
A Upper Bound with Gap-dependent Analysis

We begin with the proof of thresholding technique. In this section, definitions are restated for
completeness.

A.1 Definitions

We first restate the notations.
Definition A.1 (Pessimistic algorithms). An offline learning algorithm with output policy ⇡ is

pessimistic if with probability at least 1� �, the following arguments hold,

1. It maintains a pessimistic estimate Q of the true Q⇤
.

2. Q is the optimal Q function of an imaginary MDP M = (S,A, H,P, p0, r), where

r
h
(s, a) rh(s, a) for all (h, s, a) 2 [H]⇥ S ⇥A.

3. ⇡ is the greedy policy with respect to Q.

Definition A.2 (Pessimistically estimated MDP). For a given successful pessimistic algorithm

execution instance, where the arguments in Definition A.1 are simultaneously satisfied, we call

M = (S,A, H,P, p0, r) the pessimistically estimated MDP. At the same time, V, Q are the

corresponding value functions and Q functions. We use ⇡ to refer to the returned policy, which is

optimal over M.

And sometimes we use Q = Q⇡, V = V⇡ without superscript indicating the policy. We’ll show that
this notation matches the definition in Algorithm 1 so there is no need worrying about any possible
confusion.
Definition A.3 (Deficit). For a pessimistically estimated MDP M = (S,A, H,P, p0, r), we define

deficit to be

Eh(s, a) , rh(s, a)� r
h
(s, a).

Definition A.4 (Not-so-pessimistic MDP). For a given set of ✏h(s, a), a pessimistically estimated

MDP M = (S,A, H,P, p0, r), define

r̈h(s, a) , rh(s, a)�max{0,Eh(s, a)� ✏h(s, a)}.

Then we call M̈ = (S,A, H,P, p0, r̈) not-so-pessimistic MDP. At the same time, V̈ is the corre-

sponding value functions.

A.2 Main Theorem

For conciseness, we will use a⇤ and a to stand for ⇡⇤
h
(s) and ⇡

h
(s) respectively when it introduces

no confusion. To formally present the deficit thresholding technique, we define a event ⇠gap.
Definition A.5 (Gap restriction event). For a given set of ✏h(s, a), event ⇠gap is defined to be the

event such that for all optimal policy ⇡⇤
, h 2 [H] and s 2 S ,

V̈⇤
h
(s) V⇤

h
(s) +

gapmin

2
.

Note that ⇠gap depends on the value of ✏h(s, a), and the definition of ✏h(s, a) may involve randomness.
In the following proof of Corollary A.1, we will set ✏h(s, a) =

gapmin
2H .

Theorem A.1 (Deficit thresholding). When event ⇠gap happens, there exists an optimal policy ⇡⇤
,

such that replacing V⇡

0 with V̈⇤
0 only harms the difference up to a constant factor,

V⇤
0 �V⇡

0 2(V⇤
0 � V̈⇤

0).

Rigorous proof is deferred to Appendix A.4
Corollary A.1. For a pessimistic algorithm running instance, there exists a deterministic optimal

policy ⇡⇤
, such that

V⇤
0 �V⇡

0 2
HX

h=1

E⇡⇤

h
max{0,Eh(sh, ah)�

gapmin

2H
}
i
.

14

Proof. With Theorem A.1, we just need to prove that ✏h(s, a) =
gapmin
2H indicates ⇠gap.

Note that Eh(s, a⇤) Ëh(s, a⇤)+ ✏h(s, a⇤) = Ëh(s, a⇤)+
gapmin
2H . Therefore, for all optimal policy

⇡⇤, we have

V̈⇤
h
(s)�V⇤

h
(s) =

HX

h0=h

E⇡⇤,sh=s[�Ëh0(sh0 , ah0) +Eh0(sh0 , ah0)]

HX

h0=h

E⇡⇤,sh=s[
gapmin

2H
]

 gapmin

2
.

A.3 Value/Q Function Ranking Lemma

The following lemmas will be frequently used throughout the proof of Theorem A.1 and upper
bounds.
Lemma A.1 (Overall size relationships of value functions). When ⇠gap happens, different value

functions satisfy that for any optimal policy ⇡⇤
, we have

V⇤ �
⇢
V⇡ � V⇡

V̈⇤ � V⇤ � V̈⇤ � gapmin

2
.

Here V � V0
means Vh(s) � V0

h
(s) for all (h, s) 2 [H]⇥ S .

Proof. We study each inequality one by one:
V⇤ � V⇡: ⇡⇤ is a optimal policy over M.
V⇡ � V⇡: this follows from r r,

V⇡

h
(s) =

HX

h0=h

E⇡[rh0(sh0 , ah0) | sh = s] �
HX

h0=h

E⇡[rh0(sh0 , ah0) | sh = s] = V⇡

h
(s).

V⇡ � V⇤: ⇡ is a optimal policy over M.
V⇤ � V̈⇤: this follows from r̈ r,

V⇤
h
(s) =

HX

h0=h

E⇡⇤ [rh0(sh0 , ah0) | sh = s] �
HX

h0=h

E⇡⇤ [r̈h0(sh0 , ah0) | sh = s] = V̈⇤
h
(s).

V̈⇤ � V⇤: this follows from r r̈,

V̈⇤
h
(s) =

HX

h0=h

E⇡⇤ [r̈h0(sh0 , ah0) | sh = s] �
HX

h0=h

E⇡⇤ [r
h0(sh0 , ah0) | sh = s] = V⇤

h
(s).

V⇤ � V̈⇤ � gapmin
2 : this is just the definition of ⇠gap.

Lemma A.2 (Overall size relationships of Q functions). When ⇠gap happens, different Q functions

satisfy that for any optimal policy ⇡⇤
, we have

Q⇤
h
(s, a⇤) � Q⇤

h
(s, a) � Q⇡

h
(s, a) � Q⇡

h
(s, a) � Q⇡

h
(s, a⇤) � Q⇤

h
(s, a⇤).

Proof. We study each inequality one by one:
Q⇤

h
(s, a⇤) � Q⇤

h
(s, a): a⇤ is the optimal action at (h, s) over M.

Q⇤
h
(s, a) � Q⇡

h
(s, a): this follows from V⇤ � V⇡ in Lemma A.1,

Q⇤
h
(s, a) = Es0⇠Ph,s,a [V

⇤
h+1(s

0)] � Es0⇠Ph,s,a [V
⇡

h+1(s
0)] = Q⇡

h
(s, a).

Q⇡

h
(s, a) � Q⇡

h
(s, a): this follows from V⇡ � V⇡ in Lemma A.1.

Q⇡

h
(s, a) � Q⇡

h
(s, a⇤): a is the optimal action at (h, s) over M.

Q⇡

h
(s, a⇤) � Q⇤

h
(s, a⇤): this follows from V⇡ � V⇤ in Lemma A.1,

Q⇡

h
(s, a⇤) = Es0⇠Ph,s,a⇤ [V

⇡

h+1(s
0)] � Es0⇠Ph,s,a⇤ [V

⇤
h+1(s

0)] = Q⇤
h
(s, a⇤).

15

A.4 Proof of Theorem A.1

Proof. In this proof, we choose the ⇡⇤ according to the given ⇡,

⇡⇤
h
(s) =

⇢
⇡
h
(s) ⇡

h
(s) is optimal,

arbitrary optimal action ⇡
h
(s) is not optimal.

So that every time ⇡⇤ disagrees with ⇡, the choice made by ⇡ must be suboptimal. The intuition is
that we only consider the cases where ⇡⇤ and ⇡ have different opinions. To begin with, we define
a set of prefix trajactories for any two given deterministic policies over MDPs that only differ in
rewards:

 (⇡1,⇡2) ={(s1, a1, · · · , sk) | ⇡1,i(si) = ⇡2,i(si) = ai, 8i = 1, 2, · · · k � 1,

⇡1(sk) 6= ⇡2(sk) or k = H}.
And we use P⇡

to denote the probability that we can get a prefix trajactory = (s1, a1, · · · , sk)

with a deterministic policy ⇡,

P⇡

, p0(s1)

k�1Y

h=1

ph(sh,⇡h(sh), sh+1).

Notice that for any given trajectory ⇠ and policy ⇡1,⇡2, there is exactly one prefix trajectory 2
 (⇡1,⇡2) being the prefix of ⇠, which ends at the first time ⇡1 disagrees with ⇡2. Denote the length
and the last state of a trajactory to be 2h � 1 and s , and set the cumulative reward over under a
given deterministic reward function rh(s, a) to be r , we can write the value function in the form

V ⇡1
0 =

X

 2 (⇡1,⇡2)

P⇡1

⇣
r +V⇡1

h
(s)

⌘
.

Also, notice that because ⇡1 and ⇡2 agrees on all the decisions in 2 (⇡1,⇡2), we always have
P⇡1

= P⇡2

for 2 (⇡1,⇡2). Now we have

V⇤
0 �V⇡

0 =
X

 2 (⇡⇤,⇡)

P⇡
⇤

(V⇤

h
(s)�V⇡

h
(s))

=
X

 2 (⇡⇤,⇡)

P⇡
⇤

(Q⇤

h
(s , a) + gap

h
(s , a)�V⇡

h
(s)).

Then we prove a statement that 8 2 (⇡⇤,⇡),

Q⇤
h

(s , a) + gap
h

(s , a)� V̈⇤
h

(s) � Q⇤
h

(s , a) +
1

2
gap

h
(s , a)�V⇡

h
(s). (3)

When a = a⇤, the only possibility is that h = H , then RHS=0. While the LHS is always non-
negative because Q⇤

h
(s , a) = V⇤

h
(s) � V̈⇤

h
(s) (Lemma A.1).

When a 6= a⇤, event ⇠gap guarantees that

Q⇤
h

(s , a) + gap
h

(s , a)� V̈⇤
h

(s) � Q⇤
h

(s , a) + gap
h

(s , a)�V⇤
h

(s)�
gapmin

2

� Q⇤
h

(s , a) +
1

2
gap

h
(s , a)�V⇡

h
(s).

The inequality uses that gapmin gap
h

(s , a) and that V⇤ V⇡ V⇡. At the same time, we
can decompose V⇤

0 � V̈⇤
0 in a similar way,

V⇤
0 � V̈⇤

0 =
X

 2 (⇡⇤,⇡)

P⇡
⇤

(r � r̈ +V⇤

h
(s)� V̈⇤

h
(s))

�
X

 2 (⇡⇤,⇡)

P⇡
⇤

(Q⇤

h
(s , a) + gap

h
(s , a)� V̈⇤

h
(s)) (4)

�
X

 2 (⇡⇤,⇡)

P⇡
⇤

(Q⇤

h
(s , a) +

1

2
gap

h
(s , a)�V⇡

h
(s)) (5)

� 1

2

X

 2 (⇡⇤,⇡)

P⇡
⇤

(Q⇤

h
(s , a) + gap

h
(s , a)�V⇡

h
(s)) (6)

=
1

2
(V⇤

0 �V⇡

0).

16

(4) results from the fact that r is always larger than or equal to r̈. (5) just makes use of (3). (6) uses
Q⇤

h
(s, a) � Q⇡

h
(s, a) = V⇡

h
(s)(Lemma A.2).

B VI-LCB based analysis

B.1 Algorithm Sketch and Notations

Algorithm used here is Lower Confidence Bound Value Iteration(VI-LCB)[Xie et al., 2021b] with
subsampling trick and Berstein-style bonus. The basic idea of LCB is to pessimistically estimate
the Q function so that the algorithm won’t over estimate some hardly seen suboptimal actions in
dataset. The subsampling trick introduced by Li et al. [2022] helps solve the independence problem
between P̂h and V⇡

h+1, which avoid separating the dataset into H parts, resulting in one H dependency
removed in final complexity.

Here we understand dataset as a set of transitions in the form (h, s, a, s0) that allows duplicates. When
we say that the dataset contains a trajactory (s1, a1, · · · , sh, ah), it means that the dataset contains all
the decomposed transitions {(h, sh, ah, sh+1)}h=1,···H . Also note that M has deterministic rewards
in our setting, so the reward function can be easily derived as long as the (h, s, a) tuple is visited for
at least once. And if (h, s, a) is not contained in D, the algorithm output wouldn’t be influenced by
the value of rh(s, a), and we can set rh(s, a) = 0. So we assume that the reward function is known
from the beginning.

Algorithm 3: VI-LCB
input :Dataset D0, reward function r

1 set Q⇡

H+1
(s, a) = 0

2 set V⇡

H+1(s, a) = 0
3 for h H to 1 do

4 compute the empirical transition kernel P̂h

5 P̂h,s,a(s0) =
Nh(s,a,s

0)
Nh(s,a)

with 0/0 = 0

6 for s 2 S, a 2 A do

7 bh(s, a) Cb

r
VarP̂h,s,a

(V⇡
h+1)◆

N
0
h(s,a)

+ Cb
H◆

N
0
h(s,a)

, where N 0
h
(s, a) = Nh(s, a) _ ◆

8 Q⇡

h
(s, a) max{0, rh(s, a) + P̂>

h,s,a
V⇡

h+1 � bh(s, a)}
9 for s 2 S do

10 V⇡

h
(s) max

a2A
Q⇡

h
(s, a)

11 ⇡
h
(s) argmax

a2A
Q⇡

h
(s, a)

output :policy ⇡

Algorithm 4: Subsampled VI-LCB
input :Dataset D, reward function r

1 Split D into 2 halves containing same number of sample trajectories, Dmain and Daux

2 D0 = {}
3 for (h, s) 2 [H]⇥ S do

4 N trim
h

(s) max{0, Naux
h

(s)� 10
q

Naux
h

(s) log HS

�
}

5 Randomly subsample min{N trim
h

(s), Nmain
h

(s)} samples of transition from (h, s) from
Dmain to add to D0

6 ⇡ VI-LCB(D0, r)
output :policy ⇡

17

Notations in VI-LCB. In the algorithm, Nh(s, a) refers to the number of sample transitions starting
from state s, taking action a at time step h of some given dataset, and Nh(s) =

P
a2A Nh(s, a).

Superscripts stand for the dataset. See Li et al. [2022] for a more detailed description of the algorithm.

The proof of independence between samples with different h in D0 is omitted here, and we will not
need it directly because the proof of Lemma B.1 suggests it.

Note that different from the notation in Algorithm 1, we use V⇡ and Q⇡ instead of V and Q in
Algorithm 4. We do this to emphasize that V and Q in Algorithm 1 directly satisfies the definitions
of V⇡ and Q⇡ in thresholding technique (Definition A.2), which will be rigorously proved in Lemma
B.3. To avoid unnecessary confusion or reading difficulty, V and Q without superscript stands for
the true optimal Q/value functions of M, i.e., V⇡ and Q⇡ , in the following proof.

B.2 Proof Preparation

To warm up, we first prove that VI-LCB perfectly matchs our definition of LCB-style algorithm.
From the original paper of VI-LCB [Li et al., 2022], we quote a slightly modified version of their
lemma 6, where constants and notations are changed, and V is replaced with V⇡

h+1.

Lemma B.1 (Transition estimation bound). For any 1 h H , with probability at least 1� �

2H ,

we have

|(P̂h,s,a�Ph,s,a)
>V

h+1| bn(s, a) = Cb

s
Var

P̂h,s,a
(V⇡

h+1)◆

Nh(s, a)
+Cb

H◆

Nh(s, a)
, 8(s, a) 2 S⇥A.

Proof for Lemma B.1 is omitted here. With the union bound, we have the inequality in Lemma B.1
holds for all h 2 [H] with probability over 1� �

2 . Also, Lemma 1 from original paper helps with the
guarantee of the sample number.

Lemma B.2. With probability over 1� �

2 , we have

Nh(s, a) � Cdata(Ndµ
h
(s, a)�

q
Ndµ

h
(s, a)◆), 8(h, s, a) 2 [H]⇥ S ⇥A,

for some positive constant Cdata.

Proof of this lemma is also omitted, which is a direct result of Binomial concentration. Then we can
prove the concentration lemma, which serves as the basis of following analysis.
Lemma B.3. If we run VI-LCB on a offline learning instance (M, µ), with high probability (over

1� �), the following event ⇠conc happens for some positive constant Cd:

1. the execution instance satisfies the three arguments in Definition A.1, and 0 Eh(s, a)
2bh(s, a) for all (h, s, a) 2 [H]⇥ S ⇥A.

2. N 0
h
(s, a) = Nh(s, a) _ ◆ � CdNdµ

h
(s, a) for all (h, s, a) 2 [H]⇥ S ⇥A.

Proof. We just need to prove that both statements are true with probability over 1� �

2 respectively,
and then we can finish the proof by applying union bound.

Proof of statement 1: Q in the definition of pessimistic algorithm matches the Q in VI-LCB. We
first prove that M exists. With Q given, we can actually get a closed form of r,

r
h
(s, a) = Q

h
(s, a)� E⇡|sh=h,ah=a[Q

h
(sh+1, ah+1)]

= Q
h
(s, a)�

X

s02S
Ph,s,a(s

0)Q
h+1

(s0, a)

= Q
h
(s, a)� P>

h,s,a
V

h+1.

Then we can find that the definition of V in the algorithm agrees with the one in Definition A.2, and
we won’t distinguish between these two definitions in following induction. It remains to show that

0 Eh(s, a) , rh(s, a)� r
h
(s, a) 2bh(s, a). (7)

18

Both inequalities follow from Lemma B.1. Recall that Q
h
(s, a) = max{rh(s, a) + P̂>

h,s,a
V

h+1 �
bh(s, a), 0},

Q
h
(s, a) = max{0, rh(s, a) + P̂>

h,s,a
V

h+1 � bh(s, a)}

= max{0, P>
h,s,a

V
h+1 + rh(s, a) + (P̂h,s,a � Ph,s,a)

>V
h+1 � bh(s, a)}

 max{0, P>
h,s,a

V
h+1 + rh(s, a)} = P>

h,s,a
V

h+1 + rh(s, a).

Simple transformation of above inequality leads to

rh(s, a)� r
h
(s, a) � Q

h
(s, a)� P>

h,s,a
V

h+1 � r
h
(s, a) = 0.

The second inequality is also straight forward. We first unfold the definitions of r and r, then apply
Lemma B.1 to get

rh(s, a)� r
h
(s, a) Q

h
(s, a)� P̂>

h,s,a
V

h+1 + bh(s, a)� (Q
h
(s, a)� P>

h,s,a
V

h+1)

= bh(s, a)� (P̂h,s,a � Ph,s,a)
>V

h+1

 2bh(s, a).

Proof of statement 2: We prove over the assumption of event: Nh(s, a) � Cdata(Ndµ
h
(s, a) �p

Ndµ
h
(s, a)◆) for all (h, s, a) 2 [H] ⇥ S ⇥ A, which is proved by Lemma B.2 to happen with

probability over 1� �

2 .
When Ndµ

h
(s, a)�

p
Ndµ

h
(s, a)◆ ◆

Cdata
, simple calculation leads to

q
Ndµ

h
(s, a)

1 +
q
1 + 4

Cdata

2

p
◆ = �

p
◆,

where � =
1+

q
1+ 4

Cdata

2 is a constant larger than 1. Therefore

Nh(s, a) _ ◆ � ◆ �
1

�2
Ndµ

h
(s, a). (8)

When Ndµ
h
(s, a)�

p
Ndµ

h
(s, a)◆ � ◆

Cdata
, simple calculation leads to

q
Ndµ

h
(s, a) �

1 +
q
1 + 4

Cdata

2

p
◆ = �

p
◆

, Ndµ
h
(s, a)�

q
Ndµ

h
(s, a)◆ � (1� 1

�
)Ndµ

h
(s, a)

) Nh(s, a) _ ◆ � Cdata(Ndµ
h
(s, a)�

q
Ndµ

h
(s, a)◆) � Cdata(1�

1

�
)Ndµ

h
(s, a). (9)

Then together with (8) and (9), and letting Cd = Cdata(1� 1
�
) ^ 1, we finish the proof of statement

2.

Lemma B.4. When 0 x y, for ✏ > 0

max{0, x� ✏} y2

✏
.

Proof. When x ✏, max{0, x� ✏} = 0 y
2

✏
.

When x > ✏,

max{0, x� ✏} y y · x
✏
 y2

✏
.

19

B.3 Proof of Upper Bound with Relative Optimal Policy Coverage(Proof of Theorem 5.1)

This analysis is actually made with Hoeffding bonus for simplicity. Because Berstein bonus is larger
than Hoeffding bonus up to log term,

bh(s, a) = Cb

s
Var

P̂h,s,a
(V⇡

h+1)◆

N 0
h
(s, a)

+
CbH◆

N 0
h
(s, a)

 2Cb

s
H2◆2

N 0
h
(s, a)

. (10)

With Corollary A.1 and Lemma B.4,

V⇤
0 �V⇡

0 2
HX

h=1

E⇡⇤ [max{0,Eh(s, a)�
gapmin

2H
}] (Corollary A.1)

= 2
X

h,s

d⇤
h
(s)max{0,Eh(s, a)�

gapmin

2H
}

.
X

h,s

d⇤
h
(s)

b2
h
(s, a⇤)
gapmin
2H

(Lemma B.4 and ⇠conc)

.
X

h,s

d⇤
h
(s)

H3◆2

Nh(s, a⇤)0gapmin

.
X

h,s

d⇤
h
(s)

H3◆2

Ndµ
h
(s, a)gapmin

(⇠conc)

. 1

N

X

h,s

d⇤
h
(s)

H3C⇤◆2

d⇤
h
(s)gapmin

(relative optimal coverage assumption)

=
1

N

H4SC⇤◆2

gapmin

.

Therefore, under relative optimal policy coverage, the sample complexity bound can be

N = O(
H4SC⇤◆2

✏ gapmin

).

A similar proof in Section B.5 can be applied to prove this result by replacing all the NP & H◆
requirements with Nh(s, a)0 , Nh(s, a) _ ◆ � ◆. So the strict bound without extra ◆ can be derived.
To avoid redundancy, we omit the proof.

N = O(
H4SC⇤◆

✏ gapmin

).

B.4 Proofs of Upper Bound with Uniform Optimal Policy Coverage(Proof of Theorem 4.1)

Proof of Theorem 4.1 does not necessarily involve the deficit thresholding technique introduced
above. We just need to confirm that Q⇡

h
(s, a⇤) � V⇤

h
(s)� gapmin � V⇤

h
(s, a0) � Q⇡

h
(s, a0), where

a0 is any suboptimal action, to get a optimal policy. We first present the proof applying this idea, and
then present a simpler proof by applying the thresholding technique.

B.4.1 Proof without Deficit Thresholding Technique

First we introduce a new definition,

d⇤
h⇠(h0,s0)(s) , E⇡⇤ [I{sh = s} | sh0 = s0],

d⇤
h⇠(h0,s0) , (d⇤

h⇠(h0,s0)(s1), · · · , d⇤h⇠(h0,s0)(sS))
> for some certain order of states s1, s2, · · · sS .

And when there is no confusion, we use d⇤
0

h
to denote d⇤

h⇠(h0,s0).

20

Lemma B.5 (Part Decomposition). 8(h0, s0) 2 [H]⇥ S , if the event ⇠conc happens, and P > 0, then

8 optimal policy ⇡⇤
,

HX

h=h0

X

s

d⇤
h⇠(h0,s0)(s)bh0(s, a⇤) Ce

r
H3◆

NP
+ Ce

H2◆

NP
,

where Ce = max{4 Cbp
Cd

, 16C2
b+12Cb

Cd
, 1}.

With this lemma, we can further limit Q⇡

h
(s, a⇤).

V⇤
h0(s0)�Q⇡

h0(s
0, a⇤) V⇤

h0(s0)�Q⇤
h0(s

0, a⇤) (⇡ is the optimal policy over M)

=
HX

h=h0

X

s

d⇤
h⇠(h0,s0)(s)Eh(s, a

⇤)

 2
X

h,s

d⇤
0

h
bh(s, a

⇤) (⇠conc)

 2Ce

r
H3◆

NP
+ 2Ce

H2◆

NP
. (Lemma B.5)

When N � 4C2
eH

3
◆

�2P
for some � H ,

V⇤
h0(s0)�Q⇡

h0(s
0, a⇤)

 �

2
+
�

2

�

2CeH
 �.

Setting � = gapmin, we get the conclusion that

N =
4C2

e
H3◆

gap2minP

can make sure that the returned policy is one of the optimal policies with probability over 1� �.

B.4.2 Proof with Deficit Thresholding Technique

By applying the Lemma B.8 which is orginally developed for the proof of Theorem 5.2, we shall
directly prove that the suboptimality would be zero if N > CH

3
◆

Pgapmin
. Lemma B.8 allows us to set

✏h(s, a) = Cpac

✓
Var

P̂h,s,a(V
⇡
h+1

)

H2 + 1
H

◆
gapmin. When N � C H

3
◆

Pgap2
min

, for any optimal policy ⇡⇤,

bh(s, a
⇤) = Cb

s
Var

P̂h,s,a⇤ (V
⇡

h+1)◆

N 0
h
(s, a⇤)

+ Cb

H◆

Nh(s, a⇤)

.

s
Var

P̂h,s,a⇤ (V
⇡

h+1)◆

NP
+

H◆

NP
(⇠conc)

s
Var

P̂h,s,a⇤ (V
⇡

h+1)gap
2
min

CH3
+

gap2min

CH2
(N � C H

3
◆

Pgap2
min

)

Var

P̂h,s,a⇤ (V
⇡

h+1)gapmin

2CH2
+

gapmin

2H
+

gapmin

CH
a+ b � 2

p
ab, gapmin H

. ✏h(s, a
⇤).

Therefore, with a large enough global constant C, we have Eh(s, a⇤) 2bh(s, a⇤) ✏h(s, a⇤) holds
for any time-state pair. Together with Theorem A.1,

V⇤ �V⇡ 2E⇡⇤

h
Ëh(s, a)

i
= 0.

21

B.4.3 Tools for the Proof of Lemma B.5

We first introduce a modified version of Lemma from Li et al. [2022]. Note that the proof of this
lemma didn’t involve any assumption about the data coverage, and is a pure mathmatical analysis. So
the original proof is valid, and to avoid redundancy, we won’t prove this lemma again.

Lemma B.6. 8h 2 [H], and any vector V 2 RS
independent of P̂h obeying kV k1 H . With

probability at least 1� �, one has

Var
P̂h,s,a

(V) 2VarPh,s,a(V) +
5H2◆

3N 0
h
(s, a)

simultaneously for all (s, a) 2 S ⇥A obeying Nh(s, a) > 0

Modification lies in that we use N 0
h
(s, a) to replace Nh(s, a) in original version, for when Nh(s, a)

◆, the inequalities hold trivially. Also we introduce the lemma needed to limit the overall variance.
This lemma differs from Li et al. [2022]’s work from the definition of d⇤

0

h
to support our theorem.

Lemma B.7 (weighted variance sum). 8(h0, s0) 2 [H]⇥ S , if the event ⇠conc happens, we have

HX

h=h0

X

s

d⇤
h⇠(h0,s0)(s)VarPh,s,a(V

⇡

h+1) 4H
HX

h=h0

X

s

d⇤
h⇠(h0,s0)(s)bh(s, a

⇤) + 2H2.

Proof. Here we use P ⇤
h
2 RS⇥S to denote the transition kernel of optimal policy, where P ⇤

h,(m,n) is
the probability of transfer from sm to sn at step h while applying the optimal policy ⇡⇤. A �B refers
to the Hadamard product of A and B.

HX

h=h0

X

s

d⇤
0

h
(s)VarPh,s,a⇤ (V

⇡

h+1) =
HX

h=h0

d⇤
0>

h
(P ⇤

h
V⇡

h+1 �V
⇡

h+1 � (P ⇤
h
V⇡

h+1) � (P
⇤
h
V⇡

h+1))

=
HX

h=h0

d⇤
0>

h
(P ⇤

h
V⇡

h+1 �V
⇡

h+1 �V⇡

h
�V⇡

h
+V⇡

h
�V⇡

h
� (P ⇤

h
V⇡

h+1) � (P
⇤
h
V⇡

h+1))

=
HX

h=h0

⇣
d⇤

0>
h+1V

⇡

h+1 �V
⇡

h+1 � d⇤
0>

h
V⇡

h
�V⇡

h

⌘
+

HX

h=h0

d⇤
0>

h
(V⇡

h
�V⇡

h
� (P ⇤

h
V⇡

h+1) � (P
⇤
h
V⇡

h+1))

= 0� d⇤
0>

h0 V⇡

h0 �V⇡

h0 +
HX

h=h0

d⇤
0>

h
(V⇡

h
� P ⇤

h
V⇡

h+1) � (V
⇡

h
+ P ⇤

h
V⇡

h+1)

HX

h=h0

d⇤
0>

h
(V⇡

h
� P ⇤

h
V⇡

h+1) � (V
⇡

h
+ P ⇤

h
V⇡

h+1). (11)

The above induction mainly uses the equality that d⇤
0

h
P ⇤
h
= d⇤

0

h+1 and non-negativity of d⇤
0

h
. Because

the concentration events ⇠conc guarantees that bh(s, a) � |(p̂h(s, a)� ph(s, a))>Vh+1|,

V⇡

h
(s)� ph(s, a

⇤)>V⇡

h+1

= V⇡

h
(s)�Q⇡

h
(s, a⇤) + rh(s, a

⇤)� bh(s, a
⇤) + (p̂h(s, a

⇤)� ph(s, a
⇤))>V⇡

h+1

� 0 + 0� bh(s, a
⇤)� bh(s, a

⇤) = �2bh(s, a⇤).

22

Then we can continue from (11) to get

HX

h=h0

X

s

d⇤
0

h
(s)VarPh,s,a(V

⇡

h+1)
X

h,s

d⇤
0>

h
(V⇡

h
� P ⇤

h
V⇡

h+1) � (V
⇡

h
+ P ⇤

h
V⇡

h+1)

HX

h=h0

d⇤
0>

h
(V⇡

h
� P ⇤

h
V⇡

h+1 + 2bh(s, a
⇤)1) � (V⇡

h
+ P ⇤

h
V⇡

h+1)

 2H
HX

h=h0

d⇤
0>

h
(V⇡

h
� P ⇤

h
V⇡

h+1 + 2bh(s, a
⇤)1)

= 2H(d⇤
0>

h0 V⇡

h0 � d⇤
0>

H+1V
⇡

H+1) + 4H
HX

h0=h

X

s

d⇤
h⇠(h0,s0)(s)bh(s, a

⇤)

 2H2 + 4H
HX

h0=h

X

s

d⇤
h⇠(h0,s0)(s)bh(s, a

⇤).

B.4.4 Proof of Lemma B.5

Proof. This proof is similar to the one in Li et al. [2022]. The difference lies in that we generalize
the conclusion to any part decomposition, while the original version only cares about the optimal
policy distribution.
First, it follows from Lemma B.6 and inequality

p
a+ b

p
a+
p
b that

1

Cb

bh(s, a) =

s
Var

P̂h,s,a
(V⇡

h+1)◆

N 0
h
(s, a)

+
H◆

N 0
h
(s, a)

vuut2VarPh,s,a(V
⇡

h+1)◆+
5H2◆

3N 0
h(s,a)

◆

N 0
h
(s, a)

+
H◆

N 0
h
(s, a)

s
2VarPh,s,a(V

⇡

h+1)◆

N 0
h
(s, a)

+ (1 +

r
5

3
)

H◆

N 0
h
(s, a)

 2

s
VarPh,s,a(V

⇡

h+1)◆

N 0
h
(s, a)

+
3H◆

N 0
h
(s, a)

. (12)

23

Note that the concentration event ⇠conc guarantees that Nh(s, a⇤) � CdNdµ
h
(s, a⇤) � CdNP . Then

we can use Cauchy-Schwarz Inequality to limit the variance term,

X

h,s

d⇤
0

h
(s)

s
VarPh,s,a⇤ (V

⇡

h+1)◆

N 0
h
(s, a⇤)

r

◆

CdNP

X

h,s

d⇤
0

h
(s)
q
VarPh,s,a⇤ (V

⇡

h+1) (⇠conc)

r

◆

CdNP

sX

h,s

d⇤
0

h
(s)

sX

h,s

d⇤
0

h
(s)VarPh,s,a⇤ (V

⇡

h+1) (Cauchy-Schwarz’s Inequality)

r

H◆

CdNP

s
4H
X

h,s

d⇤
0

h
(s)bh(s, a⇤) + 2H2 (Lemma B.7)

vuut 4H2◆

CdNP

X

h,s

d⇤
0

h
(s)bh(s, a⇤) +

s
2H3◆

CdNP
(
p
a+ b

p
a+
p
b)

 4CbH2◆

CdNP
+

1

2Cb

X

h,s

d⇤
0

h
(s)bh(s, a

⇤) +

s
2H3◆

CdNP
. (

p
2ab a+ b)

At the same time, we can limit the sum of H◆

N
0
h(s,a

⇤) ,

X

h,s

d⇤
0

h
(s)

H◆

N 0
h
(s, a⇤)

X

h,s

d⇤
0

h
(s)

H◆

CdNP
=

H2◆

CdNP
.

By connecting these inequalities to (12), we get

X

h,s

d⇤
0

h
(s)bh(s, a

⇤) Cb

X

h,s

2d⇤
0

h
(s)

s
VarPh,s,a(V

⇡

h+1)◆

N 0
h
(s, a⇤)

+ Cb

X

h,s

d⇤
0

h
(s)

3H◆

N 0
h
(s, a⇤)

 1

2

X

h,s

d⇤
0

h
(s)bh(s, a

⇤) + (8C2
b
+ 6Cb)

H2◆

CdNP
+ 2Cb

s
H3◆

CdNP
.

Rearranging the terms, we finish the proof of Lemma B.5.

B.5 Proof of Upper bound with both assumptions (Proof of Theorem 5.2)

When we have access to both P and C⇤, we can derive the bound

N = O

✓
H3SC⇤◆

✏gapmin

+
H◆

P

◆
.

To prove this, we need a specially designed ✏h(s) in Theorem A.1. By setting ✏h(s) =

Cpac(
VarP̂h,s,a⇤ (V⇡

h+1)

H2 + 1
H
)gapmin, we will first prove that ⇠gap happenes, and then calculate

the suboptimality gap.

B.5.1 Tools for the Proof of Theorem 5.2

Lemma B.8. If we set ✏h(s, a) = Cpac

✓
VarP̂h,s,a

(V⇡
h+1)

H2 + 1
H

◆
gapmin for some small enough

constant Cpac, and N � C3
H◆

P
for some constant C3, ⇠conc indicates ⇠gap,

8(h, s) 2 [H]⇥ S V̈⇤
h
(s) V⇤

h
(s) +

gapmin

2
.

24

Proof. We have proved in the proof of Corollary A.1 that
X

h,s

d⇤
0

h
(s)

gapmin

4H
 gapmin

4
,

where d⇤
0

h
= d⇤

h⇠(h0,s0), which is the state distribution of time step h under ⇡⇤ conditioned on having
reached (h0, s0) before. So it remains to show that

X

h,s

d⇤
0

h
(s)

Var
P̂
(V⇡h+1)

H2
gapmin . gapmin. (13)

This follows from a similar analysis with the proof of uniform optimal policy coverage assumption
case. X

h,s

d⇤
0

h
(s)Var

P̂
(V⇡

h+1)

X

h,s

d⇤
0

h
(s)

✓
VarP (V

⇡

h+1) +
5H2◆

3N 0
h
(s, a⇤)

◆
(Lemma B.6)

.
X

h,s

d⇤
0

h
(s)VarP (V

⇡

h+1) +H2 (N 0
h
(s, a⇤) � CdNP & H◆)

 4H
X

h,s

d⇤
0

h
(s)bh(s, a

⇤) + 3H2 (Lemma B.7)

. 4H

 r
H3◆

NP
+

H2◆

NP

!
+ 3H2 (Lemma B.5)

. H2. (NP & H◆)
Then we can finish the proof

V̈⇤
h
(s)�V⇤

h
(s) =

X

h,s

d⇤
0

h
(s)(Ëh(s, a

⇤)�Eh(s, a
⇤))

X

h,s

d⇤
0

h
(s)✏h(s)

. Ccap

X

h,s

d⇤
0

h

Var

P̂
(V⇡

h+1)

H2
+

1

H

!
gapmin

. Ccapgapmin.

We can let Ccap be small enough to limit the difference between V̈⇤
h
(s) and V⇤

h
(s) within gapmin

2 .

Lemma B.9.

Ëh(s, a
⇤) 4Cb

s
Var

P̂
(V⇡

h+1)◆

N 0
h
(s, a⇤)

✓
bh(s, a⇤)

✏h(s)

◆
+ 2Cb

H◆

Nh(s, a⇤)
.

Proof. When Eh(s, a⇤) < ✏h(s), Ëh(s, a⇤) = 0.
When Eh(s, a⇤) � ✏h(s),

2bh(s, a
⇤) � Eh(s, a

⇤) � ✏h(s).
) Ëh(s, a

⇤) Eh(s, a
⇤)

 2bh(s, a
⇤)

= 2Cb

s
Var

P̂
(V⇡

h+1)◆

N 0
h
(s, a⇤)

+ 2Cb

H◆

N 0
h
(s, a⇤)

 4Cb

s
Var

P̂
(V⇡

h+1)◆

N 0
h
(s, a⇤)

✓
bh(s, a⇤)

✏h(s)

◆
+ 2Cb

H◆

N 0
h
(s, a⇤)

.

25

B.5.2 Main Proof

Proof. We treat the first term in the RHS of Lemma B.9. With basic inequality a+ b � 2
p
ab, we

can first lowe bound ✏h(s, a),

✏h(s, a) = Cpac

Var

P̂h,s,a
(V⇡

h+1)

H2
+

1

H

!
gapmin & max

8
<

:
Var

P̂h,s,a
(V⇡

h+1)

H2
,

s
Var

P̂h,s,a
(V⇡

h+1)

H3

9
=

; gapmin.

(14)
Therefore we have,

s
Var

P̂
(V⇡

h+1)◆

N 0
h
(s, a⇤)

✓
bh(s, a⇤)

✏h(s, a⇤)

◆

.
s

Var
P̂
(V⇡

h+1)◆

N 0
h
(s, a⇤)

0

BB@

r
VarP̂ (V⇡

h+1)◆

N
0
h(s,a

⇤)

VarP̂ (V⇡
h+1)

H2

+
H◆

Nh(s,a)q
VarP̂ (V⇡

h+1)

H3

1

CCA
1

gapmin

=
H2◆

N 0
h
(s, a⇤)gapmin

+
H5/2◆3/2

N
03/2
h

(s, a⇤)gapmin

. 2H2◆

N 0
h
(s, a⇤)gapmin

.

The first inequality is gained by expanding bh(s, a⇤) and ✏h(s, a). The second inequality results from
the inequality that N 0

h
(s, a⇤) � CdNP & H◆. Therefore, we can further write Lemma B.9 as

Ëh(s, a
⇤) . H2◆

N 0
h
(s, a⇤)gapmin

.

Then with Lemma B.8, we have event ⇠gap hold. Then Theorem A.1 further indicates that for some
deterministic optimal policy ⇡⇤,

V⇤
0 �V⇡

0 . V⇤
0 � V̈⇤

0

=
X

h,s

d⇤
h
(s)Ëh(s, a

⇤)

.
X

h,s

d⇤
h
(s)H2◆

N 0
h
(s, a⇤)gapmin

.
X

h,s

H2C⇤◆

Ngapmin

=
H3C⇤S◆

Ngapmin

. ✏.

C Gap-dependent Lower Bounds

We begin by restating the formal version of lower bounds.
Definition C.1 (offline learning algorithm). For an algorithm ALG, we call it an offline learning

algorithm if

1. ALG takes a dataset D and optionally a reward function R as input,

2. ALG output a valid policy ⇡.

Notice that ALG can be stochastic.

26

C.1 Main Results

Theorem C.1. There exists constant Clb, s.t. for any A � 3, S � 2, H � 2, ⌧ < 1
2 ,� < 1

3 ,�1 � 2
and algorithm ALG, if the number of sample trajectories

N Clb ·
HS�1
�⌧2

,

there exists some MDP M and behavior policy µ with gapmin = ⌧ , P � �

eS�1
, C⇤ �1 such that

the output policy ⇡̂ suffers from a expected suboptimality

EM,µ,ALG[V⇤
0 �V⇡̂

0] �
�H⌧

12
.

Corollary C.1 (lower bound for uniform optimal policy coverage). Given A � 3, S � 2, H �
3, P2 (0, 1

6S], ✏ < 1/12, gapmin 2 [24✏
H

, 1
2] and any offline learning algorithm ALG returning a

policy ⇡̂, there exists a constant C1 such that if the number of offline sample trajectories

N C1 ·
H

Pgap2min

,

then there exists a MDP instance M and behavior policy µ such that the output policy ⇡̂ suffers from

expected ✏-suboptimality

EM,µ,ALG[V⇤
0 �V⇡̂

0] � ✏.

Proof. Let � = 1/3, �1 = 1
3PS

and ⌧ = gapmin in Theorem C.1, we get the proposition.

Corollary C.2 (lower bound for relative optimal policy coverage). Given A � 3, S � 2, H �
2, C⇤ � 2, ✏ < 1/12, gapmin 2 [24✏

H
, 1
2] and any offline learning algorithm ALG returning a policy

⇡̂, there exists a constant C2 such that if the number of offline sample trajectories

N C2 ·
H2SC⇤

gapmin✏
,

then there exists a MDP instance M and behavior policy µ such that the output policy ⇡̂ suffers from

expected ✏-suboptimality

EM,µ,ALG[V⇤
0 �V⇡̂

0] � ✏.

Proof. Let � = 12✏
Hgapmin

, �1 = C⇤ and ⌧ = gapmin in Theorem C.1, we get the conclusion.

C.2 Proof of Theorem C.1

C.2.1 Construction of the MDP Family and Behavior Policy

We construct a MDP family and calculate the average minimum suboptimality.
First, we construct the prototype MDP M0 with S + 2 states, horizon of 2H + 1 and A actions.
There are 3 kind of states

1. good state sg . An absorbing state. Reaching this state means a total reward of H .

2. bad state sb. An absorbing state. Reaching this state means a total reward of 0.

3. true states s1, s2, · · · , sS . Actions chosen in these states determine the probability being
transfered to sg and sb.

The initial state distribution p0(s) is

p0(s) =

8
<

:

�

S
s 2 {s1, s2, · · · , sS},

1��
2 s = sb,

1��
2 s = sg.

27

For any � 2 [0, 1
3]. The avaliable action set is {ai}Ai=1. The only non-zero rewards in this MDP are

rh(sg, a) = 1 for h � H + 2 and any a. The transition probability of M0 in the first H + 1 steps is,

ph(si, aj , si) = 1� 1

H
8(h, i, j) 2 [H]⇥ [S]⇥ [A],

ph(si, aj , sg) = ph(si, aj , sb) =
1

2H
8(h, i, j) 2 [H]⇥ [S]⇥ [A],

pH+1(si, aj , sg) = pH+1(si, aj , sb) =
1

2
8(i, j) 2 [S]⇥ [A].

For all the other (h, s, a) tuples not mentioned, ph(s, a, s) = 1, ph(s, a, s0) = 0, where s0 is any state
other than s.
Then we construct the MDP family M on the basis of M0. For each matrix � 2 [1, 2]H⇥S , we define
M� to be the MDP almost the same as M0 except for that

ph(si, a�h,i , sg) =
1

2H
(1 + 2⌧),

ph(si, a�h,i , sb) =
1

2H
(1� 2⌧).

In other words, we make the action a�h,i the unique optimal action by lifting it’s expected reward
by ⌧ . The behavior policy µ chooses a1, a2 with probability 1/�1 respectively and choose a3 with
probability 1� 2/�1 at {si | i = 1, 2, · · ·S}, and always choose a1 at sg and sb. We will prove the
following lemmas in Section C.2.4
Lemma C.1. For any MDP constructed above and µ, we have both assumptions hold with

C⇤ = �1, P �
�

eS�1
, gapmin = ⌧.

Lemma C.2. For a given algorithm ALG, define the expectation of mistakes made by ⇡̂ at step h,

state si over the uniform distribution ⌫ of � to be

lh,i(ALG) = ED⇠(M�,µ),ALG[I{⇡̂h(si) 6= a�h,i}].
Then expected suboptimality with respect to the randomness of M� and µ can be lower bounded by

EM�,µ,ALG[V⇤
0 �V⇡̂

0] �
�

eS
⌧

X

(h,i)2[H]⇥[S]

lh,i(ALG).

Lemma C.3. For any MDP constructed above, we have,

max
⇡

V⇤
0 �V⇡

0 �H⌧.

C.2.2 Main Proof

Proof. To avoid making the proof prolix, we strengthen ALG by letting ALG know that the only
thing influencing the value function of a state is the probabilities of transferring to sg and sb, and
the total reward after getting to sg is exactly H , which assumption is conventionally made for the
lower bound proofs in MDPs. In this setting, any reasonable algorithm ALG would only consider
the visitation counts Nh,i = {Nh(si, a, s0) | a 2 A, s0 2 S} at step h when determining the value of
⇡̂h(si).
Then we can rewrite l̄h,i(ALG) , E�⇠⌫ [lh,i(ALG)],

l̄h,i(ALG) = E�⇠⌫ED⇠(M�,µ),ALG[I{⇡̂h(si) 6= a�h,i}]
= E�⇠⌫ENh,i⇠(M�,µ),ALG[I{⇡̂h(si) 6= a�h,i}].

Because the KL divergence between the transition kernel PM0
h,si,a

and P
M�

h,si,a�h,i
satisfies

KL

✓✓
1� 1

H
,

1

2H
,

1

2H

◆www
✓
1� 1

H
,
1

H
(
1

2
+ 2⌧),

1

H
(
1

2
� 2⌧)

◆◆

=
1

2H
log

1

1� 4⌧2
 4⌧2

H
. (15)

28

We have

l̄h,i(ALG) = E�⇠⌫ENh,i⇠(M�,µ),ALG[I{⇡̂h(si) 6= a�h,i}]
� E�⇠⌫ENh,i⇠(M0,µ),ALG[I{⇡̂h(si) 6= a�h,i}]
� E�⇠⌫ [TV(Nh,i |M0,µ, Nh,i |M�,µ)]

� ENh,i⇠(M0,µ),ALGE�⇠⌫ [I{⇡̂h(si) 6= a�h,i}]

� E�⇠⌫
r

1

2
KL(Nh,i |M0,µ kNh,i |M�,µ) (Pinsker’s inequality)

� ENh,i⇠(M0,µ)[
1

2
] (a1 and a2 can not be distinguished in M0)

� E�⇠⌫
s

1

2

X

a2A
EM0,µ[Nh(si, a)]KL(PM0

h,si,a
kPM�

h,si,a
) (KL decomposition)

=
1

2
� E�⇠⌫

r
1

2
EM0,µ[Nh(si, a)]KL(PM0

h,si,a�h,i
kPM�

h,si,a�h,i
)

� 1

2
� E�⇠⌫

r
EM0,µ[Nh(si, a�h,i)]

2⌧2

H
(statement (15))

� 1

2
�
s

1

2

X

a=a1,a2

EM0,µ[Nh(si, a)]
2⌧2

H
(Jensen’s inequality)

=
1

2
�

s

EM0,µ[Nh(si)]
2⌧2

H�1
.

(
P

a=a1,a2
EM0,µ[Nh(si,a)]

EM0,µ[Nh(si)]
= µh(a1 | si) + µh(a2 | si) = 2

�1
)

This further indicates that the expectation of overall mistakes can be lower bounded by

X

(h,i)2[H]⇥[S]

l̄h,i(ALG) �
X

h,i

0

@1

2
�

s

EM0,µ[Nh(si)]
2⌧2

H�1

1

A

� HS

2
�
p
HS

vuut
X

h,i

EM0,µ[Nh(si)]
2⌧2

H�1

(Cauchy Schwarz’s Inequality)

= HS(
1

2
�

vuutEM0,µ[
X

h,i

Nh(si)]
2⌧2

H2S�1
). (16)

Because state si can be reached at step h only when the initial state is si,

EM0,µ[
X

(h,i)2[H]⇥[S]

Nh(si)] =N
X

h,i

�

S
(1� 1

H
)h�1

 N
X

h,i

�

S
= NH�.

Therefore, continue from inequality (16),

X

(h,i)2[H]⇥[S]

l̄h,i(ALG) � HS

0

@1

2
�

s

N
2�⌧2

HS�1

1

A ,

Now we can lower bound the suboptimality of ⇡̂ with Lemma C.2 by

E�⇠⌫EM�,µ,ALG[V⇤
0 �V⇡̂

0] � E�⇠⌫ [
�⌧

eS

X

h,i

lh,i(ALG)] � �H⌧

e

0

@1

2
�

s

N
2�⌧2

HS�1

1

A .

29

Then we reach the conclusion that when

N HS�1
32�⌧2

,

the average suboptimality of ⇡̂ must be large

E�⇠⌫EM�,µ,ALG[V⇤
0 �V⇡̂

0] �
�H⌧

e
· (1

2
� 1

4
),

)9�, s.t.EM�,µ,ALG[V⇤
0 �V⇡̂

0] �
�H⌧

4e
.

C.2.3 Constant probability version of main theorem

Theorem C.1 is stated in the form of expectation, which is not directly consist with upper bound.
Here we restate it in the language of probability,
Theorem C.2. There exists constant Clb, s.t. for any A � 3, S � 2, H � 2, ⌧ < 1

2 ,� < 1
3 ,�1 � 2

and algorithm ALG, if the number of sample trajectories

N Clb ·
HS�1
�⌧2

,

there exists some MDP M and behavior policy µ with gapmin = ⌧ , P � �

eS�1
, C⇤ �1 such that

the output policy ⇡̂ suffers from a expected suboptimality

V⇤
0 �V⇡̂

0 �
�H⌧

24
,

with a probability over
1
24 .

Proof. From the last line of the proof of Theorem C.1, we know that there exists a MDP M, such
that

EM�,µ,ALG[V⇤
0 �V⇡̂

0] �
�H⌧

12
,

and it follows from Lemma C.3 that the random variable V⇤
0 �V⇡̂

0 �H⌧ . Therefore
�H⌧

12
 EM�,µ,ALG[V⇤

0 �V⇡̂

0]

 �H⌧P[V⇤
0 �V⇡̂

0 >
�H⌧

24
] +

�H⌧

24
P[V⇤

0 �V⇡̂

0
�H⌧

24
]

 �H⌧

12
(12P[V⇤

0 �V⇡̂

0 >
�H⌧

24
] +

1

2
)

) P[V⇤
0 �V⇡̂

0 >
�H⌧

24
] � 1

24

C.2.4 Proof of Lemma C.1

Proof. From the construction we see that the policy doesn’t influence the probability of reaching si
at any time step. And the uniform random behavior policy makes sure that there is a chance of 1/A
to visit action ai at any state. For sg and sb, because each of them has a initial probability of 1/3, the
probability of reaching one of them at ant time step would be in [13 ,

2
3]. By letting a optimal policy

always choose a1 in sg and sb as µ does, we make d
⇤
h(sg)

d
µ
h(sg)

 2/3
1/3 = 2 C⇤. Therefore C⇤ = �1

As for P, we see that the probabality to reach sg and sd with behavior policy at step h is

dµ
h
(sg, a) �

1� �
2
� �

2
� �

eS�1
,

dµ
h
(sb, a) �

1� �
2
� �

2
� �

eS�1
,

dµ
h
(si, a) =

�

S
(1� 1

H
)h�1 1

�1
� �

eS�1
.

30

The part for gapmin is direct calculation,

gapmin =
1

2H
(1 + 2⌧)H + 0� 1

2H
H � 0 = ⌧.

C.2.5 Proof of Lemma C.2

Proof. Because ⇡̂ only makes mistakes in si, and each mistake results in a expected ⌧ decrease in
final cumulative reward, we can directly calculate the expected loss with the performance difference
lemma for finite-horizon MDP ,

EM�,µ,ALG[V⇤
0 �V⇡̂

0] = E⇡̂,M� [gaph(sh, ah)]

=
SX

i=1

HX

h=1

dµ
h
(si)lh,i(ALG)⌧

=
SX

i=1

HX

h=1

P0(si)(1�
1

H
)h�1⌧ lh,i(ALG)

�
SX

i=1

HX

h=1

�

eS
⌧ lh,i(ALG)

� �

eS
⌧

X

(h,i)2[H]⇥[S]

lh,i(ALG).

C.2.6 Proof of Lemma C.3

Proof. The proof is a direct result of performance decomposition lemma.

max
⇡

V⇤
0 �V⇡

0 = max
⇡

2HX

h=1

E⇡⇤ [V⇤
h
(s)�V⇡

h
(s)]

= max
⇡

HX

h=1

E⇡⇤ [V⇤
h
(s)�V⇡

h
(s)]

HX

h=1

E⇡⇤ [max
⇡

V⇤
h
(s)�V⇡

h
(s)]

=
HX

h=1

SX

i=1

d⇤
h
(s)max

⇡

V⇤
h
(si)�V⇡

h
(si)

=
HX

h=1

SX

i=1

d⇤
h
(s)⌧

= �H⌧

D Proof of Necessity of Overall Data Coverage

One may wonder if the Assumption 3.1 has been too strong, because the minimax bound O(H
3
◆

P ✏2
)

only requires the data coverage over a single optimal policy. Here we give a proof that to derive
✏-irrevelant bounds for Algorithm 2, single optimal policy coverage is not sufficient.
We provide a hard instance to prove that if we only have data coverage over one of the optimal

31

Figure 1: A hard instance with horizon 2, 2 actions and k + 2 states. a1 at s leads to s0. The reward
of both actions at s0 is sampled from Bernoulli Distribution. a2 at s leads to a uniformly random
transition to si, i = 1, · · · , k. The reward of both actions at si, i = 1, · · · , k � 1 are 1

2 . a1 at sk
receives 1

2 � ⌧ reward and a2 at sk receives 1
2 reward. gapmin = ⌧ in this MDP.

policies, Algorithm 2 may output suboptimal policy with probability over 1/2. We use P 0 to refer to
the single policy coverage coefficient, i.e.,

P 0 = max
⇡⇤

min
d
⇡⇤
h (s,a)>0

dµ
h
(s, a).

Here we consider the MDP with horizon length 2, 2 actions and k+2 states, which is illustrated
in Figure 1. The initial state is s, and P (s, a1, s0) = 1, P (s, a2, si) =

1
k

for i = 1, 2 · · · , k. The
rewards of actions in si, i = 1, 2 · · · , k � 1 are all 1

2 , and the rewards of both actions in s0 are
sampled from N (12 , 1). r(sk, a1) =

1
2 � ⌧ , r(sk, a2) = 1

2 .

In this MDP gapmin = ✏, and the only suboptimal action is to take a2 at sk. Define µ,

µ(a1 | s) = 1

k + 1
,

µ(a2 | s) = k

k + 1
,

µ(a1 | si) = 1 i = 0, 1, · · · , k,
µ(a2 | si) = 0 i = 0, 1, · · · , k.

Then we can see that an optimal policy/route s� a1 � s0 � a1 has been covered by µ with minimal
coverage distribution P 0 = 1

k+1 . Then we show that for any constant C, the output policy of VI-LCB
with N = C

P 0gap2
min

= C(k+1)
⌧2 sample trajectories cannot be guaranteed to be optimal with high

probability. For the conciseness of proof, we assume that C > 10, Cb > 16 and let k > 10.

Intuitively, this is because there exists the probability that some not-so-well covered optimal policy
outperforms the covered one in execution process, and no optimality can be guaranteed over the
not-so-well covered one. In this instance, (s, a2) is also optimal, but as no information about sk, a2
is known by VI-LCB, it will choose a1 following the principle of pessimism.

In the following proof, we omit the subscripts indicating the time step because the each state only
appears in time step 1 or 2, which will not incur confusion. Rigorously, we define the event the
{⇡̂(s) = a2} as ⇠bad,

P[⇠bad] = P[Q(s, a1) Q(s, a2)]

� P[Q(s, a1)
1

2
� �⌧ Q(s, a2)]

� 1� P[Q(s, a1) �
1

2
� �⌧]� P[Q(s, a2)

1

2
� �⌧].

32

where � can be any positive constant, which will be determined later. We limit these two terms
respectively.

P[Q(s, a1) �
1

2
� �⌧] P[N(s, a1) �

C1N

k + 1
] + P[N(s, a1)

C2N

k + 1
]

+ P[N(s, a1) 2 [
C2C

⌧2
,
C1C

⌧2
], Q(s, a1) �

1

2
� �⌧].

Because N(s, a1) ⇠ Bio(N, 1
k+1), it follows from the asymptotic feature of binomial distribution

that N(s, a1)� C

⌧2 ⇠ subG(Ck

⌧2(k+1)), and then

P[N(s, a1) �
C1C

⌧2
] exp

✓
� (C1 � 1)2C2

2(1� 1/(k + 1))2

◆
 exp(�C2

4
(C1 � 1)2),

P[N(s, a1)
C2C

⌧2
] exp

✓
� (C2 � 1)2C2

2(1� 1/(k + 1))2

◆
 exp(�C2

4
(C2 � 1)2).

Let C1 = 1.5, C2 = 0.5. Remember that we assume that C > 10, and this makes the sum of above
two terms a small constant smaller than 0.1. Because Q(s, a1) = �b(s, a1)+ r̂(s0, a1)� b(s, a1)
� 3Cb

p
◆p

N(s,a1)
+ r̂(s0, a1), and the center limit theorem allow us to use X ⇠ N (12 ,

1
N(s0,a1)

) to replace

ĥ(s0, a1),

P[N(s, a1) 2 [
C2C

⌧2
,
C1C

⌧2
], Q(s, a1) �

1

2
� �⌧] P[r̂(s0, a1)�

3Cb

p
◆⌧p

C1C
� 1

2
� �⌧]

. P[X � 1

2
� 3Cb

p
◆⌧p

C1C
� �⌧]

 exp(�1

2
(
3Cb

p
◆p

C1C
� �)2CC2)

 exp(�(1
2
Cb

p
◆� �)2).

The above term disappears quickly when ◆ = ⌦(log k

�
) becomes larger. We will choose a � < 1

4Cb

p
◆.

Then we consider Q(s, a2),

Q(s, a2) = �b(s, a2)�
kX

i=1

P̂ (s, a2, si)(r(si, a1)� b(si, a1))

=
1

2
� N(s, a2, sk)⌧

N(s, a2)
� (k + 1)Cb◆

N(s, a2)
� Cb

s
Var

P̂s,a2
(V)◆

N(s, a2)
.

With similar induction, we can prove that event {N(s, a2) � Ck

2⌧2 }
T
{N(s, a2, si) 2

[C

2⌧2 ,
2C
⌧2]}i=1,··· ,k with probability over 0.8. When we have this concentration event true,

P[Q(s, a2)
1

2
� �⌧] P[� ⌧

4k
� Cb⌧

2◆� Cb⌧2◆

k
 ��⌧].

By taking � = 1
4k + Cb⌧◆+

Cb⌧
2

k
+ ✏, where ✏ is a extremely small positive constant, P[Q(s, a2)

1
2 � �⌧] = 0. And further letting ⌧ 1

40
p
◆
, we have � 1

4Cb

p
◆. Putting the above inductions

together,

P[⇠bad] � 1� 0.1� 0.2� exp(� 1

16
C2

b
◆) � 1

2
.

This result points out that Algorithm 2 has a chance of over 1/2 to return a suboptimal policy.
Therefore a overall coverage over all the optimal policies is necessary to derive a ✏-irrelevant bound
for VI-LCB.

33

	Introduction
	Main Contributions

	Related Work
	Preliminaries
	Markov Decision Processes
	Offline Reinforcement Learning
	Subsampled VI-LCB

	Finding an Exact Optimal Policy with Assumption 3.1
	Gap-dependent Upper Bounds with Assumption 3.2
	Main Proof Techniques
	Pessimistic Algorithms
	Deficit Thresholding for Analysising LCB-style Algorithms

	Gap-dependent Lower Bounds
	Necessity of All-Optimal-Policy Coverage
	Conclusion
	Upper Bound with Gap-dependent Analysis
	Definitions
	Main Theorem
	Value/Q Function Ranking Lemma
	Proof of Theorem A.1

	VI-LCB based analysis
	Algorithm Sketch and Notations
	Proof Preparation
	Proof of Upper Bound with Relative Optimal Policy Coverage(Proof of Theorem 5.1)
	Proofs of Upper Bound with Uniform Optimal Policy Coverage(Proof of Theorem 4.1)
	Proof without Deficit Thresholding Technique
	Proof with Deficit Thresholding Technique
	Tools for the Proof of Lemma B.5
	Proof of Lemma B.5

	Proof of Upper bound with both assumptions (Proof of Theorem 5.2)
	Tools for the Proof of Theorem 5.2
	Main Proof

	Gap-dependent Lower Bounds
	Main Results
	Proof of Theorem C.1
	Construction of the MDP Family and Behavior Policy
	Main Proof
	Constant probability version of main theorem
	Proof of Lemma C.1
	Proof of Lemma C.2
	Proof of Lemma C.3

	Proof of Necessity of Overall Data Coverage

