
A Appendix

A.1 Prelude Experiment

In this section, we put ourselves in a situation where model selection would be performed by
comparing different AH pairs on their internal objective or value function estimates on a given
dataset, as described near the beginning of Section 1. We use three datasets of different qualities
(random, medium, and medium-expert) of the popular Hopper task from the D4RL benchmark (see
Appendix A.14 for a detailed description) to train a total of 36 policies with different AH pairs and
then calculate the resulting TD-Errors and Q-values on the whole dataset at the end of training.

To evaluate the performance one would obtain by employing such an approach to select the best
policy, we report in Table A.1 the performance (true return in the environment) of the selected policies
and compare them with the performance of the optimal policy for each of the datasets. The policies
are selected either by finding the one which corresponds to the lowest TD-Error, or the one which
corresponds to the highest Q-value. We also include the Kendall rank correlation coefficient (Gilpin,
1993) for each of the ranking methods (ranking with respect to TD-Error or Q-value) compared with
the “true ranking” of policies ranked with respect to the performance in the environment:

τ =
(number of concordant pairs)− (number of discordant pairs)(

n
2

)
where n is the number of policies, and where “concordant pairs” are pairs from the two compared
rankings for which the sort order agrees. A coefficient of 1 means the agreement between the two
rankings is perfect.

TD-Error Q-value

Policy Selected
(True Return) Kendall Policy Selected

(True Return) Kendall Optimal Policy
(True Return)

random 334.24 -0.09 333.65 -0.15 345.39
medium 1475.82 0.42 2381.37 0.21 2469.81

medium-expert 327.97 -0.18 327.97 -0.09 3657.80

Table A.1: Average Return (True Return obtained in the simulator) of the policy selected with respect
to min(TD-Error) or max(Q-value) on the training dataset with a comparison to the True Return
obtained by the Optimal Policy. Kendall rank correlation coefficient when ranking with respect to the
same metrics. Policies are trained and validated on the same dataset. Task: Hopper.

Unsurprisingly, Table A.1 shows that one cannot rely on this straightforward pipeline to select
a best-performing AH pair. Actually, for most of the datasets (the medium-expert dataset should
resemble the most to what a dataset would look like in a real-world situation as it is composed of
both high-quality and medium-quality data), following such an approach would produce and deploy a
very bad performing policy.

A.2 Connection between Leave-p-Out CV and RRS

Our RSS is a finite approximation of Leave-p-out (Lp0) cross-validation1. LpO is known in supervised
learning, but rarely used due to the computational burden. The correctness of LpO is proved
itecelisse2014optimal in a supervised learning setting with projection estimators. Unlike K-fold
cross-validation, Leave-p-out CV selects p data points for evaluation and the rest for training. In
our proposed RSS method, we set p = n/2, and instead of exhaustively enumerating all possible
selections of p data points out of n data points, we only repeat this process K times. Asymptotically
as the amount of data goes to infinity, this approach should be correct, but also a single train/test split
will also be correct in such a setting. The key challenges arise in the finite data setting, where the
choice of dataset partitioning is key.

1https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
LeavePOut.html

15

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePOut.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePOut.html

A.3 Proof of Theorem 1

Consider a finite set of J offline RL algorithmsA. Let the policy produced by algorithmAj on training
dataset D be πj , its estimated performance on a validation set V̂ πj , and its true (unknown) value be
V πj . Denote the true best resulting policy as πj∗ = argmaxj V

πj and the corresponding algorithm
Aj∗ . Let the best policy picked based on its validation set performance as πĵ∗ = argmaxj V̂

πj and
the corresponding algorithm Aĵ∗ .

Theorem 1. Then there exist stochastic decision processes and datasets such that (i) using a single
train/validation split procedure will select a suboptimal policy and algorithm with significant finite
probability, P (πĵ∗ ̸= πj∗) ≥ C, with corresponding substantial loss in performance O(Vmax),
and, in contrast, (ii) averaging across Ns train/validation splits will select the optimal policy with
probability 1: limNs→∞ P (πĵ∗ = πj∗)→ 1.

Proof. We proceed by constructing a stochastic decision process. A common domain to illustrate
the importance of strategic exploration is a chain MDP. Here consider an episodic, finite horizon,
finite chain, deterministic decision process with 6 states, s1, . . . , sH , (H = 6) with two actions. a1
moves the state one down except for at the starting state, and a2 increments the state one up except for
the final state: more formally, p(si−1|si, a1) = 1 except for p(s1|s1, a1) = 1; p(si+1|si, a2) except
for p(sH |sH , a2) = 1. The reward is 0 in all states except R(s1) = 1/6 and R(sH) = 201. All
episodes are length H = 6 and start in state s1. The optimal policy always takes a2 and achieves
Vmax = R(sH). Any other policy achieves at most H ∗ 1/6 = 1 reward.

The behavior policy is uniform random over the two actions, πb(a1|s) = 0.5 = πb(a2). Let the
available offline dataset D consist of 200 episodes gathered using πb. Given the behavior policy,
each of the 64= 2H unique trajectories has an equal probability of being observed, and only one
of these τh = (s1, 0, a2, s2, 0, a2, , s3, 0, a2, s4, 0, a2, s5, a2, sH , R(sH)) achieves the highest return.
On average out of 200 episodes2, nτh=3(=round(|D|/(2H))) episodes will match τh. All other
episodes will have a return of 1 or less.

Let there be a set of H offline RL algorithms Ah, each which optimizes the reward over a different
horizon h = 1 : H , by constructing a maximum-likelihood estimate (MLE) MDP modelM given
a training dataset Dtr, and then computing a policy πh that optimizes the h-step value given the
learned MDPM model3 For example, algorithm A2 will take the MLE MDP model and construct
a policy to optimize the sum over rewards for the next two time steps π2(s) = argmaxa r(s) +∑

s′ p(s
′|s, a)r(s′). We think this is a reasonable set of algorithms to consider as an illustrative

example: the horizon length can directly influence the amount of data needed to compute an optimal
policy, and recent work has explored using shorter horizons (Cheng et al., 2021; Mazoure et al., 2021;
Liao et al., 2020), so choosing the right horizon can be viewed as a bias/variance tradeoff, suitable
for automatic model selection.

Observe that even if given access to the true (unknown) MDP parameters, algorithms A1, . . . ,AH−1

will compute a policy that is suboptimal: due to the shortened horizon length, to optimize the expected
total reward, the resulting policy computed for s1 will be πh(s1) = π1(s1) = a1 for these algorithms
Ah, h = 1 : H − 1. As the MDP is deterministic, this will also be true for any input dataset.

We now consider the impacts of partitioning the input dataset into a training dataset Dtr taken as input
by each algorithm Ah to compute a policy πĥ, and an evaluation/test dataset Dte: D = Dtr ∪Dte.
For algorithm AH to learn the optimal policy π∗ which achieves Vmax, it must learn over a dataset
Dtr that includes one or more examples of the highest return trajectory τh. Note that a single episode
of τh in the training set is sufficient to learn the optimal policy4.

2Our calculations can easily be extended to cases where there are different numbers of observed τh, but for
simplicity we assume a dataset where the average expected number of τh are observed.

3During planning with the learned MDP model, we restrict taking the maximum value over actions for a
given state s to only actions that have been taken at least once in that state in the dataset, e.g. maxa s.t. n(s,a)≥1,
where n(s, a) is the counts of the number of times action a was taken in state s in the dataset. Note that in a
finite dataset, some states and/or actions may not be observed, and this common choice simply ensures that the
algorithm does not overestimate the value of untried actions.

4A single example of τh will induce a MLE M̂ with the correct reward model for all states, and the dynamics
model for action a2. From the procedure used to compute an optimal policy M̂, this will result in an optimal
policy.

16

Assume that the offline evaluation of the policies learned by the algorithm on Dtr is performed
using importance sampling on Dte: note, our results will still apply, with minor modifications, if
off policy evaluation is performed on Dte using fitted Q evaluation (Le et al., 2019) or using a
certainty-equivalent MDP constructed from Dte.

Then the off policy evaluation of the policy learned by the full horizon algorithm AH , V̂ πH (s1), will
only be greater than 1 if there also exists at least one episode of the highest return trajectory τh.

Assume the training dataset and validation dataset are constructed by randomly sampling 50% of the
episodes to be in each. By assumption, there are nτh samples of τh, which have an equal chance of
being in either the training or validation set. There are nτh + 1 ways to partition the nτh exchangable
episodes of τh into the training and validation sets, here ([3, 0], [2, 1], [1, 2], [0, 3]). Note the training
and validation set are identical in size (|D|/2 trajectories each), and we only care about whether
a trajectory τ is identical to τh or not. The probability that each of these partitions occurs is :
P ([3, 0]) = P ([0, 3]) = 100

200 ∗
99
199 ∗

98
198 ≈ 0.123.

From the above analysis, AH can only learn an optimal policy, and its estimated value V̂ π5 > 1
on Dte if there is at least one τh in both the training and validation set datasets, which occurs in
partitions ([2, 1], [1, 2]). This occurs with probability 0.754. Otherwise, either (a) AH will not learn
an optimal policy, and instead will learn πH(s1) = π1(s1) = a1, or (b) AH will learn an optimal
policy πH(s1) = a2 but as the validation dataset does not contain τh, V̂ πH = 1/H < V̂ π1 . In
both cases, the selected policy given its performance on the validation set will be π1(s1) = a1. The
resulting loss in performance is Vmax − V π1 = Vmax − 1 = O(Vmax). This failure occurs with
substantial probability 24.6%. This proves part (i) of the theorem.

To prove part (ii) of the proof, we consider cases where at least one τh is in both Dtr and Dte. Note
V̂ π1 ≤ R(s1)

1/2H
= 1

1/2H
. Define Ess as a "successful split": the event that 1 or more of τh (high returns)

episodes are in Dte, but not all nτh . On event Ess, the optimal policy (which will be computed by
AH on the training set), will have an estimated value on Dte, using importance sampling:

V̂ π∗

ss ≥
1

|Dte|
R(sH)

1/2H
=

1

1/2H
∗ 201
100

> 2V̂ π1 (2)

since there are at least 1 τh trajectories, each with propensity weight 1
1/2H

and reward R(sH).
Therefore on Event Ess the optimal policy can be learned and estimated as having high reward. The
probability of event Ess is greater than 0.5: P (Ess) = 0.754.

In the repeated train-validation split setting, the algorithm selected is the one that has the best
performance on the validation set, on average across all Ns splits. Let Eh be the event that at least
half the train-validation dataset splits are successful (Event Ess holds for that split). In this case then
the average performance of A5 will be at least

V̂A5 ≥ 1

Ns

(
Ns

2
V̂ π∗

ss + 0

)
≥ 1

Ns

(
Ns

2
2V̂ π1 + 0

)
= V̂ π1 ,

where the first line uses a lower bound of 0 when the event Ess fails to hold, and substitutes in
Equation 2. Therefore as long as event Eh holds, the optimal policy π∗ (which will be computed by
algorithm AH will be selected. Since P (Ess) > 0.5, the probability5 as the number of splits goes to
infinity that Ess holds on least half of those splits goes to 1: limNs→∞ P (Eh)→ 1.

5**calculate for finite S.

17

A.4 SSR pseudo-code

Algorithm 1 SSR-RRS: Ai Selection with Repeated
Random Sub-sampling
Input: offline RL data D; set of AH pairs

[A1,A2, ...,Az], OPE estimator V̂ , split
number K ∈ N.

Output: policy π̂∗ for deployment

R = ∅
for i← 1...K do

Rtrain
i , Rvalid

i = Subsample (D, 0.5)
R = R∪ (Rtrain

i , Rvalid
i)

end
G = []

for i← 1...z do
S = []

for j ← 1...K do
πi = A(Rtrain

j)

Sij = V̂ (πi;R
valid
j)

end
Gi = 1

K

∑K
j=1 Sij

end
A∗ = Ao+ where o = argmax(G)
π∗ = A∗(D)
return π∗

A.5 Code

We include the implementation and experiment code here: https://github.com/
StanfordAI4HI/Split-select-retrain

A.6 Experiment Detail Summary

We choose different sets of algorithms to evaluate our pipeline in every domain to demonstrate the
generality of our approach and because some algorithms have limitations inherent to certain types of
domains to which they can be applied. We list them in Table A.2.

Running a large number of algorithm-hyperparameter pairs many times is very computationally
expensive. In order to save time and resources, we leverage the fact that multiple approaches can
share resources. We describe how we compute the numbers for each approach as follows:

For each offline RL dataset in Sepsis, TutorBot, Robomimic, and D4RL, we produce the following
partitions (we refer to this as the “partition generation procedure”):

1. 2-fold CV split (2 partitions consisted of (Si))
2. 5-fold CV split (5 partitions consisted of (Si))

3. 5 RRS split (5 partitions consisted of (Rtrain
i , Rvalid

i))

Here, we briefly describe how to use these data partitions to select algorithms with alternative
approaches.

One-Split OPE. The One-Split OPE method can be conducted to train and evaluate an algorithm
on any of the RRS splits being produced, but only look at one split, without considering other splits.
We let for a particular i, we let Dtrain = Rtraini and Dvalid = Rvalid

i .

BCa Bootstrap. Similar to the One-Split OPE method, we can use RRS split for bootstrap. For
a particular i, we let Dtrain = Rtraini and Dvalid = Rvalid

i . Bootstrapping will re-sample with

18

https://github.com/StanfordAI4HI/Split-select-retrain
https://github.com/StanfordAI4HI/Split-select-retrain

Experiment
Domain

Number of
Trajectories (N)

Average
Trajectory

Length

Number of
Transitions

in Total

AH Pairs
Evaluated

Algorithms in
Experiment

Sepsis-POMDP 200 14 2792 540
BC, POIS, BC+POIS,
BC+mini-POIS, BCQ,
MBSQI, pMDP, MOPO

Sepsis-POMDP 1000 14 13708 540
BC, POIS, BC+POIS,
BC+mini-POIS, BCQ,
MBSQI, pMDP, MOPO

Sepsis-POMDP 5000 14 68576 148 BC, POIS, BCQ,
MBS-QI, pMDP, MOPO

Sepsis-MDP 200 14 2792 383
BC, BCQ, MBSQI, pMDP,
POIS, BC + POIS
BC+mini-POIS

TutorBot 200 5 987 81 BC, POIS, BC+POIS,
BC+mini-POIS

Robomimic
Can-Paired 200 235 47,000 35 BC, BCRNN, CQL,

IRIS, BCQ

Robomimic
Transport 200 470 94,000 10 BC, BCRNN, CQL,

IRIS, BCQ

D4RL
Hopper 500 1000 500,000 4 x 4 BCQ

D4RL
HalfCheetah 500 1000 500,000 4 x 4 BCQ

Table A.2: List of algorithms being used in which domain. 4 x 4 means we evaluate 4 AH pairs for
the policy learning and 4 AH pairs for the policy evaluation estimators (FQE).

replacement on trajectories in Dvalid to create (largely) overlapping subsets B1, B2, ..., BN , with
|Bi| = n. We then evaluate πe on each subset using V̂ . The final score is computed through a bias
correction process with an added acceleration factor (BCa).

Nested K × 2-fold Cross-Validation. We can also use the RRS split partitions to produce K × 2
Nested CV by taking one RRS split (Rtrain

i , Rvalid
i) by doing the following procedure:

si =
V̂ (A(Rtrain

i);Rvalid
i) + V̂ (A(Rvalid

i);Rtrain
i)

2
(3)

GA,NCVK
=

1

K

K∑
i=1

si (4)

Intuitively, for K × 2 Nested CV, we just need to swap the train and valid set produced by repeated
sub-sampling and average to produce the algorithm performance score for a particular split i. Then
we average the scores to get a final score for the algorithm.

2-fold Cross-Validation. Similar to the K×2 Nested CV, we can choose the i-th partition generated
by the 10 RRS split procedure, and compute the score according to Equation 3. We do this for the
Sepsis and TutorBot domains, but we do not do this for the Robomimic domain.

Batch Value Function Tournament (BVFT) Xie and Jiang (2021); Zhang and Jiang (2021)
proposed to use pairwise Q-function comparisons to select the optimal Q-function from a set of
Q-functions. Given Qi, Qj , let Gij be the piecewise constant function class induced by binning (s, a)
and (s′, a′) if Qi(s, a) = Qj(s

′, a′). Given an offline dataset D, we can compute the BVFT loss as

19

follow:

T̂GijQ := argmin
g∈Gij

1

|D|
∑

[(g(s, a)− r − γmax
a′

Q(s′, a′))2] (5)

Eϵk(Qi, Qj) = ∥Qi − T̂GijQj∥2,D (6)
Eϵk(Qi) = max

j
Eϵk(Qi, Qj) (7)

Zhang and Jiang (2021) proposed a method to automatically search through different discretization
resolutions (ϵk). In our experiment, we search through [0.1, 0.2, 0.5, 0.7, 1.0, 3.0, 10.0]. We use the
BVFT code provided by Xie and Jiang (2021). Because BVFT can only compare Q-functions, Zhang
and Jiang (2021) offered two strategies to perform policy selection for any model/algorithm. Here we
briefly describe two strategies:

• Strategy 1 (π x FQE): if we have 4 policies, and each policy is evaluated by 4 FQEs, then
this strategy will compare 16 Q-functions (4 π x 4 FQE).

• Strategy 2 (π + FQE): if we have 4 policies, and each policy is evaluated by 4 FQEs, then
this strategy will first run BVFT to compare 4 Q-functions (1 π x 4 FQE), select the best
Q-function for each π (4 π x 1 FQE), then we select the best policy by the average Q-value
computed by each FQE.

We generally find strategy 2 more computationally efficient (because it makes a smaller number of
comparisons). BVFT generally has O(J2) time complexity where J is the number of Q-functions
that need to be compared – it’s easy to see that 162 = 256 is much larger than 42 = 16.

Our repeated experiment protocol (RRS) is reliant on choosing a good FQE. In order to compare
fairly, for π x FQE strategy, we only use the optimal FQE (the ones used in RRS and CV and
one-split). We can see that in this condition, BVFT can do pretty well (even outperforming RRS
in the D4RL-Hopper medium setting). For π + FQE, because it focuses on the selection of FQE,
we try 4 different FQE hyperparameters. We discuss this more in D4RL Experiment Details (in
Section A.19).

A.7 Computational Complexity

Most of the approaches we discussed in Section A.6 leverage multiple repetitions (resampling) to
account for data allocation randomness. We provide a time complexity table below and define the
following terms:

• H = number of AH pairs to evaluate
• N = total data samples. We assume the training time for each trajectory is N1 and evaluation

time for each trajectory is N2, where N = N1 +N2

• M = number of folds in multi-fold cross-validation
• B = number of bootstraps (this number is 100 in our experiment)
• P = number of resolutions for BVFT’s grid (proposed in Zhang and Jiang (2021))
• F = number of FQE hyperparameters (proposed in Zhang and Jiang (2021))

For BVFT, one can amortize the computational cost by caching (storing Q(s, a) for all (s, a) in the
dataset). If caching is done only once, we treat the actual computation time for the validation data
set as n2. P is usually between 5 and 10. When H is relatively large, for example, H = 540 (in our
experiment), H * H = 2.916e5. It’s easy to see that RRS is slightly more expensive than M-Fold
CV but less expensive than the pairwise comparison tournament algorithm (BVFT). Zhang and
Jiang (2021) proposed BVFT-FQE that only makes pairwise tournament comparison between FQE
hyperparameters – F is 5 in our experiments. It’s also worth noting that BCa has a high evaluation
cost when B is large – when B = 100, BCa evaluation cost is significantly higher than CV and RRS.

A.8 Sensitivity to OPE Methods

OPE is often a critical part of OPL, which has motivated significant research into OPE. Thus the
employed OPE method will likely impact the performance of our proposed pipeline. As has been

20

Training Complexity Evaluation Complexity

One-Split H × N1 H × N2

Bootstrapping (BCa) H × N1 H × B × N2

M-Fold Cross-Validation (H ×M × N× (M-1))/M
= H × N × (M-1)

(H ×M × N × 1)/M
= H × N

K-Repeat RRS H × K × N1 H × K × N2

BVFT
(Xie and Jiang, 2021) H × N1

(H × H) × N2 or
(H × H) × n2

BVFT-auto
(Zhang and Jiang, 2021) H × N1

P × (H × H) × N2 or
P × (H × H) × n2

BVFT-FQE
(Zhang and Jiang, 2021) H × N1

P × H × (F × F) × N2 or
P × H × (F × F) × n2

demonstrated in a recent bake-off paper (Voloshin et al., 2021), minimal-assumption OPE methods
like weighted doubly robust methods (e.g. Jiang et al. (2015); Thomas and Brunskill (2016)) may be
most consistently accurate for many domains. However if the domain is known to be Markov and the
models are well specified, FQE methods will likely be more accurate in small data regimes.

To explore further the impact of the choice of OPE method, we conducted an additional experiment
on the Sepsis-POMDP domain. The aim to was to look at the sensitivity of SSR-RRS for picking
the best AH to the choice of OPE estimators. In addition to the prior OPE methods used in the main
text, we included clipped IS (importance sampling), CWPDIS (Thomas and Brunskill, 2016), and 8
different FQE OPE variants, in which different networks, learning rate and epochs were used.

Sepsis-POMDP Parameters
Best AH Performance

Chosen by
SSR-RRS K=5

FQE-1 [64], lr=3e-4, epoch=20 2.84
FQE-2 [64], lr=1e-5, epoch=20 -74.26
FQE-3 [64], lr=3e-4, epoch=50 -20.88
FQE-4 [64], lr=1e-5, epoch=50 -14.16
FQE-5 [128], lr=3e-4, epoch=20 -75.26
FQE-6 [128], lr=1e-5, epoch=20 -14.48
FQE-7 [128], lr=3e-4, epoch=50 -75.54
FQE-8 [128], lr=1e-5, epoch=50 -74.26

IS N/A 4.47
CWPDIS N/A 4.68

WIS N/A 6.75

Table A.3: Using different OPE estimators in the SSR-RRS pipeline. FQE-1 denotes the FQE with the
optimal FQE hyperparameter (heuristically chosen).

First, using FQE does generally much worse in this setting which is not very surprizing: FQE assumes
the domain is Markov, which Sepsis-POMDP is not.

All importance-sampling based OPE methods yield quite similar performing algorithm-
hyperparameter choices in this setting.

While there are some clear differences, if some basic information about the domain is known (Markov
or not), it is likely possible to select a pretty good OPE. In addition, prior work has proposed
heuristics (Voloshin et al., 2021) or automatic methods for automatic OPE selection (Su et al., 2020;
Lee et al., 2021). An interesting direction for future work would be to include such methods in the
pipeline.

21

We highlight that while it is well known that OPE methods are important, our paper focused on
an under-explored issue: that the dataset partitioning can also introduce a substantial amount of
additional impact on learning good policies / selecting good AH.

A.9 Robustness of SSR-RRS

In Table 3, we only show the performance of the best policy among all AH pairs. Here we show
that SSR-RRS can still robustly select a good hyperparameter for a given offline RL policy learning
algorithm (the gap between best AH selected and true best AH is relatively small).

Sepsis-POMDP
Range of True

Policy Performance
(95%CI)

Percentile of AH
Chosen by SSR-RRS

Performance of AH
Chosen by SSR-RRS

True Best AH
Performance

BCQ [-10.8, -0.73] 94% 5.98 7.86
MBSQI [-7.34, -2.26] 95% 6.40 7.42

BC [-8.98, -8.37] 58% -8.46 -7.42
BC+PG [-5.55, -4.26] 78% -3.68 2.52
P-MDP [-31.17, -21.26] 83% 0.23 2.82

Table A.4: We show the relative position (percentile) of the AH selected by SSR-RRS K=5 pipeline.

For each algorithm, we evaluate over 24 to 72 hyperparameters, and we compute the 95% confi-
dence interval of all these policies’ true performance. Except for behavior cloning, we are picking
hyperparameters that are out-performing 78%-95% of other hyperparameters in the same algorithm.

A.10 Is FQE biased towards FQI algorithms?

In our evaluation on the Sepsis domain, FQE is used to evaluate both BCQ and MBSQI (both
FQI-based) and BC and BCPG (policy-gradient algorithms).

We designed the following analysis experiment using our logged results. We first rank all AH pairs
(540 of them) with their true performance in the simulator, and then we count the percentage of FQI
(BCQ, MBSQI) algorithms that appear in the top 10%, 20%, and 50% percentile. The number in
each cell should be read as: “90.7% of AH pairs in the top-10% based on True Performance are
FQI-based”. If FQE is biased towards FQI algorithms, we expect to see a higher percentage of
BCQ and MBSQI AH pairs selected than the true performance baseline and compared to other OPE
methods.

Sepsis-POMDP
OPE Method

% of BCQ and MBSQI
AHs in Top-10% AHs

% of BCQ and MBSQI
AHs in Top-20% AHs

True Performance 90.7% 61.1%

FQE-1 0% 0%
WIS 9.4% 35.5%

RRS-5 WIS 68.5% 58.3%

Table A.5: Examining whether FQE as an estimator will prefer FQI policy learning algorithms.

Based on this analysis, we believe that FQE is not biased to select FQI-based algorithms in the
Sepsis-POMDP domain. However, our analysis is limited to one domain and only on two FQI-based
algorithms. Further investigation is needed but beyond the scope of our paper.

A.11 Additional Discussions

Sensitivity to K in small and large datasets In general, we expect the issue of data partitioning
into a train and test split is most important in small datasets: as the dataset gets very large, a single
train/test split will generally work well. Therefore, we suggest using a larger K for smaller datasets,
but for larger datasets, a smaller K will likely be sufficient. Using our theoretical example in the

22

appendix (chain-MDP), this can also be observed – with a larger N, the failure probability for smaller
numbers of repeats decreases. This N-K tradeoff has computational benefits if there is a limited
computational budget (larger datasets will require more training, therefore, harder to use a larger K).

Weighted importance sampling (WIS) as a biased estimator WIS is a self-normalizing impor-
tance sampling estimator. We refer readers to Owen (2013) Chapter 9 for a more detailed discussion
on the statistical properties of this type of estimator. In Section 4.1 (line 174), we state:

WIS will return the observed return of the behavior policy if averaging over a single
trajectory, independent of the target policy to be evaluated.

In brief, WIS works by first computing the probability of the dataset trajectory appearing under the
evaluation policy and behavior policy:

wi =

L∏
t=1

πe(at|st)
πb(at|st)

Then, this coefficient is normalized before multiplying with the trajectory return, therefore:

WIS(D) =
1

n

n∑
i=1

wi∑n
j=1 wj

(

L∑
t=1

γtRi
t).

Perhaps surprisingly, if there is a single trajectory, n = 1, this implies

WIS(D) =
wi

wi
(

L∑
t=1

γtRi
t) =

L∑
t=1

γtRi
t.

Here WIS is a biased estimator that returns the trajectory weighted reward, independent of wi.

A.12 Additional Experiment

We report the D4RL HalfCheetah result over the same setting as D4RL Hopper, where the result is
averaged over 20 runs.

Re-trained
on full dataset

BVFT
π x FQE

BVFT
π + FQE CV-2 CV-5 SSR

RRS-2
SSR

RRS-5
Optimal
Policy

D4RL (HalfCheetah):
random -1.14 1106.94 -1.13 -1.13 1922.07 1922.07 1922.07
medium 4421.95 4290.33 4290.33 4290.33 4290.33 4290.33 4517.96

medium-expert 8118.84 8799.66 8118.84 8118.84 9681.78 9681.78 10364.36

Table A.6: Additional comparison of the performance obtained by a policy deployed using the SSR
pipeline vs. using 1-split policy selection approaches on D4RL HalfCheetah. Cells = average true
return.

A.13 Figure Generation Procedure

Given our partition generation procedure, there are some methods (One-Split OPE, K × 2 Nested CV,
and SSR-RRSK when K < 5) that have a few different partitions to choose from. For example, out
of the 5 RRS split partitions, which partition should we choose for the One-Split OPE method? If we
choose one partition, and the One-Split method cannot select the best algorithm, does that mean the
One-Split method is bad, or could the 9 other partitions do better for the One-Split method? In order
to evaluate these approaches fairly, we exhaustively train and evaluate on the 5 RRS splits, swap
the train/valid set, and train/evaluate on them again, generating 20 scores. For the aforementioned
methods, we randomly sample from these 10 (or 20, if Nested CV is being evaluated) scores to
simulate the setting that we happen to get one particular split. We run this sampling procedure
multiple times and compute the average performance of the policies that are chosen by conditioning
on one or K particular partitions.

23

A.14 Domain Descriptions

Sepsis. The first domain is based on the simulator and works by Oberst and Sontag (2019) and
revolves around treating sepsis patients. The goal of the policy for this simulator is to discharge
patients from the hospital. There are three treatments the policy can choose from antibiotics,
vasopressors, and mechanical ventilation. The policy can choose multiple treatments at the same time
or no treatment at all, creating 8 different unique actions.

The simulator models patients as a combination of four vital signs: heart rate, blood pressure, oxygen
concentration and glucose levels, all with discrete states (for example, for heart rate low, normal and
high). There is a latent variable called diabetes that is present with a 20% probability which drives the
likelihood of fluctuating glucose levels. When a patient has at least 3 of the vital signs simultaneously
out of the normal range, the patient dies. If all vital signs are within normal ranges and the treatments
are all stopped, the patient is discharged. The reward function is +1 if a patient is discharged, −1 if a
patient dies, and 0 otherwise.

We follow the process described by Oberst and Sontag (2019) to marginalize an optimal policy’s
action over 2 states: glucose level and whether the patient has diabetes. This creates the Sepsis-
POMDP environment. We sample 200, 1000, and 5000 patients (trajectories) from Sepsis-POMDP
environment with the optimal policy that has 5% chance of taking a random action. We also
sample 200 trajectories from the original MDP using the same policy; we call this the Sepsis-MDP
environment.

Robomimic. Our approach is further evaluated on a third domain, Robomimic (Mandlekar et al.,
2021), consisting of various continuous control robotics environments along with corresponding
sets of suboptimal human data. More specifically, we use the Can-Paired dataset composed of
mixed-quality human data. These 200 demonstrations include an equal combination of “good” (the
can is picked up and placed in the correct bin) and “bad” trajectories (the can is picked up and
thrown out of the robot workspace). The initializations of the tasks being identical, it is expected that
algorithms dealing with suboptimal data will be able to filter out the good trajectories from the bad
ones and achieve near-optimal performance. Interestingly, state-of-the-art batch RL algorithms do
not reach maximum performance (Mandlekar et al., 2021), making this task a good testbed for our
procedure. We also use the Transport dataset, where two robot arms must transfer an object from
one bin to another. The dataset contains 200 successful trajectories collected by one human operator.

D4RL. D4RL (Fu et al., 2020) is an offline RL standardized benchmark designed and commonly
used to evaluate the progress of offline RL algorithms. We use 3 datasets of different quality from the
Hopper task: hopper-random with 200k samples from a randomly initialized policy, hopper-medium
with 200k samples from a policy trained to approximately 1/3 the performance of a policy trained to
completion with SAC ("expert"), and hopper-medium-expert with 200k samples from a 50-50 split
of medium and expert data. The Hopper task is to make a hopper with three joints, and four body
parts hop forward as fast as possible.

A.15 TutorBot Domain

We introduce a new TutorBot simulator that is designed to mimic 3-5th grade elementary school
children in understanding the concept of calculating volume, and engaging them while doing so. We
base certain aspects of this simulator on some experimental studies of this learning environment,
where an RL policy can learn to teach. The state space includes children’s pre-test score, anxiety
level, thinking time, and whether it’s the last question in the tutoring session. The action is to offer
encouragement, a guided prompt, or a hint at each step of the tutoring.

The dynamics of TutorBot is a 4th-order Markov transition function that takes in anxiety and the
amount of thinking time and updates a latent parameter that captures learning progress. For each
simulated student learning trajectory, we pre-determine how many times this student will interact
with the TutorBot. We denote this as T , which is the trajectory length. We calculated the relationship
between T and the pre-test score based on the aforementioned experimental study.

T = round(7− 0.46 ∗ pre-test + l), l ∼ U([−1, 2])
θx = [0,−0.05,−0.2,−0.5], θh = [0.5, 0.3, 0.2, 0]

T (st+1|st, at) =
[
pre-test, [st−3, st−2, st−1, st]θ

T
x , [st−3, st−2, st−1, st]θ

T
h ,1{t+ 1 = T}

]
24

TutorBot Dimension Description

State 4 Pre-test ∈ {0, 1, ..., 8}, Anxiety-level ∈ [−1, 0]
Thinking ∈ [0, 1]+, Pre-termination ∈ {0, 1}

Action 1 0 = Encourage, 1 = Guided Prompt, 2 = Hint

Reward 1 0 for all steps if not last step

Table A.7: MDP specification for TutorBot.

The reward is always 0 at all steps except for the final step. We use x to denote anxiety and h to
denote thinking. Note that anxiety is always negative. We calculate the final reward as follows:

RT = 1{U [0, 1] < p} ∗ rimprov + (1− 1{U [0, 1] < p}) ∗ rbase, p = x+ h

Under this simulator, a student will improve a small amount even if the chatbot fails to teach optimally.

rimprov ∼ N (µimprov, 1), rbase ∼ N (µbase, 0.4)

We provide the full simulator code in the GitHub repo.

A.16 Sepsis-POMDP and Sepsis-MDP Experiment Details

Our algorithm-hyperparameter search is trying to be as realistic as possible to the setting of offline
RL practitioners. We search over hyperparameters that could potentially have a strong influence on
the downstream performance. Since this is an offline RL setting, we are particularly interested in
searching over hyperparameters that have an influence on how pessimistic/conservative the algorithm
should be.

A.16.1 BCQ

Batch Constrained Q-Learning (BCQ) is a commonly used algorithm for batch (offline) reinforcement
learning (Fujimoto et al., 2019). We search over the following hyperparameters:

BCQ Hyperparameter
Range

Actor/Critic
network

dimension
[32, 64, 128]

Training
Epochs [15, 20, 25]

BCQ
Threshold δ [0.1, 0.3, 0.5]

Table A.8: BCQ Hyperparams for Spesis-POMDP N=200, 1000. Sepsis-MDP N=200. TutorBot
N=200.

BCQ threshold determines if the Q-network can take the max over action to update its value using
(s, a) – it can only update Q-function using (s, a) if µ(s) > δ and π(a|s) > 0. The higher δ (BCQ
threshold) is, the less data BCQ can learn from. δ determines whether (s′, a′) ∈ B.

Q(s, a)←(1− α)Q(s, a)

+ α(r + γ max
a′s.t.(s′,a′)∈B

Q′(s′, a′)) (8)

We search through the cross-product of these, in total 27 combinations.

For Sepsis-POMDP N=5000, we realize the network size is too small to fit a relatively large dataset
of 5000 patients. So we additionally search over Table A.9. The actor/critic network uses a 2-layer
fully connected network. This resulted in 6 additional combinations for BCQ in Sepsis-POMDP
N=5000.

25

BCQ Hyperparameter
Range

Actor/Critic
network

dimension
[256, 256], [512,512], [1024,1024]

Training
Epochs [25]

VAE Latent
Dim [512]

BCQ
Threshold δ [0.3, 0.4]

Table A.9: BCQ Hyperparams for Spesis-POMDP N=5000.

A.16.2 MBS-QI

The MBS-QI algorithm is very similar to BCQ, but MBS-QI also clips the states (Liu et al., 2020).
We searched through similar hyperparameters as BCQ.

MBS-QI Hyperparameter
Range

Actor/Critic
network

dimension
[32, 64, 128]

Training
Epochs [15, 20, 25]

BCQ
Threshold δ [0.1, 0.3, 0.5]

Beta β [1.0, 2.0, 4.0]

Table A.10: MBS-QI Hyperparams for Spesis-POMDP N=200, 1000. Sepsis-MDP N=200. TutorBot
N=200.

The beta (β) hyperparameter in MBS-QI is a threshold for the VAE model’s reconstruction loss.
When the reconstruction loss of the next state is larger than beta, MBS-QI will not apply the Q
function on this next state to compute future reward (to avoid function approximation over unfamiliar
state space).

ζ(s, a; µ̂, b) = 1(µ̂(s, a) ≥ β)

(T̃ f)(s, a) := r(s, a) + γEs′ [max
a′

ζ ◦ f(s′, a′)] (9)

We search through the cross-product of these, in total 81 combinations. Similar to BCQ situation, we
realize the network size is too small to fit a relatively large dataset of Sepsis-POMDP N=5000. So we
additionally search over Table A.11. The actor/critic network uses a 2-layer fully connected network.
This results in 18 additional combinations for MBS-QI in Sepsis-POMDP N=5000.

A.16.3 MOPO

We also experiment with Model-based Offline Policy Optimization (MOPO) (Yu et al., 2020). The
original MOPO paper only experimented on Mujoco-based locomotion continuous control tasks. We
want to experiment with whether MOPO can work well in environments like the Sepsis-POMDP
simulator, which is not only a healthcare domain but also partially observable with a discrete state
and action space. We do not expect MOPO to do well. We re-implemented two versions of MOPO

26

MBS-QI Hyperparameter
Range

Actor/Critic
network

dimension
[256, 256], [512,512], [1024,1024]

Training
Epochs [25]

VAE Latent
Dim [512]

BCQ
Threshold δ [0.3, 0.4]

Beta ζ [1.0, 2.0, 4.0]

Table A.11: MBS-QI Hyperparams for Spesis-POMDP N=5000.

with Tensorflow 2.0 and PyTorch, and used the PyTorch version to run our experiments. Our
implementation of MOPO matches the original’s performance in a toy environment.

MOPO is fairly slow to run – because it needs first to train a model to approximate the original
environment, and then sample from this model to train an RL algorithm. We did not evaluate it for
Sepsis-POMDP N=5000.

MOPO Hyperparameter
Range

Actor/Critic
network

dimension
dim

[32, 32], [64, 64], [128, 128]

Training
Iterations [1000, 2000, 3000]

MOPO
Lambda λ [0, 0.1, 0.2]

Number of
Ensembles [3, 4, 5]

Table A.12: MOPO hyperparameters for Spesis-POMDP N=200, 1000.

Number of ensembles refers to MOPO Algorithm 2, which trains an ensemble of N probabilistic
dynamics on batch data. N should be adjusted according to the dataset size. Each dynamics model is
trained on 1

N of the data during each epoch.

T̂i(s
′, r|s, a) = N (µi(s, a),Σi(s, a)) (10)

MOPO λ hyperparameter controls how small we want the reward to be, adjusting for state-action pair
uncertainty. Generally, the more uncertain we are about (s, a), the more we should ignore the reward
that’s outputted by the learned MDP model. Its use is also described in Algorithm 2:

r̃(s, a) := r(s, a)− λ
N

max
i=1
||Σi(s, a)||F (11)

We search through the cross-product of these, in total 81 combinations.

In our initial experiments, MOPO does not seem to perform well in a tabular setting where both
state and action are discrete. Therefore, we simplified the idea of MOPO to introduce Pessimistic
Ensemble MDP (P-MDP).

27

A.16.4 P-MDP

As noted in the previous section, inspired by MOPO and MoREL (Kidambi et al., 2020), we develop
a tabular version of MOPO. We instantiate N tabular MDP models. For each epoch, each MDP
model only updates on 1/N portion of the data. During policy learning time, for each timestep, we
randomly sample 1 of the N MDP for the next state and reward; and use Hoeffding bound to compute
a pessimistic reward, similar to MOPO’s variance penalty on reward:

Let N(s, a) be the number of times (s, a) is observed in the dataset:

ϵ = β ∗

√
2 log(1/δ)

N(s, a)

r̃(s, a) = min(max(r − ϵ,−1), 1)
(12)

In the last step we bound the reward to (-1, 1) for the Sepsis setting – but it can be changed to apply
to any kind of reward range. We note that Hoeffding bound is often loose when N(s, a) is small,
therefore, might make the reward too small to learn any good policy. However, empirically, we
observe that in the Sepsis-POMDP, P-MDP is often the best-performing algorithm. We additional
add a temperature hyperparameter α, that changes the peakness/flatness of the softmax distribution of
the learned policy:

P-MDP Hyperparameter
Range

Training
Iterations [1000, 5000, 10000]

Penalty
Coefficient β [0, 0.1, 0.5]

Number of
Ensembles [3, 5, 7]

Temperature α [0.05, 0.1, 0.2]

Table A.13: P-MDP Hyperparams for Spesis-POMDP N=200, 1000.

Not surprisingly, since planning algorithms (such as Value Iteration or Policy Iteration) need to
enumerate through the entire state space, we find it too slow to train a policy in Sepsis-MDP domain,
because Sepsis-POMDP has 144 unique states, yet Sepsis-MDP has 1440 unique states (glucose level
has 5 unique states and diabetes status has 2 unique states). TutorBot and Robomimic both have
continuous state space, therefore are not suitable for our P-MDP algorithm without binning.

We search through the cross-product of these, in total 81 combinations.

For Sepsis-POMDP N=5000, we realize we can increase the number of MDPs and increase training
iterations to fit a relatively large dataset of 5000 patients. So we additionally search over Table A.14.
This results in 16 additional combinations for P-MDP in Sepsis-POMDP N=5000.

P-MDP Hyperparameter
Range

Training
Iterations [20000, 40000]

Penalty
Coefficient β [0.05, 0.1]

Number of
Ensembles [15, 25]

Temperature α [0.01, 0.05]

Table A.14: P-MDP Hyperparams for Spesis-POMDP N=5000.

28

A.16.5 BC

Behavior Cloning (BC) is a type of imitation learning method where the policy is learned from a
data set by training a policy to clone the actions in the data set. It can serve as a great initialization
strategy for other direct policy search methods which we will discuss shortly.

One pessimistic hyperparameter we can introduce to behavior cloning is similar in spirit to BCQ
and MBS-QI, we can train BC policy only on actions that the behavior policy has a high-enough
probability to take, optimizing the following objective:

ζ = πb(a|s) ≥ α

argmin
θ

E(s,a)∼D||πθ(s)− ζ ◦ πb(a|s)||2
(13)

We refer to α as the “safety-threshold”. We search through the cross-product of these, in total 27
combinations.

BC Hyperparameter
Range

Policy network
dimension [32, 32], [64, 64], [128, 128]

Training
Epochs [15, 20, 25]

Safety
Threshold α [0, 0.01, 0.05]

Table A.15: BC Hyperparams for Spesis-POMDP N=200, 1000, 5000. Sepsis-MDP N=200. TutorBot
N=200.

A.16.6 POIS

Policy Optimization via Importance Sampling (Metelli et al., 2018) uses an importance sampling
estimator as an end-to-end differentiable objective to directly optimize the parameters of a policy.
In our experiment, we refer to this as the “PG” (policy gradient) method. Similar to BC method,
we can set a safety threshold α that zeros out any behavior probability of an action that’s not higher
than α, and then re-normalizes the probabilities of other actions. Metelli et al. (2018) also introduces
another penalty hyperparameter λ to control the effective sample size (ESS) penalty. ESS measures
the Renyi-divergence between πb and πe. Let V̂ be the differentiable importance sampling estimator –
we write the optimization objective similar to Futoma et al. (2020), but without the generative model:

J (Dtrain) = V̂ (πθ;Dtrain)−
λESS

ESS(θ)

θ = argmax
θ
J (Dtrain)

(14)

We search through the following hyperparameters in Table A.16. There are 81 combinations in total.

A.16.7 BC+POIS

BC + POIS is a method that first finds a policy using BC as an initialization strategy to make sure
that the policy stayed close (at first) to the behavior policy. This is particularly useful for neural
network-based policy classes, as a form of pre-training using behavior cloning objective. We use the
same set of hyperparameters displayed in Table A.16, resulting in 81 combinations in total.

A.16.8 BC+mini-POIS

In both Metelli et al. (2018) and Futoma et al. (2020), the loss is computed on the whole dataset
Dtrain, which makes sense – importance sampling computes the expected reward (which requires
averaging over many trajectories to have an estimation with low variance). However, inspired by
the success of randomized optimization algorithms such as mini-batch stochastic gradient descent

29

BC Hyperparameter
Range

Policy network
dimension [32, 32], [64, 64], [128, 128]

Training
Epochs [15, 20, 25]

Safety
Threshold α [0, 0.01, 0.05]

ESS
Penalty λ [0, 0.01, 0.05]

Table A.16: POIS, BC+POIS, BC+mini-POIS Hyperparams for Spesis-POMDP N=200, 1000, 5000.
Sepsis-MDP N=200. TutorBot N=200.

(SGD), we decided to attempt a version of BC + POIS with V̂ over a small batch of trajectories
instead of over the entire dataset. Our batch size is 4 (4 trajectories/patients) for Sepsis-POMDP
N=200 and 1000, which is very small. However, this strategy seems to be quite successful, resulting
in learning high-performing policies competitive with other more principled methods. This can be
seen in Figure A.2 (“BCMINIPG”).

We leave the exploration of why this is particularly effective to future work, and hope others who
want to try POIS style method to include our variant in their experiment. We use the same set of
hyperparameters displayed in Table A.16, resulting in 81 combinations in total.

A.17 TutorBot Experiment Details

The details of this environment is shown in the code file in the supplementary material. We trained
BC+POIS, POIS, and BC+mini-POIS on this domain.

A.18 Robomimic Experiment Details

We refer the reader to Mandlekar et al. (2021) for a full review of the offline RL algorithms used
in our experiment. For Robomimic, we include the range of hyperparameters we have considered
below:

• BC:
– Actor NN dimension: [300,400], [1024,1024]
– Training epochs: 600, 2000
– GMM actions: 5, 25

• BCRNN:
– RNN dimension: [100], [400]
– Training epochs: 600, 2000
– GMM actions: 5, 25

• BCQ:
– Critic NN size: [300,400], [1024,1024]
– Training epochs: 600, 2000
– Action samples: [10,100], [100,1000]

• CQL:
– Critic NN size: [300,400], [1024,1024]
– Training epochs: 600, 2000
– Lagrange threshold: 5, 25

• IRIS:
– Critic NN size: [300,400], [1024,1024]
– Training epochs: 600, 2000
– LR critic: 0.001, 0.0001

30

A.19 D4RL-Hopper Experiment Details

For the D4RL experiments, we include the range of hyperparameters we have considered below:

• BCQ:
– Policy NN size: [512,512], [64,64]
– LR policy: 0.001, 0.0001

• CQL:
– Policy NN size: [256,256,256], [64,64,64]
– LR policy: 0.001, 0.0001

• AWAC:
– Policy NN size: [256,256,256,256], [64,64,64,64]
– LR policy: 0.001, 0.0001

For BVFT Strategy 1 π x FQE, we use the optimal FQE hyperparameter on all hyperparameters of
BCQ, CQL and AWAC. For BVFT Strategy 2 π + FQE, we use 4 FQE hyperparameters but only
with 4 hyperparameters of BCQ. For RRS and CV, we use the optimal FQE hyperparameter on 4
hyperparameters of BCQ as well.

A.20 Computing Resources

For the overall experimental study in this paper, an internal cluster consisting of 2 nodes with a total
of 112 CPUs and 16 GPUs was used.

A.21 Additional Offline RL Sensitivity Study

A.21.1 Sensitivity to data splitting: One-Split OPE

Figure A.1 shows that procedure produces policies with drastically different estimated, and true,
performances subject to randomness in data selection process. Because training and validation set
randomness are directly conflated, it becomes difficult to accurately select a better AH pair (and its
associated higher-performing policy) based on a single train/validation set partition.

Figure A.1: We show that policies learned from offline RL algorithms are sensitive to the variation of
training and validation dataset: an algorithm-hyperparameter (AH) pair can obtain wildly different
policies based on which portion of the data they were trained on. We obtained 5400 policies from
540 AH combinations on Sepsis-POMDP (N=1000) domain. The variation is not just in terms of the
policy’s true performance in the real environment, but also in terms of OPE estimations. Note that
FQE estimate on Robomimic exceeded the range of possible achievable rewards (between 0 and 1).
The true reward is calculated by evaluating the policy in the real environment.

A.21.2 Sensitivity to hyperparameters

In Figure A.2, we show that offline RL algorithms are sensitive to the choice of hyperparameters. In
the Sepsis-POMDP N=1000 task and the Robomimic Can-Paired N=200 task, all popular offline RL
algorithms show a wide range of performance differences even when trained on a fixed partition of
the dataset.

31

Figure A.2: Sensitivity of offline RL algorithms due to the choice of hyperparameters.

32

	Introduction
	Related work
	Background and Problem Setting
	The Challenge of Offline RL Ai Selection
	Repeated Experiments for Robust Hyperparameter Evaluation in Offline RL

	SSR: Repeated Random Sampling for Ai Selection and Deployment
	Experiments
	Task/Domains
	Baselines
	Training and Evaluation

	Results
	Discussion and Conclusion
	Acknowledgment
	Appendix
	Prelude Experiment
	Connection between Leave-p-Out CV and RRS
	Proof of Theorem 1
	SSR pseudo-code
	Code
	Experiment Detail Summary
	Computational Complexity
	Sensitivity to OPE Methods
	Robustness of SSR-RRS
	Is FQE biased towards FQI algorithms?
	Additional Discussions
	Additional Experiment
	Figure Generation Procedure
	Domain Descriptions
	TutorBot Domain
	Sepsis-POMDP and Sepsis-MDP Experiment Details
	BCQ
	MBS-QI
	MOPO
	P-MDP
	BC
	POIS
	BC+POIS
	BC+mini-POIS

	TutorBot Experiment Details
	Robomimic Experiment Details
	D4RL-Hopper Experiment Details
	Computing Resources
	Additional Offline RL Sensitivity Study
	Sensitivity to data splitting: One-Split OPE
	Sensitivity to hyperparameters

