
Appendix for
Don’t Pour Cereal into Coffee: Differentiable

Temporal Logic for Temporal Action Segmentation

Ziwei Xu†∗ Yogesh S Rawat§ Yongkang Wong† Mohan S Kankanhalli† Mubarak Shah§

† School of Computing, National University of Singapore
§ Center for Research in Computer Vision, University of Central Florida

{ziwei-xu,mohan}@comp.nus.edu.sg yongkang.wong@nus.edu.sg
{yogesh,shah}@crcv.ucf.edu

A Table of Notations

The table below shows the notations grouped by the modules.

Table A1: Table of Notations
Model

gΘ A task model parameterized by Θ
y Ground truth
ŷ Output of the task model
ai The ith action class, or its corresponding atomic proposition
ψ A DTL formula
Ψ The set of all DTL formulas
ft(ψ, ŷ) Evaluation of ŷ against formula ψ at time t

Sizes

L Length of input sequence
N Number of action classes

Logic Operators

¬,∧,∨ Logical NEGATION, logical AND, and logical OR
X Temporal operator NEXT
F Temporal operator EVENTUAL
W Temporal operator WEAK_UNTIL
S Temporal operator SINCE

Constraints

BD(ai, aj) Action ai is backward dependent on action aj
FC(ai, aj) Action ai forward cancels action aj
Ip(ai, aj) Action ai implies action aj
Ex(ai, aj) Action ai excludes action aj

∗This work was done when Ziwei Xu was visiting the Center for Research in Computer Vision.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

add_pepper
add_oil

place_cucumber_in
to_bowl

add_salt

place_tomato_into_bowl

cut_cu
cumber

add_vinegar

mix_ingredients

place_lettuce_into_bowl

add_dressin
g

cut_ch
eese

cut_to
mato

cut_le
ttuce

place_cheese_into_bowl

mix_dressin
g

serve_salad_onto_plate

peel_cu
cumber

actio
n_end

actio
n_sta

rt
65

70

75

80

85

90

95

100

Avg. Improvement: 0.7
Avg. Improvement: 3.6

F1@25 for MSTCN on 50Salads
w/o DTL
w/ DTL

Figure A1: Class-wise F1@25 score for MSTCN on 50Salads. The classes on the horizontal
axis are sorted based on the performance of the task model without DTL. Dashed line shows the
median performance of all classes. The annotation above (below) the line indicates the averaged
improvement for classes ranked at top (bottom) 50% in the baseline performance.

cu
t_

fru
it

cr
ac

k_
eg

g
bu

tte
r_

pa
n

fry
_e

gg
ad

d_
sa

ltn
pe

pp
er sil

pu
t_

fru
it2

bo
wl

pe
el

_f
ru

it
ta

ke
_p

la
te

st
irf

ry
_e

gg
fry

_p
an

ca
ke

po
ur

_m
ilk

sp
oo

n_
flo

ur
po

ur
_o

il
sp

oo
n_

po
wd

er
st

ir_
do

ug
h

po
ur

_d
ou

gh
2p

an
pu

t_
eg

g2
pl

at
e

pu
t_

to
pp

in
go

nt
op

ta
ke

_b
ow

l
sm

ea
r_

bu
tte

r
ta

ke
_c

up
po

ur
_c

of
fe

e
ad

d_
te

ab
ag

ta
ke

_k
ni

fe
sq

ue
ez

e_
or

an
ge

st
ir_

eg
g

po
ur

_c
er

ea
ls

po
ur

_e
gg

2p
an

pu
t_

pa
nc

ak
e2

pl
at

e
st

ir_
m

ilk
pu

t_
bu

nt
og

et
he

r
cu

t_
bu

n
po

ur
_ju

ice
po

ur
_w

at
er

po
ur

_f
lo

ur
ta

ke
_g

la
ss

sp
oo

n_
su

ga
r

st
ir_

ce
re

al
s

cu
t_

or
an

ge
ta

ke
_t

op
pi

ng
st

ir_
fru

it
ta

ke
_s

qu
ee

ze
r

po
ur

_s
ug

ar
st

ir_
co

ffe
e

ta
ke

_e
gg

s
ta

ke
_b

ut
te

r
st

ir_
te

a

60

70

80

90

100

Avg. Improvement: 0.2
Avg. Improvement: 2.5

F1@25 for GRU on Breakfast
w/o DTL
w/ DTL

Figure A2: Class-wise F1@25 score for GRU on Breakfast. The classes on the horizontal axis
are sorted based on the performance of the task model without DTL. Dashed line shows the median
performance of all classes. The annotation above (below) the line indicates the average improvement
for classes ranked at top (bottom) 50% in the baseline performance.

B Implementation Details

Task Models. The implementation for MSTCN [2] and ASFormer [6] are from existing open-
source code provided by corresponding authors. The GRU is implemented as follows: a fully-
connected layer first transforms the 2048-dimension input into a 512-dimension vector. The vector
is then sent to a bi-directional Gated Recurrent Unit layer with a hidden size of 512, which yields a
1024-dimension vector. The vector is finally transformed by a second fully-connected layer into an
N -dimension vector, where each dimension represents the un-normalized score of an action class.

Hyperparameters. There are two hyperparameters in DTL: γ and λ. γ is the parameter for minγ()
and maxγ(), and is set to 1. λ is the weight for temporal logic loss. We set λ = 0.1 for both GRU
and MSTCN, and λ = 0.005 for ASFormer. All hyperparameters are determined empirically.

Training. All the experiments are performed on an NVIDIA A6000 GPU with PyTorch 1.10. The
training for MSTCN and ASFormer follows the way defined in the corresponding source code. We
use Adam [3] to optimize the GRU with a learning rate of 5× 10−4 for 50 epochs. The model with
the best validation performance is reported.

2

C Class-wise Performances

We provide class-wise performance (measured by F1@25) comparison between task models trained
with and without DTL. The result is shown in Fig. A1 and Fig. A2. A general observation is that
actions with lower performance on task models without DTL benefit more from DTL. We conjecture
that actions with higher performance reflect the part of knowledge which is better learned by the
task model from the annotation. Therefore, DTL is less effective for this subset of actions because
currently its constraints are also procured from annotation. On the other hand, this shows that DTL
is able to help the model better learn constraints from annotation. We anticipate more performance
improvement with more general constraints that go beyond knowledge in the annotations in future
works.

D Extended Discussion on DTL

Section 3.1 introduced logic operators and briefly introduced their semantics. In Section 3.2, we
introduced the evaluation of those operators in detail. In this section, we extend the discussion on
DTL and answer the following two questions:

1. What is the formal definition to the semantics of DTL operators (cf. Section D.1)?
2. What is the relation between the evaluation of DTL operators related and their semantics

(cf. Section D.3)?

D.1 Semantics of Logic Operators

This section formally defines the semantics of these logic operators, which is largely an extension of
linear temporal logic. It is recommended to compare the semantics defined in Eqn. (A2)-(A9) below
with the evaluation defined in Eqn. (3)-(10). Also recall that ψ ∈ Ψ takes the following forms:
ψ ∈ Ψ := True | False | a | ¬ψ1 | (ψ1 ∧ ψ2) | (ψ1 ∨ ψ2) | Xψ1 | Fψ1 | (ψ1Wψ2) | (ψ1Sψ2). (A1)

Before defining the semantics, we first introduce a symbol ω, which is a truth assignment of ψ in L
time steps. ω is an L-long word ω0:L−1 = ω0ω1 . . . ωL−1, where ωt is the set of atomic propositions
that are True at time tb. We use ωt1:t2 to denote a substring of ω from time t1 to time t2 and ωt1: as
a shorthand for ωt1:L−1. ωt: |= ψ means ωt: satisfies ψ under the semantics of Ψ.

Now we start to define the semantics of Ψ. The semantics of constants are straight-forward:
ωt: |= True, ωt: ̸|= False, ωt: |= a iff. a ∈ ωt (A2)

which states that any truth assignment satisfies ψ if ψ = True, and no truth assignment will satisfy
ψ if ψ = False. If ψ = a, then a satisfying assignment must assign True to a (make a occur) at time
0.

For common propositional logic operators ¬ (NEGATION), ∧ (AND) and ∨ (OR), we define their
semantics as

ωt: |= ¬ψ1 iff. ωt: ̸|= ψ1, (A3)
ωt: |= ψ1 ∧ ψ2 iff. ωt: |= ψ1 and ωt: |= ψ2, (A4)
ωt: |= ψ1 ∨ ψ2 iff. ωt: |= ψ1 or ωt: |= ψ2, (A5)

where ψ1, ψ2 ∈ Ψ.

Finally, we define the semantics for modal operators X, F,W, and S:
ωt: |= Xψ1 iff. ωt+1: |= ψ1, (A6)
ωt: |= Fψ1 iff. ∃t ≤ t1 < L s.t. ωt1: |= ψ1, (A7)
ωt: |= (ψ1Wψ2) iff. ∃t ≤ t2 < L s.t. ωt2: |= ψ2 and ∀t ≤ t1 < t2, ωt1: |= ψ1,

or ∀t ≤ t2 < L, ωt2: ̸|= ψ2, ωt: |= ψ1,
(A8)

ωt: |= (ψ1Sψ2) iff. ∃t ≤ t2 < L s.t. ωt2: |= ψ2 and ∀t2 ≤ t1 < L, ωt1: |= ψ1,
or ∀t ≤ t2 < L, ωt2: ̸|= ψ2.

(A9)

Intuitively, X shifts the time to the next time step. F states the necessity of ψ1. Both W and S state
the possibility of ψ1 during some time intervals specified by the occurrence of ψ2.

bIn the context of temporal action segmentation, ωt is equivalent to the set of action that occurs at time t.

3

D.2 Reviewing DTL Evaluation Rules

For easier reference, we copy Equation (3)-(10) from the main paper here. These equations defined
the evaluation process for different operators:

ft(True, ŷ) = +∞, ft(False, ŷ) = −∞, ft(a, ŷ) = ŷa,t. (3)

ft(¬ψ1, ŷ) = −ft(ψ1, ŷ), (4)

ft(ψ1 ∧ ψ2, ŷ) = minγ
{
ft(ψ1, ŷ), ft(ψ2, ŷ)

}
, (5)

ft(ψ1 ∨ ψ2, ŷ) = maxγ
{
ft(ψ1, ŷ), ft(ψ2, ŷ)

}
, (6)

ft(Xψ1, ŷ) = ft+1(ψ1, ŷ), (7)

ft(Fψ1, ŷ) = maxγ
{
ft:L−1(ψ1, ŷ)

}
, (8)

ft(ψ1Wψ2, ŷ) = minγ{ft:k(ψ1, ŷ)},where k ≥ t is the min. integer s.t. fk(ψ2, ŷ) > 0, (9)
ft(ψ1Sψ2, ŷ) = minγ{fk:L−1(ψ1, ŷ)},where k ≥ t is the min. integer s.t. fk(ψ2, ŷ) > 0. (10)

D.3 A Proof of Soundness for DTL

Theorem 1 in the main paper states the soundness of DTL: if ft(ψ, ŷ) > 0, then ŷ satisfies the con-
straints in formula ψ at time t. In other words, it states that evaluated satisfaction entails semantic
satisfaction. In this section, we provide a proof sketch for Theorem 1.

This proof starts with a basic assumption, where we formally establish the connection between ŷ
and a truth assignment ω:

Assumption A1. ŷai,t > 0⇔ ai ∈ ωt.

We also have the following assumption that rules out value “0” throughout the evaluation. This is
necessary as −0 = 0 can break the evaluation of logical negation.

Assumption A2. ŷai,t ̸= 0, ∀a ∈ A and 0 ≤ t < L,

Then we can prove the following Theorem A1, which directly leads to Theorem 1.

Theorem A1. With ψ ∈ Ψ, γ →∞: ft(ψ, ŷ) > 0⇔ ωt: |= ψ.

Proof. Let ψ, a, ψ1, ψ2 ∈ Ψ, where a is an atomic proposition. We need to prove Theorem 1 for all
forms in Eqn. (A1). We do this by induction.

Base Case When ψ = a.

ft(ψ, ŷ) > 0
ψ=a⇐==⇒ ft(a, ŷ) > 0

Eqn. (3)
⇐=====⇒ ŷa,t > 0

Asm. A1⇐======⇒ a ∈ ωt

Eqn. (A2)
⇐======⇒ ωt: |= a

ψ=a⇐==⇒ ωt: |= ψ.

Therefore the base case is true.

Inductive Step Inductive Hypothesis (I.H.): ft(ψ, ŷ) > 0⇔ ωt: |= ψ for ψ = ψ1 and ψ = ψ2.

Case 1: ψ = ¬ψ1.

• If ft(ψ, ŷ) > 0:

ft(ψ, ŷ) > 0
ψ=¬ψ1
=====⇒ ft(¬ψ1, ŷ) > 0

Eqn. (4)
======⇒ −ft(ψ1, ŷ) > 0

=⇒ ft(ψ1, ŷ) < 0
I.H.
==⇒ ωt: ̸|= ψ1

Eqn. (A3)
=======⇒ ωt: |= ¬ψ1

ψ=¬ψ1
=====⇒ ωt: |= ψ.

4

• If ωt: |= ψ:

ωt: |= ψ
ψ=¬ψ1
=====⇒ ωt: |= ¬ψ1

Eqn. (A3)
=======⇒ ωt: ̸|= ψ1

I.H. and Asm. A2
===========⇒ ft(ψ1, ŷ) < 0

=⇒ −ft(ψ1, ŷ) > 0
Eqn. (4)
======⇒ ft(¬ψ1, ŷ) > 0

ψ=¬ψ1
=====⇒ ft(ψ, ŷ) > 0.

Case 2: ψ = (ψ1 ∧ ψ2).

ft(ψ, ŷ) > 0
ψ=(ψ1∧ψ2)⇐=======⇒ ft(ψ1 ∧ ψ2, ŷ) > 0

Eqn. (5)
⇐=====⇒ min{ft(ψ1, ŷ), ft(ψ2, ŷ)} > 0

⇐⇒ ft(ψ1, ŷ) > 0 and ft(ψ2, ŷ) > 0
I.H.⇐=⇒ ωt: |= ψ1 and ωt: |= ψ2

Eqn. (A4)
⇐======⇒ ωt: |= (ψ1 ∧ ψ2)

ψ=(ψ1∧ψ2)⇐=======⇒ ωt: |= ψ.

Case 3: ψ = (ψ1 ∨ ψ2). The proof is similar to Case 2.

Case 4: ψ = Xψ1.

ft(ψ, ŷ) > 0
ψ=Xψ1⇐====⇒ ft(Xψ1, ŷ) > 0

Eqn. (7)
⇐=====⇒ ft+1(ψ1, ŷ) > 0

I.H.⇐=⇒ ωt+1: |= ψ1
Eqn. (A6)
⇐======⇒ ωt: |= Xψ1

ψ=Xψ1⇐====⇒ ωt: |= ψ.

Case 5: ψ = Fψ1.

ft(ψ, ŷ) > 0
ψ=Fψ1⇐===⇒ ft(Fψ1, ŷ) > 0

Eqn. (8)
⇐=====⇒ max{ft:L−1(ψ1, ŷ)} > 0

⇐⇒ ∃t ≤ t1 < L s.t. ft1(ψ1, ŷ) > 0
I.H.⇐=⇒ ωt1: |= ψ1

Eqn. (A7)
⇐======⇒ ωt: |= Fψ1

ψ=Fψ1⇐===⇒ ωt: |= ψ.

Case 6: ψ = (ψ1Wψ2).

• If ∃k ∈ [t, L) s.t. fk(ψ2, ŷ) > 0:

ft(ψ, ŷ) > 0
ψ=(ψ1Wψ2)⇐=======⇒ ft(ψ1Wψ2, ŷ) > 0

Eqn. (9)
⇐=====⇒ min{fk′:t(ψ1, ŷ) > 0}, and k′ ∈ [t, L) is the min. integer s.t. fk′(ψ2, ŷ) > 0

⇐⇒ ∃t1 ∈ [t, k] s.t. ft1(ψ1, ŷ) > 0 and ∃k ∈ [t, L) s.t. fk(ψ2, ŷ) > 0

I.H.⇐=⇒ ∃t1 ∈ [t, k] s.t. ωt1: |= ψ1 and ∃k ∈ [t, L) s.t. ωk: |= ψ2

Eqn. (A8)
⇐======⇒ ωt: |= (ψ1Wψ2)

ψ=(ψ1Wψ2)⇐=======⇒ ωt: |= ψ.

• If ∀k ∈ [t, L), fk(ψ2, ŷ) < 0: This is a special case for W (and S as well). When this happens, we
directly set ft(ψ, ŷ) = minγ(ft:L−1(ψ1, ŷ)). Then ft(ψ, ŷ) > 0⇔ ωt: |= ψ1 ⇔ ωt: |= (ψ1Wψ2).

Case 7: ψ = (ψ1Sψ2). The proof is similar to Case 6.

E Constraints

This section provides a quick view of the constraints used in our experiment. We first explain how
constraints are collected and then provide samples for different types of constraints collected for the
two datasets used in our experiment.

5

E.1 Collecting Constraints

The constraints are automatically generated from the existing annotations of datasets. Algorithm A1
shows how statistics about co-occurrences between actions can be collected. Then Algorithm A2
uses those statistics to generate the four types of constraints discussed in Section 3.3.

Algorithm A1: Algorithm to collect the co-occurrence statistics from dataset annotation.
Input: Set of samplesM = {m1,m2, . . . ,mM}, where mi = [y0, y2, ..., yL−1] and yi ∈ A

is the index of one of the N actions.
▷ B[ai, aj] is the frequency of ai occurring before aj
▷ P [ai, aj] is the frequency of ai occurring after aj
▷ J [ai, aj] is the number of videos where ai occurs with aj
▷ C[ai, aj] is the number of videos where ai occurs

1 B,P ,J ← zero matrices of size N ×N ;
2 C ← zero vector of size N ;
3 foreach m ∈M do
4 occur_flags← zero vector of size N ;
5 co_occur_flags← zero matrix of size N ×N ;
6 y0, y1, ..., yL−1 ← annotation of m;
7 foreach t ∈ 0, 1, . . . , L− 1 do
8 if occur_flags[yt] == 0 then
9 C[yt]← C[yt] + 1 ;

10 occur_flags[yt]← 1;
11 foreach u ∈ {0, 1, . . . , t} do
12 B[yu, yt]← B[yu, yt] + 1;
13 if co_occur_flags[yt, yu] == 0 then
14 J [yu, yt]← J [yu, yt] + 1 ;
15 co_occur_flags[yu, yt] = 1;

16 foreach u ∈ {t+ 1, t+ 2, . . . , L− 1} do
17 P [yu, yt]← P [yu, yt] + 1;
18 if co_occur_flags[yt, yu] == 0 then
19 J [yu, yt]← J [yu, yt] + 1 ;
20 co_occur_flags[yu, yt] = 1;

21 return {B,P ,J ,C};

E.2 Samples of Constraints

For clarity, we show 10 entries for each type of constraint.

E.2.1 Breakfast

Breakfast contains 48 actions for ten different activities about breakfast preparation. Each video
contains a single activity, which could be making coffee, cereal, tea, fried egg, pancake, sandwich,
juice, etc. Breakfast is therefore different from 50Salads because its actions could be mutually
exclusive. Below is a list of actions:

• take_cup

• pour_coffee

• pour_milk

• pour_sugar

• stir_coffee

• spoon_sugar

• add_teabag

• pour_water

• stir_tea

• cut_bun

• smear_butter

• put_toppingOnTop

• put_bunTogether

• take_plate

• take_knife

• take_butter

• take_topping

• cut_orange

• squeeze_orange

• take_glass

• pour_juice

6

Algorithm A2: Algorithm to generate the constraints from the collected statistics.
Input: Statistics {B,P ,J ,C} collected by Algorithm A1.
▷ B[ai, aj] is the frequency of ai occurring before aj
▷ P [ai, aj] is the frequency of ai occurring after aj
▷ J [ai, aj] is the number of videos where ai occurs with aj
▷ C[ai, aj] is the number of videos where ai occurs

1 Constraints← {} ;
▷ Empty set of rules

2 foreach i ∈ {0, 1, . . . , N − 1} do
3 foreach j ∈ {0, 1, . . . , N − 1} do
4 if i ̸= j and B[i, j] == 0 then

▷ action i is “backward dependent” on j
5 Constraints← append_BD(i, j) ;
6 if J [i, j] > 0 and P [i, j] == 0 then

▷ action j “forward cancels” j
7 Constraints← append_FC(j, i) ;
8 if i ̸= j and J [i, j]/C[j] == 1 then

▷ action j implies i
9 Constraints← append_Ip(j, i) ;

10 if i ̸= j and J [i, j] == 0 then
▷ action i and j is exclusive

11 Constraints← append_Ex(i, j) ;

12 return Constraints;

• take_squeezer

• take_bowl

• pour_cereals

• stir_cereals

• spoon_powder

• stir_milk

• pour_oil

• take_eggs

• crack_egg

• add_saltnpepper

• fry_egg

• put_egg2plate

• butter_pan

• cut_fruit

• put_fruit2bowl

• peel_fruit

• stir_fruit

• stirfry_egg

• stir_egg

• pour_egg2pan

• spoon_flour

• stir_dough

• pour_dough2pan

• fry_pancake

• put_pancake2plate

• pour_flour

• SIL

Backward Dependency The following shows a subset of the back dependency constraints, where
BD(ai, aj) = (Fai ∧ Faj)→ (¬aiWaj) reads “action ai is backward dependent on action aj .”

• BD(pour_dough2pan, spoon_flour),
• BD(squeeze_orange, cut_orange),
• BD(add_saltnpepper, take_bowl),
• BD(put_egg2plate, pour_egg2pan),
• BD(stir_coffee, pour_coffee),

• BD(butter_pan, take_eggs),
• BD(pour_dough2pan, butter_pan),
• BD(stir_tea, take_cup),
• BD(pour_milk, pour_coffee),
• BD(pour_juice, take_plate).

Forward Cancellation The following shows a subset of the forward cancellation constraints,
where FC(ai, aj) = (Fai ∧ Faj) → (¬ajSai) reads “action ai cancels the future occurrence of
aj .”

7

• FC(pour_dough2pan, pour_flour),
• FC(take_squeezer, take_knife),
• FC(fry_pancake, pour_dough2pan),
• FC(put_buntogether, take_topping),
• FC(pour_dough2pan, take_bowl),

• FC(put_toppingontop, cut_bun),
• FC(stir_fruit, peel_fruit),
• FC(pour_milk, pour_coffee),
• FC(put_buntogether, take_knife),
• FC(stir_coffee, take_cup).

Implication The following shows a subset of the implication constraints, where Ip(ai, aj) =
Fai → Faj reads “action ai implies the occurrence of aj .”

• Ip(fry_pancake, pour_dough2pan),
• Ip(pour_flour, stir_dough),
• Ip(butter_pan, crack_egg),
• Ip(stir_dough, pour_milk),
• Ip(pour_cereals, pour_milk),

• Ip(add_teabag, pour_water),
• Ip(spoon_powder, pour_milk),
• Ip(take_topping, cut_bun),
• Ip(take_butter, smear_butter),
• Ip(stirfry_egg, crack_egg).

Exclusivity The following shows a subset of the exclusivity constraints, where Ex(ai, aj) =
Fai → ¬Faj reads “if action ai occurs, action aj will not occur in the same video”.

• Ex(butter_pan, cut_bun),
• Ex(smear_butter, spoon_sugar),
• Ex(take_butter, pour_sugar),
• Ex(stir_cereals, cut_bun),
• Ex(add_teabag, take_butter),

• Ex(take_butter, stir_cereals),
• Ex(put_fruit2bowl, put_pancake2plate),
• Ex(put_fruit2bowl, pour_sugar),
• Ex(cut_bun, spoon_sugar),
• Ex(spoon_flour, add_teabag).

E.2.2 50Salads

50Salads contains 19 actions for a single activity “making salad”:

• cut_tomato

• place_tomato_into_bowl

• cut_cheese

• place_cheese_into_bowl

• cut_lettuce

• place_lettuce_into_bowl

• add_salt

• add_vinegar

• add_oil

• add_pepper

• mix_dressing

• peel_cucumber

• cut_cucumber

• place_cucumber_into_bowl

• add_dressing

• mix_ingredients

• serve_salad_onto_plate

• action_start

• action_end

Backward Dependency

• BD(serve_salad_onto_plate, peel_cucumber),
• BD(serve_salad_onto_plate,

place_tomato_into_bowl),
• BD(add_dressing, cut_tomato),
• BD(serve_salad_onto_plate, cut_cucumber),
• BD(serve_salad_onto_plate, cut_lettuce),

• BD(add_dressing, add_pepper),
• BD(serve_salad_onto_plate, mix_ingredients),
• BD(serve_salad_onto_plate, add_salt),
• BD(serve_salad_onto_plate,

place_cucumber_into_bowl),
• BD(add_dressing, cut_cheese).

Forward Cancellation

8

• FC(add_dressing, peel_cucumber),

• FC(serve_salad_onto_plate, add_vinegar),

• FC(place_cheese_into_bowl, cut_cheese),

• FC(mix_ingredients, cut_cheese),

• FC(add_dressing, add_oil),

• FC(place_cucumber_into_bowl,
peel_cucumber),

• FC(serve_salad_onto_plate, mix_ingredients),
• FC(serve_salad_onto_plate, cut_cheese),
• FC(serve_salad_onto_plate, peel_cucumber),
• FC(add_dressing, place_cucumber_into_bowl).

Implication

• Ip(place_cheese_into_bowl, action_end),
• Ip(cut_cheese, cut_lettuce),
• Ip(add_oil, place_tomato_into_bowl),
• Ip(place_tomato_into_bowl, cut_tomato),
• Ip(mix_dressing, cut_cheese),

• Ip(add_salt, add_pepper),
• Ip(place_lettuce_into_bowl, add_oil),
• Ip(add_salt, place_tomato_into_bowl),
• Ip(place_tomato_into_bowl, action_end),
• Ip(add_oil, cut_tomato).

Exclusivity There are no exclusivity constraints because all actions are from the same activity.

F Action Detection on Charades

Table A2: Performances on the
Charades dataset.

Task Model mAP (%)

GRU
Base 20.7
Base + DTL 21.6
Gain 0.9

TConv
Base 17.2
Base + DTL 18.3
Gain 1.1

One might be curious about whether DTL works without the
“one-action-per-frame” assumption used in the main paper. In
fact, this assumption emerges from the definition of the action
segmentation task rather than DTL itself.

To examine the applicability of DTL without this assumption,
we assess DTL using the action detection task on the Cha-
rades [5] dataset. Different from the datasets used in the ac-
tion segmentation task, every frame in Charades can be la-
beled with zero or multiple actions. The dataset contains 9,848
videos with 157 frame-level action categories. Each video
spans about 30 seconds and contains six actions on average.
Following the same procedure introduced in Section 3.3, we
collected a total of 9,668 constraints. We sampled 2,000 constraints for this experiment.

Following the procedures in [4], we use I3D [1] pretrained on Kinetics-400 to extract the frame-
level features and mean average precision (mAP) as the performance metric. DTL is assessed using
two task models, namely, a GRU with 512 hidden units (abbreviated as GRU), and a three-layer
temporal convolutional network (abbreviated as TConv). As shown in Table A2, improvements are
observed for both task models when they are trained with DTL. Note that since we aim to show
that DTL works across different tasks, we do not use constraints unique to the action detection task.
For example, we do not collect constraints about co-occurrences of actions in the same frame. This
means further improvement is possible when those absent constraints are collected and enforced.
The definition of a more comprehensive set of constraints and their applications in various action
analysis tasks are left as future works.

References
[1] João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the

kinetics dataset. In CVPR, pages 4724–4733, 2017.

[2] Yazan Abu Farha and Jürgen Gall. MS-TCN: multi-stage temporal convolutional network for
action segmentation. In CVPR, pages 3575–3584, 2019.

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

9

[4] A. J. Piergiovanni and Michael S. Ryoo. Temporal gaussian mixture layer for videos. In ICML,
volume 97 of Proceedings of Machine Learning Research, pages 5152–5161. PMLR, 2019.

[5] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta.
Hollywood in homes: Crowdsourcing data collection for activity understanding. In ECCV (1),
volume 9905 of Lecture Notes in Computer Science, pages 510–526. Springer, 2016.

[6] Fangqiu Yi, Hongyu Wen, and Tingting Jiang. ASFormer: Transformer for action segmentation.
In BMVC, 2021.

10

	Table of Notations
	Implementation Details
	Class-wise Performances
	Extended Discussion on DTL
	Semantics of Logic Operators
	Reviewing DTL Evaluation Rules
	A Proof of Soundness for DTL

	Constraints
	Collecting Constraints
	Samples of Constraints
	Breakfast
	50Salads

	Action Detection on Charades

