
A Theoretical Analysis

This section contains the theoretical analysis of the loss functions of offline experience replay
(Proposition 2), augmented experience replay (Proposition 3), and online experience replay with
reservoir sampling (Proposition 1).

Proposition 2 (Empirical risk minimization for experience replay): We assume a memory set
DM and an incoming task stream DT with different data distribution P(DT) ̸= P(DM). At each
iteration t, a batch of data is sampled from memory BMt ∼ DM with BMt = {xi, yi}i=1,...|BM

t |, and
a batch of data is sampled from incoming task Bt ∼ DT with Bt = {xi, yi}i=1,...|Bt|. To update the
parameter θ of a function fθ: fθ ×X → Y based on loss function L, consider the parameter update
rule defined by θ = θ − η

|Bt|
∑

xi,yi∈Bt
∇L (fθ(xi), yi)− η

|BM
t |
∑

xi,yi∈BM
t
∇L (fθ(xi), yi), then it

is an unbiased stochastic gradient descent update rule for the following empirical risk:

R(θ) =
∑

xi,yi∈DT

L(fθ(xi), yi) +
|DT |
|DM|

∑
xi,yi∈DM

L(fθ(xi), yi).

Proof: Given the empirical gradient ĝER = 1
|Bt|

∑
xi,yi∈Bt

∇L (fθ(xi), yi) +
1

|BM
t |
∑

xi,yi∈BM
t
∇L (fθ(xi), yi) during stochastic optimization, we can derive the gradient

expectation as follows:

EBM
t ∼DM,Bt∼DT [ĝER] = ∇(EBM

t ∼DM [
1∣∣BMt ∣∣

∑
BM

t

L (fθ(xi), yi)] + EBt∼DT [
1

|Bt|
∑
Bt

L (fθ(xi), yi)])

= ∇(Exi,yi∼DM [L (fθ(xi), yi)] + Exi,yi∼DT [L (fθ(xi), yi)])

= ∇(1

|DM|
∑
DM

L (fθ(xi), yi) +
1

|DT |
∑
DT

L (fθ(xi), yi))

=
1

|DT |
∇

(
|DT |
|DM|

∑
DM

L (fθ(xi), yi) +
∑
DT

L (fθ(xi), yi)

)

Proposition 3 (Augmented empirical risk minimization for experience replay): Assume a memory
set DM = {xi, yi}i=1,..,|DM| and an incoming task stream DT = {xi, yi}i=1,..,|DT | with differ-
ent data distribution P(DT) ̸= P(DM), and a compact topological group of transform G with a
probability distribution Q that acts on the input space X and is invariant under function f , i.e.,
f(gx) = f(x), g ∈ G, x ∈ X . At each iteration t, a batch of data is sampled from memory,
BMt ∼ DM and BMt = {xi, yi}i=1,...|BM

t |, a batch of data is sampled from the incoming task,
Bt ∼ DT and Bt = {xi, yi}i=1,...|Bt|, and a group operation gt ∼ G is randomly selected. To update
the parameter θ of the function fθ based on loss function L, consider the parameter update rule
defined by θ = θ − η

|Bt|
∑

xi,yi∈Bt
∇L (fθ(gtxi), yi)− η

|BM
t |
∑

xi,yi∈BM
t
∇L (fθ(gtxi), yi), then it

is an unbiased stochastic gradient descent update rule for the loss function

R̄(θ) =
∑

xi,yi∈DT

∫
G

L(fθ(gxi), yi)dQ(g) +
|DT |
|DM|

∑
xi,yi∈DM

∫
G

L(fθ(gxi), yi)dQ(g).

Proof:

Given the augmented empirical gradient during stochastic optimization, we can derive the gradient
expectation as follows:

EBM
t ∼DM,Bt∼DT ,g∼Q[ĝ]

= ∇(EBM
t ∼DM [

1∣∣BMt ∣∣
∑
BM

t

∫
g

L (fθ(gxi), yi) dQ(g)] + EBt∼DT [
1

|Bt|
∑
Bt

∫
g

L (fθ(xi), yi) dQ(g)])

=
1

|DT |
∇

 ∑
xi,yi∈DT

∫
G

L(fθ(gxi), yi)dQ(g) +
|DT |
|DM|

∑
xi,yi∈DM

∫
G

L(fθ(gxi), yi)dQ(g)

14

The second equality is based on the results of Proposition 1, which we prove next.

Proposition 1 (ERM for online rehearsal): Assume an initial memory setD0
M and an incoming task

stream DT with different data distribution P(DT) ̸= P(DM). At each iteration t, t = 1, ..T , a batch
of data is sampled from the incoming task, Bt ∼ DT and Bt = {xi, yi}i=1,...|Bt|, and a batch of data
is sampled from the memory, BMt ∼ Dt

M and BMt = {xi, yi}i=1,...|BM
t |. To update the parameter θ

of the function fθ: fθ×X → Y based on loss function L, consider a parameter update rule defined by
θ = θ − η

|Bt|
∑

xi,yi∈Bt
∇L (fθ(xi), yi) − η

|BM
t |
∑

xi,yi∈BM
t
∇L (fθ(xi), yi). Assume the memory

is updated at the end of each iteration using reservoir sampling Vitter [1985], Chaudhry et al. [2019]
Dt+1

M ← RS(Dt
M,Bt). Then the gradient update rule is an unbiased stochastic gradient descent

update rule for the loss function

Rt(θ) =
∑

xi,yi∈DT

L(fθ(xi), yi) + βt
|DT |
|D0

M|
∑

xi,yi∈D0
M

L(fθ(xi), yi)

where βt =
1

1+2∗ Nt
cur

Npast

, N t
cur =

∑i=t
i=1 |Bi| denotes the number of samples of the current task that

have been seen so far and Npast =
∑j=T

j=1 |Dj | denotes the number of samples of past tasks.

Note 1: The objective functionRt(θ) changes with respect to the batch number t due to the changes
in βt.

Note 2: 1

1+2∗ |DT |
Npast

≤ βt ≤ 1 and βt is decreasing with the batch number t. At the start of a task,

βt=0 = βmax = 1. At the end of a task, βt=T = βmin = 1

1+2∗ |DT |
Npast

.

Note 3: Consider a balanced continual learning dataset (e.g., Split-CIFAR100, Split-Mini-ImageNet)
where |Dj | = |DT |, j = 1, ..T . Then, we have βmin = T −1

T +1 = (1− 2
T +1) and limT →∞ βmin = 1.

Note 4: Consider general continual learning datasets. As CL learns more tasks, Npast increases, and
limNpast→∞ βt = limNpast→∞

1

1+2∗ Nt
cur

Npast

= 1.

Proof: Given the empirical gradient ĝER = 1
|Bt|

∑
xi,yi∈Bt

∇L (fθ(xi), yi) +
1

|BM
t |
∑

xi,yi∈BM
t
∇L (fθ(xi), yi) during stochastic optimization, we can derive the gradient

expectation as follows:
EDt

M
[EBM

t ∼Dt
M,Bt∼DT [ĝER]]

= ∇EDt
M

EBM
t ∼Dt

M
[

1∣∣BMt ∣∣
∑
BM

t

L (fθ(xi), yi)] + EBt∼DT [
1

|Bt|
∑
Bt

L (fθ(xi), yi)]

= ∇(EDt

M

[
Exi,yi∼Dt

M
[L (fθ(xi), yi)]

]
+ Exi,yi∼DT [L (fθ(xi), yi)])

= ∇(Npast

Npast +N t
cur

Exi,yi∼D0
M
[L (fθ(xi), yi)] + (

N t
cur

Npast +N t
cur

+ 1)Exi,yi∼DT [L (fθ(xi), yi)])

=
Npast + 2 ∗N t

cur

(Npast +N t
cur) ∗ |DT |

∇

 Npast

Npast + 2 ∗N t
cur

|DT |
|D0

M|
∑
D0

M

L (fθ(xi), yi) +
∑
DT

L (fθ(xi), yi)

The third equality is based on the condition that Dt

M is updated using reservoir sampling so that all
the data seen so far have an equal probability of being stored in the memory. In other words, at a
given time t, the memory contains a fraction of Npast

Npast+Nt
cur

samples coming from past tasks and a

fraction of Nt
curr

Npast+Nt
cur

samples coming from the current task.

B Dataset details

Table 3 lists the image size, the number of classes, the number of tasks, and data size per task of the
four CL benchmarks.

15

Table 3: Dataset information for the four CL benchmarks.

IMAGE SIZE #TASK # CLASS TRAIN PER TASK TEST PER TASK

SEQ-CIFAR100 3X32X32 20 100 2,500 500
SEQ-MINI-IMAGENET 3X84X84 10 100 5,000 1,000
CORE50-NC 3X128X128 9 50 12,000-24,000 4,500-9,000
CLRS-NC 3X256X256 5 25 2,250 750

C Implementation Details

C.1 Continual Learning Implementation

The hyperparameter settings are summarized in Table 4. All models are optimized using vanilla SGD.
For all experiments, we use the learning rate of 0.1 following the same setting as in Aljundi et al.
[2019], Shim et al. [2021], and the Nearest-Class-Mean (NCM) classifier is used for evaluation, as
Mai et al. reported (2021) considerable and consistent performance gains when replacing the Softmax
classifier with the NCM classifier. Each mini batch during training consists of 10 new and 10 memory
samples, except for the SCR method, which employs 100 memory samples and 10 new incoming
samples Mai et al. [2021]. By default, the repeated rehearsal parameter for all the results is K = 10
and the augmented rehearsal parameters are P = 1, Q = 14.

This paper uses Randaugment [Cubuk et al., 2020], which is an auto augmentation method. It
randomly selects P augmentation operators from a set of 14 operators and applies them to the
images. The augmentation operator set includes:’Identity’, ’AutoContrast’, ’Equalize’, ’Rotate’,
’Solarize’, ’Color’,’Posterize’, ’Contrast’, ’Brightness’, ’Sharpness’,’ShearX’, ’ShearY’,’TranslateX’,
’TranslateY’.

Table 4: Hyperparameter setting.

HYPERPARAMETER

LWF LR=0.1
AGEM LR=0.1
ER BATCHSIZE=10,LR=0.1
MIR BATCHSIZE=10,C=50,LR=0.1
ASER K=3, N_SMP_CLS=1.5,BATCHSIZE=10,LR=0.1
SCR TEMP =0.07, BATCH SIZE = 100,LR=0.1
DER α = 0.3, AUGMENTATION: FLIP AND CROP, K = 50

C.2 RL-based hyperparameter tuning implementation

The memory iteration choices are from 1 to 20 and the augmentation choices are
(1, 5), (1, 14), (2, 14), (3, 14), (4, 14). Action selection probabilities are modeled with softmax
weight πw(ai) =

ewi∑
k ewk

. Bootstrapped policy gradient is used to adjust action weights:

gBPG = Eai∼πw

[
|rai
|
(
∇w log π̂+

w (ai)−∇w log π̂−
w (ai)

)]
where π̂+

w (ai) := Σak∈X+
ai
πw (ak) and π̂−

w (ai) := Σak∈X−
ai
πw (ak)

Better/Worse action set The key of the BPG idea is to incorporate prior information into the
construction of better and worse action sets. To apply BPG in the OCL environment, we propose to
determine the better/worse action set based on the feedback in the form of current memory batch
accuracy AM, which reflects the memory overfitting level of the CL agent. We want the training
memory accuracy to be neither too high nor too low. The desirable training memory accuracy
is defined by A∗

M. We find a higher repeated replay iteration leads to higher memory accuracy.

16

Therefore, the better/worse action set is defined as follows:

X+
a :=

∀ak | Iter (ak) < Iter(a), AM(a) > A∗

M
∀ak | Iter (ak) > Iter(a), AM(a) < A∗

M
∅, AM(a) = A∗

M

X−
a :=

∀ak | Iter (ak) > Iter(a), AM(a) > A∗

M
∀ak | Iter (ak) < Iter(a), AM(a) < A∗

M
∀ak | Iter (ak) ̸= Iter(a), AM(a) = A∗

M

X+
a :=

∀ak | Aug (ak) > Aug(a), AM(a) > A∗

M
∀ak | Aug (ak) < Aug(a), AM(a) < A∗

M
∅, AM(a) = A∗

M

X−
a :=

∀ak | Aug (ak) < Aug(a), AM(a) > A∗

M
∀ak | Aug (ak) > Aug(a), AM(a) < A∗

M
∀ak | Aug (ak) ̸= Aug(a), AM(a) = A∗

M

Reward A challenge in the hyperparameter tuning for the OCL setting is that the CL agent may face
new tasks with unseen data distribution. Therefore, it is often infeasible to assume the existence of an
external validation data containing all the tasks in advance for hyperparameter tuning. To achieve
online hyperparameter tuning without external validation data, we propose to define the reward based
on the accuracy on the memory. Given a target memory accuracy A∗

M, the reward is defined as
r = |AM −A∗

M|
Non-stationarity To address the non-stationary nature in the CL environment, we reset the weight of
BPG to a uniform weight at the start of each task.

The analysis of the selected action can be found in Figures 9 and 10 in Section D.4.

Algorithm 2: BPG-based RAR

M is the memory with fixed size,
Bt is the incoming batch from the current task,
θ are the parameters of the CL network,
w are the parameters of the RL agent,
K is the number of memory iterations,
P,Q are the augmentation hyperparameters
A∗

M target memory accuracy
1: procedure RAR(Mt, Bt, θt, wt)
2: Kt ∼ πwiter

t

3: Pt, Qt ∼ πwaug
t

4: for k = 1, ...,Kt do
5: BMt,k ∼MemRetrieval(Mt)

6: Baug ← aug(BMt,k ∪ Bt, Pt, Qt)

7: AM ←MemAcc(M, θt,k)
8: X+,X− ← ActionSet(AM, A∗

M)
9: θt,k+1 ← SGD(Baug, θt,k)

10: end for
11: Mt+1 ←MemUpdate(Mt,Bt)
12: witer

t+1 , w
aug
t+1 ← UpdateRL(AM,X+,X−)

13: end procedure

D Supplementary Experimental Results

D.1 Ablation studies for MIR-RAR, ASER-RAR and SCR-RAR

As shown in Table 1, RAR improves ER and ER variants (MIR, ASER and SCR). The detailed results
of the ablation studies of RAR with ER variants are presented in this section. In particular, Fig 5 and
6 show the comparison of only using repeated rehearsal or augmented rehearsal for MIR and ASER
respectively. Neither of them alone consistently improves the performance of the baseline. This
result suggests the influence of RAR for MIR/ASER is similar to ER. The performance gain comes
from the combination of the repeated rehearsal and augmented rehearsal. Fig 7 shows the results
for SCR. Repeated rehearsal leads to consistent performance gains because SCR already includes
augmentation.

D.2 Reweighted ER

17

Figure 5: Ablation study: MIR-RAR on the four datasets, with a 2k memory

Figure 6: Ablation study: ASER-RAR on the four datasets, with a 2k memory

To deal with the biased ER loss, one straightforward way is to balance the weight of the memory
loss and incoming loss by introducing a reweighting hyperparameter α in the gradient of Eq 2.
Specifically, the gradient for reweighted ER is implemented as

gER−rw
t = (1− α)

1

|Bt|
∑

x,y∈Bt

∇L(fθ(x), y) + α
1

|BM
t |

∑
x,y∈BM

t

∇L(fθ(x), y), α ∈ (0, 1).

The performance of ER and RAR with respect to different reweighting hyperparameter values
α ∈ [0.1, 0.3, 0.5, 0.7, 0.9] is shown in Fig 8, where α = 0.5 denotes vanilla ER loss with the equal
weighting of memory loss and incoming loss. To keep the learning rate comparable to vanilla ER, the
learning rate of ER-rw is twice that of ER. A key observation is that similar to vanilla ER, reweighted
ER (ER-rw) also significantly benefits from repeated and augmented rehearsal, as ER-rw-rar greatly
improves over ER-rw (see the red line and blue line in Fig 8) for all four datasets.

D.3 Large-scale online CL

To examine the effectiveness of RAR in a large-scale continual learning problem, we apply RAR to
ImageNet-1k. ImageNet-1k is split into 10 tasks and each task contains 100 classes. The training
dataset of 10 tasks contains 1,281,167 images in total. Considering the task size, we evaluate with
a memory size of M= 20k (with the task to memory size ratio λ ≈ 6.4) and a memory size of
M=100k (with the task to memory size ratio λ ≈ 1.28). These choices are similar to Seq-CIFAR100
(λ = 1.25) and CORE50 (λ = 6) with a 2k memory. We randomly crop the images to size 224x224,
and use the ResNet-18 architecture for training on ImageNet-1k with a single epoch. An incoming
batch size of 32 and a memory batch size of 32 are used. We employ a learning rate of 0.1 with
0.001 of weight decay. For the RAR method, we use 10 memory iterations with RandAugment and
parameters P=1 and Q=14. The results are shown in the Table 5.

Figure 7: Ablation study: SCR-RAR on the four datasets, with a 2k memory

18

(a) CIFAR100 (b) MINI-IMAGENET

(c) CORE50 (d) CLRS

Figure 8: The performance of reweighting the memory loss of ER (ER-rw) and its effectiveness with
RAR on the four datasets. (Star symbols denote the accuracy of ER and ER-RAR with a reweighting
value of 0.5).

We observe that repeated augmented rehearsal (RAR) is effective in this large-scale online continual
learning problem and improves the vanilla rehearsal from 2.1% to 15.1% with a 20k memory and
from 8.7% to 34.7% with a 100k memory.

The discussion in Buzzega et al. [2020] suggests that to deal with complex continual learning datasets,
it is necessary to employ multiple epochs of training with offline CL to avoid the underfitting problem
present in online learning. Our results show that RAR can greatly improve online rehearsal for large-
scale CL problems. Although several offline CL algorithms have been evaluated on ImageNet-1k, to
our knowledge, our result is the first attempt to apply online CL to this problem. We aim to investigate
other online rehearsal-based methods on ImageNet-1k in future work.

Table 5: Accuracy of ER and ER-RAR for ImageNet-1k with a 20k and 100k memory.

IMAGENET-1K M=20K M=100K

ER 2.1 ± 0.3 8.7 ± 0.5
ER-RAR 15.1 ± 0.4 34.7 ± 0.1
GAINS 13.0 ↑ 26.0 ↑

D.4 Action Selection in Reinforcement Learning

The selected hyperparameters for four datasets are shown in Figure 9. Interestingly, the RL-based
method assigns a stronger augmentation and lower iteration for a dataset with a higher λ attribute. As
discussed in the ERM analysis, a dataset with a higher λ suggests a higher risk of overfitting. The
RL-based method successfully takes this into account to tune the hyperparameters. In contrast, the
OCL-HT method selects the weakest augmentation and highest iteration for three datasets.

Figure 10 presents the selected hyperparameters at different CL training stages. Generally, as the
continual learning proceeds, the RL-based method selects a stronger augmentation strength and lower
iterations, to balance off the increasing risk of memory overfitting.

19

(a) RAR-RL (b) RAR-HTOCL

Figure 9: The average of selected hyperparameters of RAR (iteration and augmentation values) for
four datasets.

Figure 10: The selected hyperparameters of RAR (iteration and augmentation values) of the RL-based
method.

D.5 Running time

D.5.1 Running time of RAR

The running time of ER and ER-RAR is shown in Table 6. Experiments are conducted using an
Nvidia GeForce RTX 2080 TI Graphics Card on Mini-ImageNet. The running time of RAR grows
linearly with respect to the number of replay iterations. Hence, compared to vanilla experience replay,
RAR requires more running time due to the multiple iteration design. However, RAR is still much
more computationally efficient compared with offline CL with multiple epochs. An interesting future
research direction is to study how to dynamically adjust the iteration number and augmentation
strength of RAR to balance the trade-off of accuracy and running time.

D.5.2 Running time of RL

RL-based hyperparameter optimization is an online method that does not require repeated running
over different hyperparameter choices. Therefore, RL-based HPO is much more computationally
efficient than offline hyperparameter selection methods. More specifically, the hyperparameter search
space in our problem is 100 with 5 augmentation strength levels and 20 memory iteration numbers.
Grid search would need to run the OCL algorithm 100 times while RL only needs to run it once.

20

Table 6: Running time of ER and ER-RAR using an Nvidia GeForce RTX 2080 TI Graphics Card on
Mini-ImageNet. The offline setting employs 50 epochs of training.

RUNNING TIME (S) ACCURACY (%)

ER 277 ± 19 20.0 ± 0.8
RAR (K = 5) 1383 ± 4 29.1 ± 0.9
RAR (K = 10) 2,345 ± 4 30.4 ± 1.3
R-ER (K = 10) 2,236 ± 1 17.8 ± 0.6
ER-OFFLINE (E = 50) 10,878 ± 31 20.4 ± 0.6
RAR-RL (K = 19.6) 18,037 ± 71 32.1 ± 1.0

Nevertheless, the training of RL agents indeed introduces extra computation. In practice, we observe
the running time of RL-RAR is about two times slower than that of RAR, as shown in the Table 7.

Table 7: Running time with and without RL-based hyperparameter optimization using an Nvidia
GeForce RTX 2080 TI Graphics Card on CIFAR100.

RUNNING TIME (S) ACCURACY (%)

RAR (K = 10) 1294 ± 255 27.3 ± 0.3
RAR (K = 20) 3499 ± 406 27.3 ± 0.5
RL-RAR (K = 19.8) 6137 ± 34 29.2 ± 0.3

D.6 Offline Continual Learning

Although this paper is mostly focused on online continual learning, some of the analysis and
discussion are also of independent interest to offline continual learning. Specifically, from a theoretical
perspective, the empirical risk minimization of offline rehearsal is shown in Proposition 2 in Section A
and its augmented risk is shown in Proposition 3. Two conclusions can be drawn from this analysis.
First, the risk of memory overfitting in offline rehearsal is also related to the problem characteristic,
the ratio λ between task size and memory size. Second, augmentation can help with offline rehearsal
since the orbit-averaging operation in the augmented empirical risk can reduce both the model
variance and generalization error. From an empirical perspective, Table 8 shows the performance of
offline ER with and without augmentation in four datasets. We use 50 epochs and a memory size of
2000. For all four datasets, offline ER with augmentation achieves a significant performance gain
over offline ER without augmentation. More interestingly, compared to datasets with a small λ (e.g.,
CLRS with λ = 1.125) we observe that the datasets with a higher task-to-memory size ratio (e.g.,
CORE50 with λ = 6) tend to benefit more from augmentation, due to the increased risk of memory
overfitting.

21

Table 8: Performance of offline rehearsal with and without augmentation.

SEQ-CIFAR100 SEQ-MINI-IMAGENET CORE50-NC CLRS25-NC

OFFLINE ER W/O AUG 17.0 ± 0.6 20.4 ± 0.6 30.2 ± 1.4 33.5 ± 1.6
OFFLINE ER W/ AUG 28.3 ± 0.6 32.6 ± 0.1 44.5 ± 1.3 35.7 ± 0.8
GAINS 11.3 ↑ 12.2 ↑ 14.3 ↑ 2.2 ↑

22

	Theoretical Analysis
	Dataset details
	Implementation Details
	Continual Learning Implementation
	RL-based hyperparameter tuning implementation

	Supplementary Experimental Results
	Ablation studies for MIR-RAR, ASER-RAR and SCR-RAR
	Reweighted ER
	Large-scale online CL
	Action Selection in Reinforcement Learning
	Running time
	Running time of RAR
	Running time of RL

	Offline Continual Learning

