
A Appendix

A.1 Additional Experiment Result

In this section, we provide additional experiment results.

Counter matrix C on Do versus C on Du could be a good visualization over distribution shift. As a
toy example, we plot Co and Cu on Mnist-binary with R = 32. We randomly sample 3 rows as it is
easier to visualize. For each comparison, top row is from Co, bottom is from Cu. We can observe the
density difference.

Table A.1 compare RIDDLE against two training scheme mentioned in Section 1: update and
retrain. Retrain refers to retraining the model on all available data from scratch, which would yield
best performance. Update refers to training on a trained model only on new data. Update shows
unsatisfying accuracy, however, is more efficient than retrain. The best of both world would be only
updating on new data but achieve retraining accuracy. We observe that RIDDLE’s performance is
significantly better than update, and close to Retrain.

Dataset Method Original

Mnist Binary
Update 69.1
Retrain 98.9

RIDDLE 98.0

Cifar10
Update 63.2
Retrain 94.3

RIDDLE 89.0

ImageNet
Update 55.6
Retrain 72.0

RIDDLE 67.1

News
RoBERTa 74.0

Retrain 92.4
RIDDLE 89.7

Table 5: This table place RIDDLE between the best possible performance and the worst performance.
Lower bound is obtained by updating on a trained model on update dataset using SGD. Upper bound
is obtained by training a model from scratch on both original dataset and update dataset. We see
RIDDLE’s performance is close to upper bound

16

We investigate the choice of number of rows L and number of cells R. L and R are the two parameters
controlling the tradeoff between efficiency and expressiveness. It is clear that increase memory budget
leads to better accuracy. At the same R, increase the L leads to a higher accuracy. At the same L,
increase R also lead to a higher accuracy. Increase L increases the repetition, leading to more robust
model. Increase R increase the hashing precision.

Boston Housing
Parameters R16L500 R32L500 R64L1000 R64L2000 R32L4000

Memory(M) 0.03 0.06 0.25 0.52 0.52
Accuracy 2.30 2.23 2.20 2.16 1.96

Table 6: This table summarizes the accuracy with various choices of R, number of cells, and
L, number of rows. In general, larger R and L will lead to higher accuracy with more memory
consumption.

A.2 Experiment Setup

We use Adam Optimizer with a learning rate 0.0001 for all baselines. We use early stopping on all
methods. We do not use any data augmentation or feature engineering, except normalizing images.
We do not use regularization. Following two tables provides architecture details.

Dataset L LSH ↵
Mnist Binary 500 SimHash 0

Cifar10 2000 SimHash 0
ImageNet 2000 SimHash 0

News 3000 SimHash 0

Table 7: This table summarize hyper-parameters for RIDDLE for Figure 2 and Table 1

Dataset Evaluation NN1 NN2 RIDDLE
Susy Accuracy 300-300-300 300-300-300-300-300 R16L6000
HAR Accuracy 300-300-300 LSTM-2Layer-32 R32L1500

Covtype AUC 500-500 500-500-500 R128L1500
Connect4 Accuracy 500-500 500-500-500 R16L4000

Mnist Accuracy 500-500-500 Conv2d-Conv2d-9216-128 R16L2000
Fashion Mnist Accuracy 500-500 500-500-500 R32L1500

Boston Housing MAE 500-500 500-500-500 R32L4000

Table 8: This table summarize information about baselines and dataset for experiments regarding
to expressiveness and efficiency(Table 2 and Table 3). NN1 and NN2 summarize neural network
architecture. For example, 300-300-300 refers to a three layer MLP with hidden size 300.

A.3 Theory

In this section, we provide complete proofs for our theoretical results.

A.3.1 Proof of Theorem 4.4

Theorem A.1. Given a dataset D of weighted samples {(↵xi , xi)}, let h(x) be an LSH function
drawn from an LSH family with collision probability K(·, ·). Let S be a row of the sketch constructed
using h(x). For any query q,

E(S[h(q)]) =
|D|X

i

↵xiK(xi, q), var (S[h(q)]) 

0

@
|D|X

i

↵xi

p
K(xi, q)

1

A
2

Proof. Let 1i denote the indicator function 1h(xi)=h(q). That is, 1i = 1 when data xi from the
dataset collides with the query q. To simplify the presentation, let Z = S[h(q)].

17

Expectation: The value in the sketch can be written as

Z =

|D|X

i

↵xi1i

By the linearity of the expectation

E(Z) =

|D|X

i

↵xiE(1i)

We know that E(1i) is the collision probability of h(x), thus,

E(Z) =

|D|X

i

↵xiK(xi, q)

Variance: The variance is bounded by the second moment. The second moment of this estimator can
be written as

E(Z2) =

|D|X

i

|D|X

j

↵xi↵xjE(1i1j)

By the Cauchy-Schwarz inequality,

E(1i1j) 
q
E(1i)

q
E(1j)

Then,

E(Z2) 

|D|X

i

|D|X

j

↵xi↵xj

q
K(xi, q)

q
K(xj , q) =

0

@
|D|X

i

↵xi

p
K(xi, q)

1

A
2

Thus,

var(Z) 

0

@
|D|X

i

↵xi

p
K(xi, q)

1

A
2

A.3.2 Proof of Lemma A.2

We use a result from [3], where we suppose for convenience that g evenly divides N .
Lemma A.2. Let Z1, ...ZR be L i.i.d. random variables with mean E[Z] = µ and variance  �2.
Divide the L variables into g groups so that each group contains m = L/g elements, and take the
empirical average within each group. The median-of-means estimate µ̂ is the median of the g group
means. If g = 8 log(1/�) and m = L/g, then the following statement holds with probability 1� �.

|µ̂� µ|  6
�
p
L

p
log 1/�

Proof. This proof is given in [3] as the proof of Theorem 2.1 (which is a slightly more general version
of the statement above).

A.3.3 Proof of Theorem 4.5

Theorem A.3. Let Z(q) be the median-of-means estimate constructed using the L unbiased estima-
tors of the sketch with L rows. Then with probability 1� �,

|Z(q)� fK(q)|  6
f̃K(q)
p
L

p
log 1/�

where fK(q) and f̃K(q) are the weighted KDE with kernels K(x, q) and
p
K(x, q), respectively.

18

Proof. From Theorem 4.4, we know that

� 

|D|X

i

↵xi

p
K(xi, q)

Substituting this variance bound into Lemma A.2 proves the theorem.

A.3.4 Proof of Lemma 4.2

Lemma A.4. The L2 LSH kernel from [19] is shift-invariant and universal.

Proof. To see that the kernel is shift-invariant, observe that K(x, y) = K(dist(x, y)) and that the
Euclidean distance kx� yk2 is a function of the difference x� y. Thus, K(x, y) = K(x� y).

Since the kernel is shift-invariant, it is sufficient to show that the support of the Fourier transform of
the kernel is the entire real line [13]. Observe from [21] that the kernel may be written as

k(c) =

Z r

0

✓
1�

t

r

◆
1

c
e�

t2

2c2 dt

where c = dist(x, y) and r is a parameter. The Fourier transform of this quantity is
Z 1

�1

✓Z r

0

2
p
2⇡

✓
1�

t

r

◆
1

c
e�

t2

2c2 dt

◆
ei!cd!

The integrand satisfies the requirements of Fubini’s Theorem (absolutely integrable), so we may
exchange the order of integration.

Z r

0

2
p
2⇡

✓
1�

t

r

◆✓Z 1

�1

1

c
e�

t2

2c2 ei!cd!

◆
dt

Observe that the Fourier transform of the inner integrand has full support because the exponential
function is nonzero everywhere. Now observe that the outer integral is the limit of a sum of Fourier
transforms, each of which has the real line as its support. Because 2p

2⇡
(1 � t/r) > 0 over the

integration region, the coefficients of this sum are positive. Therefore, the Fourier transform of the
kernel has the real line as its support.

A.3.5 Proof of Theorem 4.3

Theorem A.5. Given a continuous and bounded function g(q) and ✏ > 0, there exists a set of
coefficients {↵n}, set of points {xn} and an integer N such that

fN (q) =
NX

n=1

↵NK(xn, q) kfN (q)� g(q)kX  ✏

where K(xn, q) is the L2 LSH kernel and X is any compact subset of Rd.

Proof. This follows directly from the definition of a universal kernel.

A.3.6 Proof of Theorem 3.2

Theorem A.6. Given a dataset D, construct a representer sketch model f(S,h)(x) by running
Algorithm 1 for e epochs with learning rate ⌘. Suppose the gradient norms are bounded by G. Then

|Eh[f(S,h)(x)]|  e⌘GKDE(x)

where KDE(x) is the kernel density of x over D using the kernel of the LSH function h.

19

Proof. Given a sketch S equipped with a set of hash functions h, the value of the model output for a
query x is:

f(S,h)(x) =
1

L

LX

l=1

S[l, hl(x)]

We will examine the values of the array cells S[l, hl(x)] when trained using Algorithm 1 on a dataset
D of m points (i.e. |D| = m). Under Algorithm 1, the sketch is updated once by each point in the
dataset during every epoch. If we update the sketch at time t with the feature-target pair (z, yz), the
update takes the form:

St+1 = St � ⌘rS
1

m
E(f(S,h)(z), yz)

where E(f(S,h)(z), yz) is the error function used to train the model. Observe that

f(S,h)(z) =
1

L

LX

l=1

S[l, hl(z)]

In other words, the only parameters in S that contribute to f(S,h)(z) are those at the array locations
{(1, h1(z)), ...(L, hL(z))}. Since the other parameters do not participate in the computation of
f(S,h)(z), each example (z, yz) 2 D updates only those cells in S that correspond to the values of
{h1(z), ...hL(z)}.

Let U 2 ZL⇥R be the sparse matrix formed by placing a ‘1’ at the locations
{(1, h1(z)), ...(L, hL(z))} and ‘0’ otherwise. Since the gradient norms are bounded by G, we
can bound the size of the update to the sketch.

St+1 � St  ⌘
G

m
Ut

If we recursively apply this inequality to all m updates in the epoch, we obtain:

Sm � S0  ⌘G
mX

t=1

Ut

Note that the inequality remains true if we swap the positions of St and St+1. Also note that with
zero initialization, S0 = 0L⇥R. Therefore, we have:

�⌘G
mX

t=1

Ut  Sm  ⌘G
mX

t=1

Ut

If we obtain the sketch S after training for e epochs, we pick up an additional multiplicative factor e.

�e⌘G
mX

t=1

Ut  S  e⌘G
mX

t=1

Ut

This means that we can bound the absolute value of the sketch output f(S,h)(x):

|f(S,h)(x)| 
1

L

LX

l=1

|S[l, hl(x)]| 
1

L

LX

l=1

e⌘G
mX

t=1

Ut[l, hl(x)]

Taking the expectation of both sides of the inequality and applying the linearity of the expectation
operator, we have:

20

E[|f(S,h)(x)|] 
1

L

LX

l=1

e⌘GE
"

mX

t=1

Ut[l, hl(x)]

#

Note that we may re-write Ut[l, hl(x)] as the indicator {hl(zt)=hl(x)}. That is, the indicator is ‘1’
if the example zt from gradient descent iteration t collides with x. Since each epoch processes all
elements in the dataset exactly one time, we may re-write the sum over Ut[l, hl(x)] to be over the
dataset.

E[|f(S,h)(x)|] 
1

L

LX

l=1

e⌘GE
"
X

z2D

{hl(z)=hl(x)}

#

The expected value of the indicator {hl(z)=hl(x)} is the collision probability Pr[hl(z) = hl(x)] of
the LSH function hl. Under the assumptions stated in the theorem, this collision probability is equal
to the kernel K(z, x), leading to the following inequality:

E[|f(S,h)(x)|] 
1

L

LX

l=1

e⌘G
X

z2D

K(x, z)

To prove the theorem, recall that for any random variable Z, |E[Z]|  E[|Z|]. This yields the desired
statement.

|E[f(S,h)(x)]|  e⌘GKDE(x)

A.3.7 Proof of Theorem 3.3

We want to bound the difference between the loss induced by So and the loss induced by So+u on
Do. In other words, we wish to bound:
X

(x,y)2Do

`(f(x;So+u, h), y)�
X

(x,y)2Do

`(f(x;So, h), y) =
X

(x,y)2Do

`(f(x;So+u, h), y)�`(f(x;So, h), y)

Note that because So is the argmin, this quantity is always positive. Assume that the loss ` is at least
locally L-Lipschitz in the first argument. That is, we suppose that the following bound holds in a ball
surrounding ŷ:

|`(ŷa, y)� `(ŷb, y)|  L|ŷa � ŷb|

Then, applying this to the loss from earlier:
X

(x,y)2Do

`(f(x;So+u, h), y)�`(f(x;So, h), y) 
X

(x,y)2Do



X

(x,y)2Do

L|f(x;So+u, h)�f(x;So, h)|

Using Theorem 3.2, we may bound the left hand side of this expression in expectation:

Eh

2

4
X

(x,y)2Do

`(f(x;So+u, h), y)� `(f(x;So, h), y)

3

5 

X

(x,y)2Do

GLe⌘KDE(x,Du)

Here, we used the elementary fact that |E[Z]|  E[|Z|] for any random variable Z.

21

