
γρ
Nt + 1 + ln(1/δ) and t⋆ρ

be the smallest integer such that
t⋆ρ

βt⋆ρ
γNt⋆ρ

≥ 8C2
DN2

log(1+Nσ−2
ρ )ϵ2ρ

. Let βq
t and t⋆q be defined analogously.

Then, there exists t < t⋆q + t⋆ρ, such that with probability at least 1− δ∑
B∈BT

F (XB
T ; ρ, R̄0(X

B
0 )) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))− ϵρ (73)

where,

XT = argmax
XT ,Xl

T ,T∈[1,t]

{ ∑
B∈Bp

T

F (XB
T ; lρT−1, S

p,B
T ),

∑
B∈Bp

T

F (X l,B
T ; lρT−1, S

p,B
T )

}
s.t.XT ∈ Sp

T

(74)

and X l,B
t , i.e., the greedy solution w.r.t. the worst-case objective, F (·; lρt−1, S

p,B
t )∀B ∈ Bpt .

Proof. We prove the lemma in two parts. First, we prove the near optimality of SAFEMAC’s solution
Xt but evaluated using lρt−1 instead of ρ. This will imply the near optimality at convergence of the
1st term (

∑
B∈Bp

T
F (XB

T ; lρT−1, S
p,B
T )) in the above recommendation rule. Secondly, due to the

argmax operator, the near optimality of the 1st term is sufficient to establish the optimality of the
recommendation rule in Eq. (74).

Notations. Xt = ∪B∈Bt
XB

t , ∆(·; ρ, V ) as defined in Eq. (17).

Given. From Theorem 2, for t < t⋆q + t⋆ρ with probability at least 1− δ ,∑
B∈Bt

F (XB
t ; ρ, R̄0(X

B
0 )) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))− ϵρ (75)

and ∑
B∈Bt

∑
i∈B

2
√
βρ
t CD max

v∈Di−
t

σρ
t−1(v) ≤ ϵρ

Near-optimality of SAFEMAC’s Xt evaluated using lρt−1.

∆(x̃i
t|X1:i−1

t ; ρ, Su,B
t )−∆(xi

t|X1:i−1
t ; lρt−1, S

u,B
t )

=
( ∑

v∈D̃i−
t

ρ(v)−
∑

v∈Di−
t

lρt−1(v)
)
/|V | (Note Di−

t and D̃i−
t )

≤
(∑
v∈Di−

t

(
µρ
t−1(v) +

√
βρ
t σ

ρ
t−1(v)

)
−

(
µρ
t−1(v)−

√
βρ
t σ

ρ
t−1(v)

))
/|V |

(Using Eq. (64) and definition of lρt−1(v))

= 2
√
βρ
t

∑
v∈Di−

t

σρ
t−1(v)/|V |
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≤ 2
√
βρ
t CD max

v∈Di−
t

σρ
t−1(v) (76)

∑
B∈Bt

∑
i∈B

∆(x̃i
t|X1:i−1

t ; ρ, Su,B
t )−∆(xi

t|X1:i−1
t ; lρt−1, S

u,B
t ) ≤

∑
B∈Bt

∑
i∈B

2
√
βρ
t CD max

v∈Di−
t

σρ
t−1(v)

≤ ϵρ

Using the following two statements,

• (1− 1
e )F (X⋆; ρ, S

u,B
t ) ≤

∑
i∈B ∆(x̃i|X1:i−1

t ; ρ, Su,B
t ) from Eq. (39)

•
⋃

i∈B R̄ϵq ({x
i
0}) ⊆ Su,B

t =⇒
∑

B∈B F (X⋆; ρ, R̄ϵq (X0)) ≤
∑

B∈Bt
F (X⋆; ρ, S

u,B
t )

we get,

=⇒
∑
B∈Bt

F (XB
t ; lρt−1, S

u,B
t ) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))− ϵρ (77)

Near-optimality of recommendation as per Eq. (74).
Let’s consider the following recommendation rule,

XT = argmax
XT ,T∈[1,t]

{ ∑
B∈Bp

T

F (XB
T ; lρT−1, S

p,B
T )

}
s.t.XT ∈ Sp

T (78)

At convergence, Sp,i
t ∩ Di

t = Su,i
t ∩ Di

t =⇒ (So,ϵq\Sp,i
t ) ∩ Di

t = ∅, using this SAFEMAC
recommendation Xt can be written as,∑

B∈Bt

F (XB
t ; lρt−1, S

u,B
t ) =

∑
i∈[N ]

∆(xi
t|X1:i−1

t ; lρt−1, S
p,i
t ) =

∑
B∈Bp

t

F (XB
t ; lρt−1, S

p,B
t )

∑
B∈Bp

T

F (XB
T ; lρT−1, S

p,B
T ) ≥

∑
B∈Bp

t

F (XB
t ; lρt−1, S

p,B
t )

(since, XB
T = argmax

XB
T ,T∈[1,t]

∑
B∈Bp

T
F (XB

T ; lρT−1, S
p,B
T ))

=⇒
∑

B∈Bp
T

F (XB
T ; lρT−1, S

p,B
T ) ≥

∑
B∈Bt

F (XB
t ; lρt−1, S

u,B
t ) (Combining the above 2 equations)

=⇒
∑

B∈Bp
T

F (XB
T ; lρT−1, S

p,B
T ) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))− ϵρ (using Eq. (77))

Hence, the recommendation of Eq. (78) evaluated with lower bound is near optimal (at convergence
XT ∈ Sp

T ). Further, due to argmax operator Eq. (78) also implies near-optimality of recommendation
rule in Eq. (74) evaluated with the lower bound. So now using XT chosen as per Eq. (74) and at
convergence, ∀i, (Sp,i

t ∩Di
t) ⊆ (R̄0({xi

0}) ∩Di
t), we get,∑

B∈Bp
T

F (XB
T ; ρ, Sp,B

T ) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))− ϵρ (lρt−1(v) ≤ ρ(v)∀v)

∑
B∈Bp

T

F (XB
T ; ρ, R̄0(X0)) ≥ (1− 1

e
)
∑
B∈B

F (XB
⋆ ; ρ, R̄ϵq (X

B
0 ))− ϵρ

Hence Proved.
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F Multi-agent GOOSE version

In this section, we present our lemma for the multi-agent version of goose. In the cooperative setting,
each agent deploy GOOSE for safe exploration and shares its observations with the other agents. We
first derive a sample complexity bound under the cooperative system. Later, we introduce our key
Lemma 19, which guarantees the safety of all agents as well as complete exploration (with respect to
each agent) in finite time.

Lemma 16. Let δ ∈ (0, 1) and let (βq
t )

1/2 = Bq + 4σq

√
γq
Nt + 1 + ln(1/δ). Then the following

holds with probability at least 1− δ,∑
t

ω2
t ≤ C1β

q
t I(YNT ; q) ≤ C1β

q
t γ

q
NT ,

where C1 = 8/ log(1 + σ−2
q ), ωt = uq

t−1(x
i
t) − lqt−1(x

i
t), and xi

t is the location visited by some
agent i at time t. I(YNT ; q) is the information gain and γq

NT is the information capacity.

Proof. Using ωt ≤ 2
√

βq
t σ

q
t−1(x

i
t),

ω2
t ≤ 4βq

t (σ
q
t−1(v))

2 ≤ 4βq
t σ

2
qσ

−2
q (σq

t−1(x
i
t))

2 ≤ 4βq
t σ

2
qC2 log(1 + σ−2

q (σq
t−1(x

i
t))

2) (79)

≤ C1β
q
t

1

2
log(1 + σ−2

q

N∑
i=1

(σq
t−1(x

i
t))

2) = C1β
q
t

1

2
log(1 + σ−2

q

N∑
i

λi,t) (80)

≤ C1β
q
t

N∑
i=1

1

2
log(1 + σ−2

q λi,t) = C1β
q
t I(YNT ; q) ≤ C1β

q
t γ

q
NT (81)

Last inequality in Eq. (79) follows since, s ≤ C2 log(1 + s) for s ∈ [0, σ−2
q ], where C2 =

σ−2
q / log(1 + σ−2

q ) ≥ 1, where s = σ−2
q σq

t−1(v)
2 ≤ σ−2

q kq(v, v) ≤ σ−2
q , (wlog kq(v, v) ≤

1). Inequality of Eq. (80) follows since, (σq
t−1(x

i
t))

2 ≤
∑N

i=1(σ
q
t−1(x

i
t))

2 and equality us-
ing

∑N
i=1(σ

ρ
t−1(x

i
t))

2 = Tr(Kq) =
∑N

i=1 λi,t. Eq. (81) follows since log(1 + x1 + x2) ≤
log(1+x1)+log(1+x2), for x1, x2 ≥ 0. Lastly, I(; q) is defined analogous to I(; ρ) (as in Eq. (44))
and γq

NT = supA⊂V ;|A|=NT I(YA; q).

Similar to Lem. 8 of Turchetta et al. [12], Let us denote T v
t = {τ1, ..., τj} the set of steps where the

constraint q is evaluated at v by step t.

Lemma 17. For any t ≥ 1 and for any v ∈ V , it holds that wt(v) ≤
√

C1β
q
t γ

q
Nt

|T v
t | , with C1 =

8/ log(1 + σ−2
q ).

Proof.

|T v
t |w2

t (v) ≤
∑
τ∈T v

t

w2
τ (v) (82)

≤
∑
τ∈T v

t

4βq
τ (σ

q
t−1(x

i
t))

2

≤
∑
τ∈t

4βq
τ (σ

q
t−1(x

i
t))

2

≤ C1β
q
t γ

q
Nt

Eq. (82), follows due to intersection of confidence interval arguments, Lemma 1 of Turchetta et al.
[12] and the inequality follows due to Lemma 16.

Let us denote with Tt, the smallest positive integer such that Tt

βq
t+Tt

γq
N,t+Tt

≥ C1

ϵ2q
, with C1 =

8/ log(1 + σ−2
q ) and with t⋆ the smallest positive integer such that t⋆ ≥ |R̄0(X0)|Tt⋆ .

Lemma 18. For any t ≤ t⋆, for any v ∈ V such that |T v
t | ≥ Tt⋆ , it holds that wt(v) ≤ ϵq .
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Proof. Since Tt is an increasing function of t [26], we have |T v
t | ≥ Tt⋆ ≥ Tt. Therefore using

Lemma 17 and the definition of Tt, we get,

wt(v) ≤

√
C1β

q
t γ

q
Nt

Tt
≤

√
C1β

q
t γ

q
Ntϵ

2
q

C1γ
q
N,t+Tt

βq
t+Tt

≤

√
βq
t γ

q
Nt

γq
N,t+Tt

βq
t+Tt

ϵq ≤ ϵq.

The last inequality follows from the fact that both βq
t and γq

t are non-decreasing function of t.

Regarding the convergence of the pessimistic and the optimistic sets, Lemma 10-18 of Turchetta et al.
[12] can be proved analogously for each agent i. We skip re-writing them and directly cite them in
the following lemma.
Lemma 19. Assume that q(·) is Lq-Lipschitz continuous w.r.t d(.,.) with ∥q∥k ≤ Bq, X0 ̸= ∅,
q(xi

0) ≥ 0 for all i ∈ [N ]. Let (βq
t )

1/2 = Bq + 4σq

√
γq
Nt + 1 + ln(1/δ), then, for any heuristic

ht : V → R, with probability at least 1 − δ, we have q(x) ≥ 0, for any x along the state
trajectory pursued by any agent in SAFEMAC. Moreover, let γq

Nt denote the information capacity

associated with the kernel kq and let t⋆q be the smallest integer such that
t⋆q

βt⋆q
γNt⋆q

≥ C1|R̄0(X0)|
ϵ2q

,

with C1 = 8/ log(1 + σ−2
q ), then there exists t ≤ t⋆q such that, with probability at least 1 − δ,

R̄ϵq ({x
i
0}) ⊆ S

o,ϵq,i
t ⊆ Sp,i

t ⊆ R̄0({xi
0}) for all i ∈ [N ].

Proof. In SAFEMAC, each agent has a record of its optimistic and pessimistic set.The lemma is
similar to N instances of Theorem 1 of Turchetta et al. [12]; each instance corresponds to per agent
case. Safety of each agent i is a direct consequence of Theorem 2 of Turchetta et al. [64]. Finite time
bound while agents are sharing information is consequence of Lemma 16-18. The convergence of the
pessimistic and optimistic approximation of the safe sets for each agent is a direct consequence of
Lemmas 16-18 of Turchetta et al. [12].

For a detailed discussion, we refer the reader to Appendix D Completeness of Turchetta et al. [12].
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Figure 6: Compares MACOPT and UCB on the Gorilla (a) and the GP (b,c) environment. a,b)
Compares simple regret rt Eq. (29) in the unconstrained case (domain V ). c) Plots total coverage
achieved by both the algorithms.

G Experiments

Implementation details. We implemented all our algorithms with BoTorch [67] and GPyTorch [68]
frameworks, built on top of Pytorch [69]. The code for both the algorithms will be made public
along with the competitive baselines. We limit the maximum number of rounds to 300, and with the
selected hyperparameters and the given environments, it terminates before that. This roughly takes 10
min of training for SAFEMAC on a single core CPU. The code is written for running a single instance
of the experiment. In practice, we launch nearly 1000 such instances simultaneously on the cluster in
parallel to get results about different environments, noise realizations and initializations.

Gorilla Environment. The gorilla environment (Fig. 3b) is defined in a grid of 34× 34, with each
grid cell being a square of length 0.1. The N = 3 agents perform the coverage task, with each
having a sensing region defined as a set of locations agents that can travel in 5 steps in the underlying
transition graph (Precisely, Di = Rreach

5 ({xi}), Eq. (9)). We considered 10 gorilla environments
each differ in the initial location of the agents. The nest density is obtained by fitting a smooth rate
function [23] over Gorilla nest site locations which were provided by the Wildlife Conservation
Society Takamanda-Mone Landscape project (WCS-TMLP) Funwi-gabga and Mateu [24]. As a
proxy for bad weather, we use the cloud coverage data over the Kagwene Gorilla Sanctuary from
OpenWeather [22]. The density and the constraint function used are available in our code base.
The code for fitting a rate function is available here (https://github.com/Mojusko/sensepy) under the
MIT license. We used a lengthscale of 1 for the density and of 2 for the constraint function. The
noise variance is set to 10−3 and 7× 10−3 for density and the constraint respectively. However, the
performance in the experiments is not sensitive to the hyperparameters and is easily reproducible
with other sensible parameters as well.

Obstacles Environment. The obstacle environment (Fig. 3a) is defined on a grid of 30× 30, with
each grid cell being a square of length 0.1. The sensing region and number of agents are defined
similar to the Gorilla environment. The obstacle is completely defined by the location of its top
right corner and the bottom left corner. The obstacle environment is generated by combining a set
of such obstacles. The density is directly sampled from a GP with the parameters same as synthetic
data. We produced ten instances of environments, each having a different set of obstacles and GP
sample and initialization. We used a lengthscale of 2 for both density and the constraint function.
The noise variance is set to 10−3. Similar to earlier environments, performance is not sensitive to
hyperparameters.

Experiment results.

Unconstrained case Fig. 6a and Fig. 6b plots the simple regret rt for each round t, precisely, defined
as

∑N
i=1 ∆(x̃|X1:i−1; ρ, V )−∆(xi

t|X1:i−1; ρ, V ). This quantity upper bounds the actual regret and
provides intuition for the convergence rate. We see in the plots that the simple regret goes to zero
for MACOPT, but gets stuck for the UCB algorithm. Due to this, we also observe that MACOPT can
achieve higher coverage value as compared to UCB in Fig. 6c.

Constrained case Fig. 7a and Fig. 7b compares coverage of area attained by SAFEMAC, PASSIVEMAC
and the two stage algorithm. Precisely the intermediate locations are recommended as per Eq. (74).
We see that SAFEMAC finds a comparable solution to two stage more efficiently without exploring the
whole environment, where as PASSIVEMAC gets stuck in the local optimum.
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Figure 7: Comparison of SAFEMAC with PASSIVEMAC and Two-Stage in Obstacle and the GP
environment during optimization

G.1 Scaling in terms of agents and domain size

In this section, we evaluate scalability in terms of number of agents and the domain size. SAFEMAC
evaluates a greedy solution N times (one for each agent) at each iteration, it is linear in the number of
agents. Moreover, the greedy solution is linear in the number of cells (domain size). To demonstrate
this we run the experiment on the Gorilla nest density for N = 3, 6, 10 and 15 agents each for the
domains of size 30×30, 40×40, 50×50 and 60× 60. We see that with more agents in larger domain
the same results hold that is SAFEMAC finds a comparable solution to two stage more efficiently
without exploring the whole environment, where as PASSIVEMAC gets stuck in the local optimum.
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Figure 8: Comparison of SAFEMAC with PASSIVEMAC and Two-Stage in the Gorilla nest environ-
ment. Legend: Blue is SAFEMAC, Green is PASSIVEMAC and Orange is Two-Stage algorithm. The
experiment is performed for 3, 6, 10 and 15 agents (increased row-wise) each for the domains of size
30×30, 40×40, 50×50 and 60× 60 (increased column-wise).
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