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Abstract

We propose Differentiable Temporal Logic (DTL), a model-agnostic framework
that introduces temporal constraints to deep networks. DTL treats the outputs
of a network as a truth assignment of a temporal logic formula, and computes
a temporal logic loss reflecting the consistency between the output and the con-
straints. We propose a comprehensive set of constraints, which are implicit in
data annotations, and incorporate them with deep networks via DTL. We evaluate
the effectiveness of DTL on the temporal action segmentation task and observe
improved performance and reduced logical errors in the output of different task
models. Furthermore, we provide an extensive analysis to visualize the desirable
effects of DTL.
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Figure 1: A video of activity “coffee preparation”. The colored bars, from the top to the bottom,
show the ground truth (GT), the predictions from a baseline [15], and the predictions from the base-
line trained with DTL, respectively. Note that the baseline model erroneously predicts pour_cereal
when DTL solves this problem with an exclusivity constraint between pour_coffee and pour_cereal.

1 Introduction

Recent years have witnessed significant advances in video action analysis tasks such as action recog-
nition [29, 55], action detection [49], and temporal action segmentation [15, 1]. This can be credited
to the availability of large-scale datasets [47, 23] and the development of effective deep visual back-
bones [4, 50, 17]. Although data-driven backbones can capture useful spatio-temporal features,
learning a large number of highly diverse temporal dependencies and correlations over long time
spans can be very challenging. In existing approaches, these temporal dependencies are not explicit
to the model: it is possible to provide framewise annotation during training, however, temporal con-
straints like “event X has to occur after event Y” are still implicit in the annotations and not explicitly
enforced. Even though these constraints could be statistically learned from a large amount of data,
a pure vision model could still be confused by different actions with similar visual appearances. An
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example of this is shown in Fig. 1, where the model confuses pour_cereal with pour_milk because
both actions involve holding a carton.

In this paper, we propose a solution to this problem by employing temporal logic to apply declarative
temporal constraints to the output of deep networks. Linear Temporal Logic (LTL) [43], for example,
defines operators that describe necessities, possibilities, and dependencies of actions in a series of
actions. Checking a network’s output against those constraints (a.k.a. model checking) tells us if
the predicted actions are logically correct. Logical correctness can be used as an additional training
objective. According to prior works in the neuro-symbolic community [54, 52, 18], applying logic
constraints improves the performance of deep networks in tasks for graph data [54] and images [52]
by reducing logical errors in the output. Although one would anticipate similar benefits when using
the temporal logic for action analysis, most of the focus in literature is still on non-sequential data.

In this work, we focus on the temporal aspect and consider temporal constraints in videos. Inspired
by the foundational works in logic-based losses [54, 18], we propose a Differentiable Temporal
Logic (DTL) framework, which uses an extended definition of linear temporal logic to constrain the
output of action analysis models. At a high level, DTL treats the model output as a truth assignment
of variables in LTL formulae. A differentiable evaluator performs model checking on the outputs and
yields a satisfaction score, which measures the consistency between the constraints and the outputs.
As we optimize the satisfaction score through standard optimization methods, the constraints are
enforced on the deep network. Different from existing work [53], in DTL the relation between
formula evaluation and formula satisfaction is deterministic, which means that DTL is logically
sound. Moreover, we propose a comprehensive set of constraints covering both temporal and non-
temporal dependencies between actions, and show how they are represented using DTL. We evaluate
DTL on the challenging temporal action segmentation task, where modeling temporal dependencies
between actions is crucial. The efficacy of our method is shown by the improved performance of
different task models when constraints are enforced through DTL.

The contributions of this work are as follows:

• We present Differentiable Temporal Logic (DTL), a framework providing a model-agnostic
manner of introducing temporal logic constraints to deep networks (cf. Section 3.2).

• We propose DTL constraints to describe a wide range of relations between actions, which
can be automatically procured from dataset annotation (cf. Section 3.3).

• Experiments with different task models on the temporal action segmentation task show the
efficacy of DTL. In addition, we provide an extensive study to show the effect of DTL
constraints on task models.

2 Related Works

2.1 Temporal Action Segmentation

A temporal action segmentation model takes a set of video frames as input and predict the action
category for each frame. The model needs to capture both short and long term dependencies be-
tween action categories. Earlier methods [3, 16] use sliding windows to model changes in visual
appearance in a short time. Long-term dependencies are captured from those short-term information
by sequential models like hidden Markov model [33] and recurrent networks [34, 45]. Despite the
remarkable performance, when these models are used to process long videos they still face forget-
ting issues and heavy computation burden. Temporal Convolutional Network (TCN) [36, 37, 15, 38]
enables efficient modelling of temporal dependency in variable time spans with its flexible receptive
field. Many advancements are made based on MSTCN [15], which used stacked dilated temporal
convolution layers for temporal modelling. For example, ASRF [28] uses a boundary regression task
on top of MSTCN to improve the quality of segmentation. Huang et al. [26] proposed a graph-based
dependency model to improve the modeling of relations between actions. Finally, Transformer [51]
is introduced to this task and shows superior performance in [56]. Our view is that these methods
can be complemented by DTL, since many declarative constraints are difficult to learn from the data.
On the other hand, DTL can explicitly enforce these constraints on the task model during training.
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Figure 2: An overview of DTL framework. (a) shows a typical action segmentation pipeline, where
a task model g takes input frames and output segmentation ŷ∗ for each action class. A task loss
LT is minimized during training. (b) shows the logic evaluation part of DTL. A set of declarative
constraints on actions are converted into a temporal logic formula ψ. A formula evaluator f takes ψ
and ŷ∗ as input, and evaluates the consistency between the two, resulting in a logic loss LTL.

2.2 Temporal Logic and Action Analysis

Temporal logic is a large family of logic systems that specify the relations between timed events.
Linear temporal logic (LTL) [43] is one of the earliest temporal logic. It is a propositional modal
logic that states the necessity and possibility about events in a linear discrete succession of time steps.
Later variants of LTL include Metric Temporal Logic (MTL) [40], which introduces time units as
extra parameters to temporal operators, and Signal Temporal Logic [14], which specifies temporal
properties for continuous signals. Allen’s interval algebra [2] and Interval Temporal Logic (ITL) [22]
specify the relations between intervals and their composition. Temporal logic has been used to
specify constraints for program verification [43], robot control [13, 27, 44], and linguistics [41].
However, its application in action analysis remains scarce. CASEE [21] uses ITL as a structural
language to describe atomic actions for event classification. T-LEAF [53] is the first (and so far
the only, to the best of our knowledge) attempt to apply temporal logic to action analysis. It uses an
embedding model to incorporate LTL formulae when training deep networks for action classification,
which has little guarantee on logical soundness and only handles a small set of constraints.

DTL employs LTL for temporal constraints because LTL is: (1) more feasible than its successors
with more operators and (2) expressive enough to benefit action analysis. In principle, DTL can be
used with any logic system that is sound and whose formulae can be evaluated in a differentiable
manner.

2.3 Logic Constraints on Neural Networks

Applying symbolic constraints to deep networks has been drawing increasing interest [25, 11, 39, 46,
20], yet it remains an open problem. An important challenge is that logic propositions generally take
discrete truth values, while end-to-end differentiability is usually required to optimize a network. A
workaround for this challenge is to find a continuous consistency measurement between network
outputs and constraints. Existing methods can be categorized into two branches based on whether
constraints are treated as data or procedures. The first branch is embedding-based [35, 30, 52, 53, 42],
which treats constraints and network outputs as data and project them into a continuous space, where
the distance between the two is used as a measurement. For example, LENSR [52] represents
logical constraints in Deterministic Decomposable Negation Normal Form (d-DNNF) [8] and uses
GCN [31] as the embedder. The second branch is procedure-based [54, 18, 19, 12, 24], which
compiles constraints into computational procedures over network outputs and uses the result as
consistency measurement. For example, semantic loss [54] compiles formulae into logic circuits [9],
along which the probability of the output satisfying the formula is computed as the measurement.
We design DTL as a procedure-based framework instead of an embedding-based one, since the latter
generally lacks a soundness guarantee: high similarities in the embedding space does not guarantee
logical correctness (or satisfaction).
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3 Method

We consider the action segmentation task in a video clip with L frames and N candidate actions
A = {a1, . . . , aN}. As shown in Fig. 2, we assume that there is a deep task model g parameterized
by Θ, which takes frames x0, . . . ,xL−1 as input, and outputs ŷa1 , . . . , ŷaN , where ŷai ∈ RL is
the unnormalized score for the presence of action ai throughout the L frames. We assume ŷai,t > 0
indicates ai presents at time t, and ŷai,t ≤ 0 indicates the opposite. Apart from the ground truth
label ya1 , . . . ,yaN , there is a set of constraints that describe the relation between actions. The
design goal of DTL is to incorporate these constraints into the task model g, so that ŷ complies
with both the ground truth y and the constraints. In order to do so, we introduce a temporal logic
representation Ψ, and an evaluator f that enforces the constraints in formula ψ ∈ Ψ on g, through
its outputs ŷ.

3.1 Syntax of Formulae

The definition of Ψ is an extension of Linear Temporal Logic (LTL) [43]. A formula ψ ∈ Ψ takes
any of the forms separated by “|” below:

ψ := True | False | a | ¬ψ1 | (ψ1 ∧ ψ2) | (ψ1 ∨ ψ2) | Xψ1 | Fψ1 | (ψ1Wψ2) | (ψ1Sψ2), (1)

where a ∈ A is the atomic proposition, and ψ1, ψ2 ∈ Ψ. The connectives X (NEXT), F (EVENTUAL),
W (WEAK_UNTIL), and S (SINCE) are modal operators that form the temporal relations between
propositions. In our context, atomic propositions a represents action a. Note that the definition
in Eqn. (1) is recursive. For example, if a1 ∈ Ψ, then X . . .XFa1 ∈ Ψ. Semantically, Xψ is satisfied
when proposition ψ is satisfied in the next time step. Fψ is satisfied when ψ is satisfied by the end
of the sequence. ψ1Wψ2 being satisfied means that ψ1 must always be satisfied until ψ2 is satisfied
(and ψ2 might never be satisfied). ψ1Sψ2 being satisfied means ψ1 is always satisfied after ψ2 is
satisfied. Section D.1 provides a more formal definition of these operators.

3.2 Formula Evaluator

A formula is said to be satisfied by a truth value assignment if the assignment is semantically com-
pliant with the constraints. In the context of this paper, each atomic proposition ai is assigned ŷai .
Satisfiability is determined by evaluation, which is a function f of a formula ψ and ŷ:

ft(ψ, ŷ) = f(ψ, ŷa1:aN ,t:L−1) : Ψ× RL−t × · · · × RL−t︸ ︷︷ ︸
N times

→ R, (2)

where × refers to the Cartesian product. The two arguments of f are formula ψ and model output
ŷa1:aN . Parameter t ∈ [0, L − 1] is the start time of the evaluation. For example, t = 2 means that
the evaluation is between ψ and the prediction starting from the third frame, i.e. ŷa1:aN ,2:L−1. The
result of f is a satisfaction score that measures the consistency between ŷ and ψ.

Eqn. (2) is abstract and must be detailed for all possible forms of a formula ψ can take in Eqn. (1).
We aim to expand the definition so that Ψ is logically sound, i.e. there is a determined relation
between ft(ψ, ŷ) and the satisfaction of ψ given ŷ. Specifically, we would like ft(ψ, ŷ) > 0 to
imply that ψ is satisfied by ŷ at time t. Moreover, Ψ must be differentiable to be incorporated
with task models. Towards these goals, we first define the evaluation for constants and atomic
propositions:

ft(True, ŷ) = +∞, ft(False, ŷ) = −∞, ft(a, ŷ) = ŷa,t. (3)

Indeed, the evaluation result for True and False will always be positive and negative, because the
former is always satisfied and the latter is never satisfied. Note that if ψ = a, it is satisfied at time t
when ŷa,t > 0, i.e. action a happens at time t.

Next, we define the evaluation for operators “¬” (negation), “∧” (logical and), and “∨” (logical or):

ft(¬ψ1, ŷ) = −ft(ψ1, ŷ), (4)

ft(ψ1 ∧ ψ2, ŷ) = minγ
{
ft(ψ1, ŷ), ft(ψ2, ŷ)

}
, (5)

ft(ψ1 ∨ ψ2, ŷ) = maxγ
{
ft(ψ1, ŷ), ft(ψ2, ŷ)

}
, (6)
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Figure 3: The evaluation of an example constraint on two actions over L time steps. The con-
straint is first written as formula ψ = (¬a1Wa2), then represented as a DAG. (1) – (5) show how
f0(¬a1Wa2, ŷ) is computed. (1) shows the output ŷ of task model, where green boxes indicate pos-
itive values (True) and grey boxes indicate negative values (False). (2) and (3) show the evaluation
of leaf nodes a1 and a2, which is the start of evaluation. (4) takes the evaluation results for a1 from
(2) and evaluate ¬a1 following Eqn. (4). In (5), the W node uses the result for ¬a1 from (4) and a2
from (3) to perform the evaluation for (¬a1Wa2) following Eqn. (9).

where γ is a parameter of function minγ{x1:L−1} = − 1
γ ln

∑L−1
i=1 e

−γxi , which approximates the
minimum value of {x1:L−1} [6], and maxγ{x1:L−1} = −minγ{−x1:L−1}. It can be shown [6]
that limγ→∞ minγ{x1:L−1} = min{x1:L−1}. In Eqn. (4), the operator ¬ flips the sign of ft(ψ1, ŷ),
reflecting the negation semantics of ¬. In Eqn. (5), minγ{ft(ψ1, ŷ), ft(ψ2, ŷ)} will be negative
(False) if ψ1 or ψ2 or both are False, and will be positive (True) iff. both ψ1 and ψ2 are True. This is
consistent with the semantics of ∧. The same rationale applies to maxγ for ∨ in Eqn. (6).

Finally, we define the modal operators X, F, W, and S that are unique in Ψ. Intuitively, evaluating
Xψ1 is equivalent to evaluating ψ1 at the next time step. Fψ1 means there is at least one time step
at which ψ1 is satisfied. ψ1Wψ2 and ψ1Sψ2 require ψ1 to be always satisfied in the time period
specified by ψ2. We formally define them as follows:

ft(Xψ1, ŷ) = ft+1(ψ1, ŷ), (7)

ft(Fψ1, ŷ) = maxγ
{
ft:L−1(ψ1, ŷ)

}
, (8)

ft(ψ1Wψ2, ŷ) = minγ{ft:k(ψ1, ŷ)},where k ≥ t is the min. integer s.t. fk(ψ2, ŷ) > 0, (9)
ft(ψ1Sψ2, ŷ) = minγ{fk:L−1(ψ1, ŷ)},where k ≥ t is the min. integer s.t. fk(ψ2, ŷ) > 0. (10)

In Eqn. (9), minγ{ft:k(ψ1, ŷ)} is positive (True) iff. all elements of {ft:k(ψ1, ŷ)} are positive, which
means that ψ1 stays True from time t to time k. This is consistent with the semantics of W. We use
minγ for S in Eqn. (10) for the same reason.

The definitions in Eqn. (3)-(10) provide a soundness guarantee for Ψ, allowing us to use ft(ψ, ŷ) >
0 as an optimization objective to enforce the constraints in ψ on a task model. Formally, when
γ → ∞, the approximated evaluation (because of minγ) becomes exact, and the following theorem
is true by construction (a proof is provided in Section D.3):

Theorem 1. (Soundness) With ψ ∈ Ψ, γ → ∞: if ft(ψ, ŷ) > 0, then ψ is satisfied by ŷ at time t.

In essence, the evaluation process propagates network predictions from atomic propositions to logic
operators and finally to the formula. Equivalently, we can represent a formula as a directed acyclic
graph (DAG) where each leaf node is labeled with True, False, or action a; and each internal node
is labeled with logic operators. The edges of the DAG point from child nodes to their parents,
along which the truth value propagates following Eqn. (3)-(10). Fig. 3 illustrates how a constraint
“a person cannot pour water before taking a cup” is converted to a DAG and evaluated.

3.3 Constraints

This section discusses different types of constraints we find useful for action analysis and the way
they are represented using Ψ. A constraint can be categorized into either a temporal or a non-
temporal constraint based on whether it states the possibility and necessity of an action in a specific
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time period. We propose two temporal constraints, namely Backward Dependency (BD) and For-
ward Cancellation (FC), and two non-temporal constraints, namely Implication (Ip), and Exclusivity
(Ex). We also introduce how constraints of these types are curated from the training annotations.

Backward Dependency (BD) It is important to specify the proper order of actions because it usu-
ally determines the semantics of an activity. An order is generally related to temporal dependency:
An action cannot be performed if its prerequisite actions did not occur. A way to describe this
dependency is “one action must occur before another”. We write this constraint as

ψBD = ∧(ai,aj)∈BBD(ai, aj) = ∧(ai,aj)∈B(Fai ∧ Faj) → (¬aiWaj),

where (X → Y ) means “X implies Y ” and is equivalent to (¬X ∨ Y ). This logic expression
means the following: if ai and aj occurs in the same video, ai must not occur until aj occurs. Set B
contains action pairs that satisfy this constraint. In practice, (a1, a2) ∈ B if a2 always occurs before
a1 for any co-occurrence of a1 and a2 in the annotation.

Forward Cancellation (FC) Apart from backward dependence, actions can make some other
actions impossible in all future time steps. For example, in a video of salad preparation, the ac-
tion serve_salad_to_plate marks the end of the preparation. Once this action occurs, actions like
cut_lettuce or cut_tomato should not occur thereafter. We write this constraint as

ψFC = ∧(ai,aj)∈FFC(aj , ai) = ∧(ai,aj)∈F (Fai ∧ Faj) → (¬aiSaj),

which reads “if ai and aj occur in the same video, ai cannot occur after the occurrence of aj”. Set
F contains action pairs that satisfy this constraint.

Implication (Ip) There could be some actions that are semantically dependent but temporally
independent: these actions are necessary to complete an activity, but the order is not crucial. For
example, in a video on juice preparation, the person must take_cup and peel_orange, but these two
actions are not temporally correlated. We write this constraint as

ψIp = ∧(ai,aj)∈IIp(ai, aj) = ∧(ai,aj)∈I(Fai → Faj).

Set I contains action pairs that satisfy this constraint. In practice, (a1, a2) ∈ I if a2 always occurs
if a1 occurs in the annotation.

Exclusivity (Ex) As opposed to what implication constraints describe, some actions are mutu-
ally exclusive: they will never co-occur in the same video. For example, if we know that a
video contains a single activity that is “coffee” or “frying eggs”, then pour_coffee cannot happen
if put_egg_into_plate occurs at any time in the video. This constraint is written as

ψEx = ∧(ai,aj)∈X Ex(ai, aj) = ∧(ai,aj)∈X (Fai → ¬Faj).

Set X contains pairs of actions that never occur in the same video.

Finally, we connect all constraints using ∧ as ψ = ψBD ∧ ψFC ∧ ψIp ∧ ψEx.

3.4 Training with Constraints

During training, we hope that the output ŷ is constrained by both ground truth y and logic constraints
described by ψ. The constraints from ground truth are enforced by a task-specific task loss LT(ŷ,y),
for example, framewise cross-entropy loss for the temporal action segmentation task. For logic
constraints, we treat ŷ as an assignment of ψ and from Theorem 1 we know ft(ψ, ŷ) > 0 if ŷ
satisfies ψ from time t. Therefore, for any g we can minimize the following objective:

L = LT + λLTL = LT(ŷ,y) + λσ
(
f0(ψ, ŷ)

)
, (11)

where LT is the loss term for the target task, λ is the weight of the loss of logic LTL, and σ(x) =
log(1+e−x) penalizes negative evaluation results. We set t = 0 in ft(ψ, ŷ) in our experiments, since
we require the prediction to satisfy the constraints from the first frame. Note that it is possible to set
t to different values so that the constraints can be applied flexibly at different temporal locations.
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Table 1: Results of action segmentation on 50Salads dataset.
Task Model Edit F1@10 F1@25 F1@50 Acc

GRU
Base 55.2± 2.3 63.7± 2.3 60.5± 2.7 53.4± 2.9 79.0± 2.4
Base + DTL 62.1± 1.6 69.3± 1.4 66.5± 1.8 58.9± 1.9 80.3± 2.2
Gain 7.1 ± 2.8 5.6 ± 2.7 6.0 ± 3.2 5.5 ± 3.6 1.3 ± 3.3

MS-TCN

Base [15] 67.9 76.3 74.0 64.5 80.7
Base (Rerun) 69.5± 1.7 75.7± 1.7 73.0± 1.9 64.5± 2.2 80.0± 1.4
Base + DTL 70.5± 1.0 78.3± 1.3 76.5± 1.1 67.6± 1.9 81.5± 1.5
Gain 1.0 ± 2.0 2.6 ± 2.1 3.5 ± 2.2 3.0 ± 2.9 1.5 ± 2.0

ASFormer

Base [56] 79.6 85.1 83.4 76.0 85.6
Base (Rerun) 76.9± 0.9 83.6± 0.9 81.5± 0.8 73.9± 1.3 84.2± 1.2
Base + DTL 80.5± 1.5 87.1± 1.3 85.7± 1.2 78.5± 1.6 86.9± 1.5
Gain 3.6 ± 1.7 3.5 ± 1.6 4.2 ± 1.4 4.6 ± 2.1 2.7 ± 1.9

Table 2: Results of action segmentation on Breakfast dataset.
Task Model Edit F1@10 F1@25 F1@50 Acc

GRU
Base 56.8± 2.0 53.3± 2.3 48.4± 2.5 38.4± 2.1 70.0± 1.7
Base + DTL 58.4± 1.7 56.5± 1.1 51.4± 1.3 40.7± 2.1 70.3± 1.1
Gain 1.6 ± 2.7 3.2 ± 2.6 3.0 ± 2.8 2.3 ± 2.9 0.4 ± 2.0

MS-TCN

Base [15] 61.7 52.6 48.1 37.9 66.3
Base (Rerun) 71.2± 1.4 71.7± 1.3 65.7± 1.5 52.3± 1.8 71.3± 1.2
Base + DTL 71.6± 1.1 73.0± 0.4 67.7± 1.2 54.4± 0.8 72.3± 0.5
Gain 0.5 ± 1.8 1.2 ± 1.3 2.0 ± 2.0 2.1 ± 2.0 1.1 ± 1.3

ASFormer

Base [56] 75.0 76.0 70.6 57.4 73.5
Base (Rerun) 76.2± 1.4 77.8± 1.2 72.9± 1.6 60.5± 1.7 75.0± 1.0
Base + DTL 77.7± 1.6 78.8± 1.1 74.5± 1.5 62.9± 1.6 75.8± 0.9
Gain 1.5 ± 2.1 1.1 ± 1.6 1.6 ± 2.2 2.4 ± 2.4 0.8 ± 1.4

4 Experiments

In this section, we first assess the proposed DTL using the temporal action segmentation task.
Through this task, we show that DTL can provide dependency information to improve the perfor-
mance of action analysis models, in both quantitative and qualitative manners. Then, we perform
an ablation study to show the effects of different types of constraints. Finally, with a gradient-based
analysis, we explain how DTL affects the task model. All experiments are run with PyTorch 1.10
on an NVIDIA A6000 GPU. More details are covered in the appendix.

4.1 Temporal Action Segmentation

Datasets We use 50Salads [48] and Breakfast [32] for this task. In these datasets, each video
spans at least 200 seconds and contains at least five different actions. 50Salads contains 50 videos
of salad preparation with frame-level action annotations of 19 actions. We generated a total of 313
constraints from its annotation. Breakfast consists of 1,712 videos with 18 video-level activities, and
each frame has one of the 47 actions. We use only its action-level annotations for this task. There are
a total of 2,145 constraints for this dataset. The details of the constraints are provided in Section E.

Task Models We use three task models in evaluation: a single-layer bidirectional Gated Recur-
rent Unit (GRU) [5], a temporal convolution model MSTCN [15], and a transformer model AS-
Former [56]. We use all three task models to examine the performance gain brought by DTL. For
the ablation study and further discussion, we use GRU and MSTCN for their ease of training. The
architecture of GRU is detailed in the appendix. For experiments on MSTCN and ASFormer, we
retrain the corresponding models using their released source codes. The task models are trained
and assessed using the protocol in [15], where the inputs to the task models are the 2048-dimension
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Table 3: Performance gain of GRU and MSTCN when trained with individual/all types of con-
straints. There are no exclusivity constraints in 50Salads.

(a) 50Salads

Task Model Edit F1@10 F1@25 F1@50 Acc

GRU

+BD 0.7 -1.3 -0.3 -0.3 0.5
+FC 7.0 5.5 6.6 6.3 2.1
+Ex — — — — —
+Ip -0.8 -0.9 -0.8 -1.2 0.6
+All 7.1 5.6 6.0 5.5 1.3

MSTCN

+BD 0.1 0.3 0.6 0.0 0.1
+FC 0.2 1.0 1.0 0.6 0.1
+Ex — — — — —
+Ip 0.8 2.6 2.8 1.9 1.0
+All 1.0 2.6 3.5 3.0 1.5

(b) Breakfast

Task Model Edit F1@10 F1@25 F1@50 Acc

GRU

+BD 0.4 0.8 0.3 0.2 -0.2
+FC 1.0 2.2 1.8 1.1 -0.1
+Ex 0.3 1.2 1.7 0.9 0.1
+Ip 1.1 2.2 2.1 1.9 0.8
+All 1.6 3.2 3.0 2.3 0.4

MSTCN

+BD 0.2 1.1 1.4 1.7 0.7
+FC -0.1 0.8 1.3 0.8 0.2
+Ex 0.1 0.7 0.8 1.1 -0.7
+Ip 0.0 0.4 1.0 1.0 -0.2
+All 0.5 1.2 2.0 2.1 1.1

features extracted using I3D [4] pre-trained on ImageNet [10]. Frame-wise cross-entropy is used
as the task loss for all the task models. Levenshtein distance (Edit), F1 score with thresholds 0.1,
0.25, and 0.5 (F1@{10,25,50}), and frame-wise accuracy (Acc) are used to measure the quality of
the outputs. The results are from a k-fold cross-validation, where k = 5 for 50Salads and k = 4 for
Breakfast.

Performance Table 1 and 2 show the performance of task models trained without (Base) and with
(Base + DTL) temporal logic objective LTL, and the performance difference (Gain), on 50Salads
and Breakfast respectively. For completeness, we also include the base performance published in
the original papers where applicable. A prominent observation is that the performance gain is con-
sistently positive. This indicates the applicability and efficacy of DTL on task models with different
architectures and on datasets of different scales. Another observation is that the gains on different
metrics are not even: there are noticeable improvements on Levenshtein distance and F1 scores
while the improvement on frame-wise accuracy is not as significant. We conjecture the reason to be
that frame-wise accuracy treats frames independently and does not distinguish well between models
with and without the over-segmentation problem. Since DTL constrains the relations between seg-
ments of actions instead of frames, metrics based on segment differences like Levenshtein distance
and F1-scores are therefore comparably better reflections of performance improvement.

4.2 Ablation Study

To understand the effects of each constraint type, we perform an ablation study using GRU and
MSTCN on both datasets. In each experiment, we apply only one type of constraint and retrain the
task model. The results are shown in Table 3. The first observation is that while applying constraints
helps the task model, the extent of improvement differs for different models on different datasets.
On 50Salads, nearly all the action classes are present in each video sample, making Ip constraints
less helpful for GRU. However, Ip is the most helpful constraint type for MSTCN, which indicates
that MSTCN is comparably weaker in modelling action co-occurrence and benefits more from this
constraint. On the other hand, the more complicated nature of Breakfast makes both models benefit
from all four types of constraints. Another important observation is that more constraints do not
guarantee better performance. For example, GRU enjoys the highest improvement with only FC
constraints — higher than when BD and Ip are added. This reveals a trade-off between precision
and completeness of constraints: Because the minγ and maxγ functions used in Eqn. (5)-(10) are
approximations, the evaluation becomes less accurate when the number of constraints increases. For
MSTCN on 50Salads and both models on Breakfast, the benefit of more complete constraints out-
weighs the increased evaluation errors, resulting in more improvements when using all constraints.
Understanding the fine-grained interactions between the constraints and different backbone models
remains an open question.

4.3 Qualitative Results

We qualitatively compare predictions from task models trained with and without DTL in Fig. 4.
In Fig. 4a, we show the output of MSTCN on 50Salads. Note that the baseline MSTCN
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serve_salad_onto_plate

serve_salad_onto_plate

add_dressing mix_ingredients mix_dressing

add_dressing

serve_salad_onto_plate

(a) Example output of MSTCN on 50Salads.

SIL

SIL

SIL

take_cup add_teabag pour_water

pour_water

pour_watertake_cup

pour_coffee

add_teabag

add_teabag

(b) Example output of GRU on Breakfast.

Figure 4: Qualitative comparison between model trained with and without DTL. In each group, the
first row is the ground-truth, the second row is the baseline model, and the last row is the task model
trained with DTL.

4.2 Ablation Study231

To understand the effects of each constraint type, we perform an ablation study using GRU and232

MSTCN on both datasets. In each experiment, we apply only one type of rules and retrain the task233

model. The results are shown in Table 3. The first observation is that while applying constraints234

helps the task model, the extent of improvement differs for different model on different datasets.235

On 50Salads, nearly all the action classes presents in each individual video samples, making Ip236

constraints less helpful for GRU. However, Ip is the most helpful constraint type for MSTCN, which237

indicates that MSTCN is comparably weaker in modelling action co-occurrence and benefit more238

from this constraint. On the other hand, the more complicated nature of Breakfast makes both models239

benefit from all four types of constraints. Another important observation is that more constraints240

does not guarantee better performance. For example, GRU enjoys the highest improvement with241

only FC constraints — higher than the improvement when BD and Ip are added. This reveals a242

tradeoff between precision and completeness of constraints: because the minγ and maxγ functions243

used in Equation (5)-(10) are approximations, evaluation becomes less accurate when the number of244

constraints increases. For MSTCN on 50Salads and both models on Breakfast dataset, the benefit of245

more complete constraints outweighs the increased evaluation errors, resulting more improvements246

when using all constraints.247

4.3 Qualitative Results248

We qualitatively compare predictions from task models trained with and without DTL in249

Fig. 4. In Fig. 4a, we show the output of MSTCN on 50Salads. Note that the baseline250

MSTCN predicts a mix_dressing action after add_dressing, which is in conflict with a FC rule251

FC(add_dressing,mix_dressing) because dressing cannot be mixed after it has been added to the252

salad. A similar example about GRU on Breakfast is shown in Fig. 4b, where the action pour_coffee253

erroneously presents in a video for tea preparation. The baseline output violates an exclusivity rule254

F add_teabag → ¬F pour_coffee because except special cases coffee should not be added to tea.255

Both errors are fixed in the same models trained with DTL. Moreover, we notice that correcting an256

individual wrong segment improves the quality of the whole output sequence as the output near the257

fixed segment are also corrected. This is because the task models we consider are: (a) recurrent258

models that depend current output on past inputs, or (b) convolutional/transformer models that predict259

based on receptive field/attention information. In either case, correcting an error fixes the cascaded260

effect it has on the model states, which improves the quality of all outputs nearby.261

4.4 Understand the Effects of DTL262

One of the biggest benefit of DTL, as discussed in Section 1, is that it provides additional supervisory263

signals for temporal constraints which are implicit in training data. We would like to understand how264

those signals affect the task model. Formally, given a model g parameterized by Θ and an input x,265

we would like to know if a constraint ψ has encouraged or suppressed the model’s output about action266

a at time step t. This is possible by assuming that the output of the model is continuous with respect267

to its parameters, or lim∥δΘ∥→0 gΘ+δΘ(x) = gΘ(x). With this assumption, the effect of ψ on Θ268

can be approximated by the changes in the output as we update Θ based on f0(ψ, ŷ). Specifically,269

we first calculate δψΘ = ∂σ(f0(ψ, ŷ))/∂Θ, where σ(x) = log(1 + e−x) as in Equation (11).270

Then, we perform a step of gradient descend and get an updated model as Θ′ = Θ− γδψΘ, where271

γ = 10−4 is a small update step. Finally, the output difference caused by ψ with input x is obtained as272

∆ψ,x = gΘ′(x)− gΘ(x), where ∆ψ,x ∈ RN×L. A positive (negative) ∆ψ,x
a,t indicates a promotive273

(suppressive) effect of ψ on ŷa,t as it increases (decreases) the score for action a at time t.274
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(a) Example output of MSTCN on 50Salads.

SIL

SIL

SIL

take_cup add_teabag pour_water

pour_water

pour_watertake_cup

pour_coffee

add_teabag

add_teabag

(b) Example output of GRU on Breakfast.

Figure 4: Qualitative comparison between model trained with and without DTL, which shows that
logical errors are fixed by DTL. In each group, from the top to the bottom show the ground truth
(GT), the prediction from baseline task model, and the prediction from task model trained with DTL.

· · ·

(Preceding actions omitted.)

mix_dressing peel_cucumber cut_cucumber mix_ingredients serve_salad_onto_plate add_dressing · · ·

(Succeeding actions omitted.)

Implication Backward Dependency

BD(add_addressing, mix_dressing)

Figure 5: A snippet prediction from 50Salads and the most influential constraints for each segmen-
tation. The black arrows represent temporal order. The colored arrows represent constraint types.

predicts a mix_dressing action after add_dressing, which is in conflict with a FC constraint
FC(add_dressing,mix_dressing) because dressing cannot be mixed after it has been added to the
salad. A similar example of GRU on Breakfast is shown in Fig. 4b, where the action pour_coffee is
erroneously predicted in a video for “tea preparation”. The baseline output violates an exclusivity
constraint F add_teabag → ¬F pour_coffee because, except in special cases, coffee should not be
added to tea. Both errors are fixed in the models trained with DTL. Moreover, we notice that correct-
ing an individual wrong segment improves the quality of the whole output sequence. This is because
the task models we consider are: (a) recurrent models that condition current output on past inputs,
or (b) convolutional/transformer models that predict based on receptive field/attention information.
In either case, correcting an error fixes the cascade effect it has on the model states, which improves
the quality of all nearby outputs.

4.4 Analyzing the Effects of DTL

One of the greatest benefits of DTL is that it provides additional supervisory signals for tempo-
ral constraints, which are implicit in training data. We would like to understand how those sig-
nals affect the task model. Formally, given a model g parameterized by Θ and an input x, we
would like to know if a constraint ψi promotes or suppresses the model’s output about action a at
time t. We assume that the output of the model is continuous with respect to its parameters, or
lim∥δΘ∥→0 gΘ+δΘ(x) = gΘ(x). With this assumption, the effect of ψi on Θ can be approximated
by the changes in the output as we update Θ based on f0(ψi, ŷ). Specifically, we first compute
δψiΘ = ∂σ(f0(ψi, ŷ))/∂Θ, where σ(x) = log(1 + e−x) as in Eqn. (11). Then, we update Θ as
Θ′ = Θ−γδψiΘ, where γ = 10−4 is a small update step. Finally, the difference in output caused by
ψi is obtained as ∆ψi,x = gΘ′(x)− gΘ(x), where ∆ψi,x ∈ RN×L. A positive (negative) ∆ψi,x

a,t in-
dicates a promotive (suppressive) effect of ψi on ŷa,t as it increases (decreases) the score for action
a at time t.

We use ∆ψi,x to pinpoint the constraint that makes a model predict an action a at time t. This can
be done by calculating ∆ψi,x

a,t for all ψi in ψ and find the most positively influential constraint as
argmaxψi

∆ψi,x
a,t . For example, Fig. 5 shows a snippet of prediction from MSTCN on 50Salads and

the constraints we found contributed the most to each predicted segment. One important observation
from this is that actions in earlier time steps are generally promoted by later actions, as the former
could serve as the prerequisites of the latter.

We can also summarize the total effect of ψi on all time steps and samples as ∆ψi
a =

1
|X |

∑
x∈X

1
L

∑L−1
t=0 ∆ψi,x

a,t . ∆ψi
a provides two pieces of information. The first is the effect of

ψi on all actions. As illustrated as a heatmap in Fig. 6, ∆ψi
a suggest that the Ip constraints play

mainly promotional roles, where the FC, BD, and Ex constraints are mostly suppressive. This is
consistent with our design intuitions: Ip encourages co-occurrence of actions, FC and Ex constraints
are intrinsically prohibitive, and BD constraints suppress an action if its prerequisites are missing.
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Figure 6: A heatmap showing ∆ψi
a of Breakfast, the vertical axis represents the 47 actions a and the

horizontal axis is the 2,145 constraints ψi. Labels at the bottom indicate constraint types. A brighter
color indicates that a constraint has a more positive effect on an action.

Table 4: Actions in Breakfast dataset, and the most influential constraints. “∼” refers to the action
in the leftmost column of the row it is in.

Action Top Positive Constraint Top Negative Constraint

stir_fruit Ip(cut_fruit,∼) BD(∼, put_fruit2bowl)
stir_tea Ip(add_teabag,∼) Ex(put_milk,∼)
put_toppingOnTop Ip(put_bunTogether,∼) FC(put_bunTogether,∼)

The second information is how an action a is affected by other actions. This can be determined
by selecting the most promotive and suppressive constraints for action a, and checking the actions
involved in these constraints. Table 4 shows the relations between example actions in the Breakfast
dataset. An interesting observation is that for put_ToppingOnTop the most promotive and suppres-
sive action is the same put_PutBunTogether, meaning that relation between two actions could largely
change depending on the context. This also indicates that DTL can help the model learn different
dependencies between the same pair of actions.

5 Conclusion

We propose DTL, a framework that uses temporal logic to constrain the training of action analysis
models. Experimental results on the action segmentation task show that DTL effectively improves
the performance of task models with different architectures. An ablation study reveals the divergent
effect of different types of rules on different task models. Our work suggests that temporal con-
straints can be explicitly provided to a deep network and reduce logical errors in its output. The
source code of our work is accessible at https://diff-tl.github.io/.

Limitations There remain some limitations in this work. First, in this work, we only explored a
subset of temporal knowledge that is expressible as frequency matrices. When such temporal cor-
relation is sparse, DTL is less effective. This calls for more flexible knowledge curation methods
(e.g. with human involvement). Besides, non-temporal knowledge about actions, such as object af-
fordance, can be exploited to handle more complicated actions like the verb-object compositions
in Epic-Kitchens [7]. Second, in terms of knowledge type, DTL can benefit from more expressive
logic languages, like Allen’s Interval Algebra [2], which supports first-order temporal constraints
beyond necessities and possibilities. Moreover, DTL formulae are evaluated in their raw forms,
which means that the evaluation efficiency could be further improved by better formula compila-
tion [9] and optimized message passing on directed acyclic graphs. In addition, the constraints we
collected from dataset annotations only form a partial and clean view of real-world scenarios. The
real-world constraints are more comprehensive and complex, which poses a higher requirement on
generalization and robustness against uncertainties.
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