
Less-forgetting Multi-lingual Fine-tuning (Appendix)

In this Appendix, the proofs for Theorem 1, Theorem 2 and Theorem 3 are given in Section 1.
Besides, the details of the datasets and computing platform are introduced in Section 2.

1 Proofs

Theorem 1. Assume Lp(θf ) can be approximate by its second order Taylor expansion and θp is a
minima w.r.t the pre-training loss. Then, we have

Fp ≤ λpη
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where λp is the maximum eigenvalue of ∇2Lp(θp), and K is the number of iterations of fine-tuning.

Proof. For Lp(θf ) can be approximate by its second order Taylor expansion, we have

Lp(θf ) = Lp(θp) + (θf − θp)
⊤∇Lp(θp) +

1

2
(θf − θp)

⊤∇2Lp(θp)(θf − θp). (2)

Then, the second assumption, θp is a minima, presents that ∥∇Lp(θp)∥ = 0. Thus,

Lp(θf ) = Lp(θp) +
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(θf − θp)

⊤∇2Lp(θp)(θf − θp). (3)

Moreover, the minima assumption leads to the conclusion that ∇2Lp(θp) is positive semi-definite;
thus, we have

Lp(θf ) ≤ Lp(θp) +
λp

2
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In multi-lingual fine-tuning,

θp − θf = η
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Overall,

Fp = Lp(θf )− Lp(θp) ≤
λpη
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Theorem 2. Let H be a Hilbert space of finite dimension N . Let Lt(θk) (1 ≤ t ≤ T ≤ N ) be T
smooth functions of the vector θk ∈ H, and θ0k a particular admissible design-point. Let w∗

k be the
solution of Problem 2 and descent direction ∇L =

∑T
t=1(w

∗
k)

t∇Lt(θk). Then:

(i) either ∇L = ∅, and [L1(θ
0
k), ..., LT (θ

0
k)]

⊤ are pareto stationary at θ0k;

(ii) or ∇L ̸= ∅ and −∇L is a descent direction common to all {Lt(θk)}Tt=1;

Proof. For the first claim, ∇L = ∅ means that there exists at least one objective, on which
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36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Then, obviously, there exists at least one wk that makes ∇L = 0, which means that θ0k is Pareto
stationary.

Furthermore, the second claim is straightforward. Because, when ∇L ̸= ∅, we can find (w∗
k)

t which
makes

−∇L⊤Lt(θ
0
k) ≤ 0. (8)

for every objective. It demonstrates that ∇L is a descent direction common to all {Lt(θ
0
k)}Tt=1.

Theorem 3. LF-MLF can stop after a finite number of iterations if a Pareto stationary point is
reached. Otherwise, If the sequence of iterates {θk}Kk=1 of the LF-MLF is infinite, it admits a weakly
convergent subsequence.

Proof. In the LF-MLF algorithm, the algorithm will stop if the feasible set is empty. According to
Theorem 2, when the feasible set is empty, the model has achieved a Pareto stationary point. Thus,
LF-MLF can stop after a finite number of iterations if a Pareto stationary point is reached.

As to the infinite case, since the sequence of values of {Lt(θk)}Kk=1, is positive and monotone-
decreasing, it is bounded. Furthermore, Lt(θk) is infinite whenever θk is infinite. In fine-tuning,
{Lt(θk)}Kk=1 are bounded. Therefore, sequence of iterates {θk}Kk=1 admits a weakly convergent
subsequence.

2 The Details of the Datasets and Computing Platform

For NER, the Wikiann [1] is used, and select 48 languages, i.e., ar, he, vi, id, jv, ms, tl, eu, ml, ta, te,
af, nl, en, de, el, bn, hi, mr, ur, fa, fr, it, pt, es, bg, ru, ja, ka, ko, th, sw, yo, my, zh, kk, tr, et, fi, hu, qu,
pl, uk, az, lt, pa, gu, ro.

For QA, we use the gold passage version of the Typologically Diverse Question Answering (TyDiQA-
GoldP) [2] dataset. In the this dataset, there are 9 languages, i.e., ar, bn, en, fi, id, ko, ru, sw,
te.

For NLI, we use the Cross-lingual Natural Language Inference corpus [3] and MultiNLI training data
[4]. In this XNLI dataset, there are 15 languages, i.e., ar, bg, de, el, en, es, fr, hi, ru, sw, th, tr, ur, vi,
zh.

Besides, our experiments are conducted on virtual machines of Microsoft Azure cloud, which has
Nvidia V100 Tensor Core GPUs with 32 GB graphics memory.
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