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Supplementary Materials
– Saliency-Aware Neural Architecture Search

Abstract

In this supplement, we present the optimization algorithm, details of experimental
settings, and additional experimental results.
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Appendix A. Appendix

A.1. More discussion of limitations

Apply SANAS to non-differentiable NAS methods. To apply SANAS to non-
differentiable NAS methods, we have to change the current gradient-based optimization al-
gorithm to some other non-gradient-based optimization algorithms (such as REINFORCE (Williams,
1992) for reinforcement learning), which might incur higher computational costs. To ap-
ply SANAS to reinforcement learning (RL) based NAS methods, we perform the following
procedures. First, we use an RL controller (Zoph and Le, 2017) to generate a set of candi-
date architectures. Second, given a candidate architecture, we train its weight parameters
on a training dataset, similar to stage I in SANAS. Third, given the trained model, we
perform adversarial attacks to detect the saliency maps of the training data, similar to
stage II in SANAS. Fourth, we use saliency maps to reweight training data and retrain the
model on reweighted data, similar to stage III in SANAS. Fifth, we evaluate the retrained
model on a validation set and use validation accuracy as a reward for this architecture. We
repeat steps 2-5 for every candidate architecture, calculate the mean reward on all can-
didate architectures, and update the RL controller by maximizing the mean reward using
policy gradient (Zoph and Le, 2017). These procedures repeat until convergence. Similar
procedures can be conducted to perform saliency-aware architecture search in evolutionary
algorithm based NAS methods.

When to use our method and when not. It is recommended to use SANAS in ap-
plications that strongly need high-performance neural architectures capable of generating
sensible saliency maps but do not have strong requirements on the time spent on architec-
ture search. For example, imaging-based disease diagnosis is a good application scenario
of SANAS, for two reasons. First, disease diagnosis needs to be highly accurate and needs
high-fidelity saliency maps for interpreting predicted diagnosis outcomes. Second, to use
an automatically searched neural architecture in hospitals, FDA approval is needed, which
usually takes several months. To successfully pass the FDA approval, it is acceptable to
take some extra time to search for a high-quality neural architecture. For applications which
have high restrictions on search cost but allow sacrificing some performance and ignoring
saliency maps, other NAS methods that have higher search efficiency but lower performance
and weaker saliency-generation capability than our method might be better choices. Exam-
ples of such applications are online learning applications which need to update architectures
in real time.

A.2. More examples of visual saliency maps

Figure 1 shows more examples of visual saliency maps. The saliency maps detected by our
method are more sensible than those detected by baselines.
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Figure 1: More examples of visual saliency maps.

Table 1: Top-2 salient words (marked with red color) detected by different methods.

EC with youthful high spirits, tautou remains captivating
throughout michele’s religious and romantic quests, and she
is backed by a likable cast.

GMPGC with youthful high spirits, tautou remains captivating
throughout michele’s religious and romantic quests, and she
is backed by a likable cast.

Ours with youthful high spirits, tautou remains captivating
throughout michele’s religious and romantic quests, and she
is backed by a likable cast.

EC the title’s lameness should clue you in on how bad the movie
is.

GMPGC the title’s lameness should clue you in on how bad the movie
is.

Ours the title’s lameness should clue you in on how bad the movie
is.

A.3. More examples of salient word detection

Table 1 shows more examples of salient words detected by different methods. In each
example, the top-2 words detected by our method are more salient than baselines. The
prediction task corresponding to Table 8 in the main paper and 1 is sentiment classification.
A word is more salient if it has a stronger correlation with a sentiment (either positive or
negative). For example, the word “entertaining” in Table 8 in the main paper implies a
positive sentiment, and therefore is considered to be salient. In contrast, the word “mix” is
a neutral word that is irrelevant to sentiments, and therefore is not considered to be salient.
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A.4. Improve computational efficiency of SANAS

We improved the computational efficiency of our method from both the algorithm side and
implementation side. On the algorithm side, we speed up computation by approximating
the optimal solution at each stage using a one-step gradient descent update (Liu et al., 2019)
and reducing the frequencies of these updates. Specifically, we update the architecture A
every 5 mini-batches. In contrast, baselines (including Darts, Parts, Pcdarts, Prdarts)
update A on every mini-batch. We update model weights W2 and perturbations δ every 3
mini-batches, and update W1 on every mini-batch. We empirically found that reducing the
update frequencies of certain parameters can significantly speed up convergence without
sacrificing performance. Besides, when calculating hypergradients of A, we recursively
approximate matrix-vector multiplications using finite-difference calculations (Liu et al.,
2019), which reduces the computation cost from being quadratic in matrix dimensions
down to linear.

On the implementation side, we speed up computation by leveraging techniques and
tricks including 1) automatic mixed precision (Micikevicius et al., 2017), 2) using multi-
ple (4, specifically) workers and pinned memory in PyTorch DataLoader, 3) using cudNN
autotuner, 4) kernel fusion, etc.

A.5. Hyperparameter tuning strategies

Most hyperparameters in our method follow their default values used in baseline methods.
The only hyperparameter needing to be tuned is the tradeoff parameter γ. To tune γ on
CIFAR-100, we randomly sample 2.5K data from the 25K training set and sample 2.5K
data from the 25K validation set. Then we use the 5K sampled data as a hyperparameter
tuning set. γ is tuned in 0.1, 0.5, 1, 2, 3. For each configuration of γ, we use the remaining
22.5K training data and 22.5K validation data to perform architecture search and use their
combination to perform architecture evaluation (retraining a larger stacked network from
scratch). Then we measure the performance of the stacked network on the 5K sampled
data. γ value yielding the best performance on the 5K sampled data is selected. For γ in
CIFAR-10 and ImageNet experiments, we simply used the value tuned on CIFAR-100 and
did not conduct further tuning.

Appendix B. Optimization Algorithm

We use a well-established algorithm developed in (Liu et al., 2019) to solve the proposed
SANAS problem. Theoretic convergence of this algorithm has been broadly analyzed
in (Ghadimi and Wang, 2018; Grazzi et al., 2020; Ji et al., 2021; Liu et al., 2021; Yang
et al., 2021). At each level of optimization problem, the optimal solution (on the left-hand
side of the equal sign, marked with ∗), its exact value is computationally expensive to com-
pute. To address this problem, following (Liu et al., 2019), we approximate the optimal
solution using a one-step gradient descent update and plug the approximation into the next
level of optimization problem. In the sequel, ∂·

∂· denotes partial derivative. d·
d· denotes an

ordinary derivative. ∇2
Y,Xf(X,Y ) denotes ∂f(X,Y )

∂X∂Y .
First of all, we approximate W ∗

1 (A) using

W ′
1 = W1 − ξw1∇W1L(W1, A,D

(tr)) (1)
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where ξw1 is a learning rate. Plugging W ′
1 into ℓ(f(xi + δi;W

∗
1 (A), A), f(xi;W

∗
1 (A), A)),

we obtain an approximated objective Oδi = ℓ(f(xi + δi;W
′
1, A), f(xi;W

′
1, A)). Then we

approximate δ∗i (W
∗
1 (A), A) using one-step gradient ascent update of δi with respect to Oδi :

δ′i = δi + ξδ∇δiℓ(f(xi + δi;W
′
1, A), f(xi;W

′
1, A)). (2)

Plugging δ′i into
∑N

i=1 ℓ(f(δ
∗
i (W

∗
1 (A), A)⊙xi;W2, A), ti), we obtain an approximated objec-

tive OW2 =
∑N

i=1 ℓ(f(δ
′
i ⊙ xi;W2, A), ti). Then we approximate W ∗

2 ({δ∗i (W ∗
1 (A), A)}Ni=1, A)

using one-step gradient descent update of W2 with respect to OW2 :

W ′
2 = W2 − ξw2∇W2(

N∑
i=1

ℓ(f(δ′i ⊙ xi;W2, A), ti)). (3)

Finally, we plugW ′
1 andW ′

2 into L(W
∗
2 ({δ∗i (W ∗

1 (A), A)}Ni=1, A), A,D
(val))+γL(W ∗

1 (A), A,D
(val))

and get OA = L(W ′
2, A,D

(val)) + γL(W ′
1, A,D

(val)). We can update the architecture A by
descending the gradient of OA w.r.t A:

A← A− η(∇AL(W
′
2, A,D

(val)) + γL(W ′
1, A,D

(val)))) (4)

where
∇AL(W

′
1, A,D

(val)) =
dW ′

1
dA

∂L(W ′
1,A,D(val))
∂W ′

1
+

∂L(W ′
1,A,D(val))
∂A =

−ξw1∇2
A,W1

L(W1, A,D
(tr))∇W ′

1
L(W ′

1, A,D
(val)) +

∂L(W ′
1,A,D(val))
∂A

(5)

The first term in the third line involves expensive matrix-vector product, whose computa-
tional complexity can be reduced by a finite difference approximation:

∇2
A,W1

L(W1, A,D
(tr))∇W ′

1
L(W ′

1, A,D
(val)) ≈ 1

2α(∇AL(W
+
1 , A,D(tr))−∇AL(W

−
1 , A,D(tr))),

(6)
where W±

1 = W1 ± α∇W ′
1
L(W ′

1, A,D
(val)) and α is a small scalar that equals

0.01/∥∇W ′
1
L(W ′

1, A,D
(val))∥2. Let ∆′ denote {δ′i}Ni=1. For ∇AL(W

′
2, A,D

(val)) in Eq.(4), it
can be calculated as

∂W ′
2

∂A
∂L(W ′

2,A,D(val))
∂W ′

2
+

∂L(W ′
2,A,D(val))
∂A

(7)

where
∂W ′

2
∂A = ∂∆′

∂A
∂W ′

2
∂∆′ +

∂W ′
2

∂A
(8)

∂∆′

∂A =
dW ′

1
dA

∂∆′

∂W ′
1
+ ∂∆′

∂A (9)

according to the chain rule, where

∂W ′
2

∂∆′ =
∂(W2 − ξw2∇W2(

∑N
i=1 ℓ(f(δ

′
i ⊙ xi;W2, A), ti)))

∂∆′ (10)

= −ξw2∇2
∆′,W2

(
N∑
i=1

ℓ(f(δ′i ⊙ xi;W2, A), ti)), (11)
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∂W ′
2

∂A
=

∂(W2 − ξw2∇W2(
∑N

i=1 ℓ(f(δ
′
i ⊙ xi;W2, A), ti)))

∂A
(12)

= −ξw2∇2
A,W2

(
N∑
i=1

ℓ(f(δ′i ⊙ xi;W2, A), ti)) (13)

∂∆′

∂W ′
1

=

∂(∆ + ξδ∇∆(
N∑
i=1

ℓ(f(xi + δi;W
′
1, A), f(xi;W

′
1, A))))

∂W ′
1

(14)

= ξδ∇2
W ′

1,∆
(

N∑
i=1

ℓ(f(xi + δi;W
′
1, A), f(xi;W

′
1, A))), (15)

∂∆′

∂A
=

∂(∆ + ξδ∇∆(
N∑
i=1

ℓ(f(xi + δi;W
′
1, A), f(xi;W

′
1, A))))

∂A
(16)

= ξδ∇2
A,∆(

N∑
i=1

ℓ(f(xi + δi;W
′
1, A), f(xi;W

′
1, A))), (17)

dW ′
1

dA
=

d(W1 − ξw1∇W1L(W1, A,D
(tr)))

dA
(18)

= −ξw1∇2
A,W1

L(W1, A,D
(tr)
t ). (19)

The gradient descent update of A in equation 4 can run one or more steps. After
A is updated, the one-step gradient-descent approximations (in equation 1-3), which are
functions of A, change with A and need to be re-updated. Then, the gradient of A, which
is a function of one-step gradient-descent approximations, needs to be re-calculated and is
used to refresh A. In sum, the update of A and the updates of one-step gradient-descent
approximations mutually depend on each other. These updates are performed iteratively
until convergence. This algorithm is summarized in Algorithm 1.

Algorithm 1 Optimization algorithm for SANAS

while not converged do
1. Update the approximation W ′

1 of W ∗
1 (A) using equation 1

2. Update the approximation {δ′i}Ni=1 of {δi}Ni=1 using equation 2
2. Update the approximation W ′

2 of W ∗
2 ({δ∗i (W ∗

1 (A), A)}Ni=1, A) using equation 3
3. Update the architecture A using equation 4

end

In the gradient of A calculated using chain rule, the number of chains is the same as the
number of levels in our proposed four-level optimization formulation. This shows that this
optimization algorithm preserves the four-level nested optimization nature of the proposed
SANAS formulation.
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Appendix C. Results on inference costs

To perform inference, we first calculate saliency map, then do prediction on saliency-
reweighted image. To reduce inference cost, we can reduce the number of layers in the
searched architecture. We performed such an experiment. Table 2 shows that while having
similar inference costs as baselines, our method achieves significantly lower test errors.

Table 2: Test errors on Cifar100/10 (C100/10), inference time (ms)

Method Error-C100 Error-C10 Infer time (ms)

Darts2nd 20.58±0.44 2.76±0.09 28.4
EC-darts2nd 20.05±0.31 2.83±0.12 29.6
CDEP-darts2nd 19.53±0.46 2.75±0.05 30.2
GMPGC-darts2nd 19.08±0.36 2.81±0.07 32.7
Ours-darts2nd 16.98±0.12 2.60±0.08 28.1

Appendix D. Model parameters, search costs, and FLOPs on ImageNet

Table 3 shows the number of model parameters, search costs, and FLOPs on ImageNet.
The parameter numbers, search costs, and FLOPs of our methods are close to those in
differentiable baselines.

Appendix E. Additional experimental results on CIFAR-10

Table 4 shows additional experimental results on CIFAR-10.

Appendix F. Additional ablation study results

We experimented with training the model W1 in the 1st stage and performing adversarial
attack simultaneously, which leads to worse performance. For example, under the search
space of Darts2nd, errors on CIFAR-100 and CIFAR-10 increased by 1.25% and 0.17%
(absolute). The possible reason is: performing these two tasks simultaneously will make
W1 robust to small perturbations, which makes it difficult to sensitively detect saliency
maps.

Appendix G. Instructions given to participants in human studies

Figure 2 shows the screenshot of instructions given to participants in human studies.

Appendix H. Additional discussions

The proposed saliency-aware method can be potentially applied to non-NAS methods in-
cluding resnet and densenet, by replacing architecture variable A in the first and fourth
stage with some continuous hyperparameters of resnet or densenet.
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Table 3: Top-1 and top-5 classification errors on the test set of ImageNet, number of model
parameters (millions), search cost (GPU days), and FLOPs (M). Results marked
with * are obtained from DARTS− (Chu et al., 2020a) and DrNAS (Chen et al.,
2020). The rest notations are the same as those in Table 1 in the main paper.
From top to bottom, on the first three blocks are 1) networks manually designed
by humans; 2) non-gradient based NAS methods; and 3) gradient-based NAS
methods.

Method
Top-1 Top-5 Param Cost FLOPs

Error (%) Error (%) (M) (GPU days) (M)

*Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 - 1448
*MobileNet (Howard et al., 2017) 29.4 10.5 4.2 - 569
*ShuffleNet 2× (v1) (Zhang et al., 2018) 26.4 10.2 5.4 - 524
*ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 7.6 7.4 - 299

*NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 1800 564
*PNAS (Liu et al., 2018) 25.8 8.1 5.1 225 588
*MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 1667 388
*AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 3150 570

*SNAS-CIFAR10 (Xie et al., 2019) 27.3 9.2 4.3 1.5 522
*BayesNAS-CIFAR10 (Zhou et al., 2019) 26.5 8.9 3.9 0.2 -
*PARSEC-CIFAR10 (Casale et al., 2019) 26.0 8.4 5.6 1.0 -
*GDAS-CIFAR10 (Dong and Yang, 2019) 26.0 8.5 5.3 0.2 581
*DSNAS-ImageNet (Hu et al., 2020) 25.7 8.1 - - 324
*SDARTS-ADV-CIFAR10 (Chen and Hsieh, 2020) 25.2 7.8 5.4 1.3 -
*PC-DARTS-CIFAR10 (Xu et al., 2020) 25.1 7.8 5.3 0.1 586
*ProxylessNAS-ImageNet (Cai et al., 2019) 24.9 7.5 7.1 8.3 465
*FairDARTS-CIFAR10 (Chu et al., 2019) 24.9 7.5 4.8 0.4 386
*FairDARTS-ImageNet (Chu et al., 2019) 24.4 7.4 4.3 3.0 440
*DrNAS-ImageNet (Chen et al., 2020) 24.2 7.3 5.2 3.9 -
*DARTS+-ImageNet (Liang et al., 2019) 23.9 7.4 5.1 6.8 582
*DARTS−-ImageNet (Chu et al., 2020a) 23.8 7.0 4.9 4.5 467
*DARTS+-CIFAR100 (Liang et al., 2019) 23.7 7.2 5.1 0.2 591

*DARTS2nd-CIFAR10 (Liu et al., 2019) 26.7 8.7 4.7 4.0 574
Ours-DARTS2nd-CIFAR10 24.9 8.4 4.9 4.6 526

*PDARTS (CIFAR10) (Chen et al., 2019) 24.4 7.4 4.9 0.3 557
Ours-PDARTS-CIFAR10 23.9 6.8 4.9 1.1 517

*PDARTS (CIFAR100) (Chen et al., 2019) 24.7 7.5 5.1 0.3 577
Ours-PDARTS-CIFAR100 23.8 6.7 5.2 1.1 535

*PCDARTS-ImageNet (Xu et al., 2020) 24.2 7.3 5.3 3.8 597
Ours-PCDARTS-ImageNet 22.4 6.2 5.4 4.1 540

Appendix I. Experimental details of neural architecture search

I.1. DARTS based experiments

For methods based on DARTS2nd, including Ours-darts2nd, GMPGC-darts2nd, CDEP-
darts2nd, EC-darts2nd, the experimental settings are similar. In search spaces of DARTS,
the candidate operations include: 3 × 3 and 5 × 5 separable convolutions, 3 × 3 and 5 × 5
dilated separable convolutions, 3 × 3 max pooling, 3 × 3 average pooling, identity, and
zero. The network is a stack of multiple cells. The stride of all operations is set to 1.
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Table 4: Test error on CIFAR-10, number of model weights (millions), and search cost
(GPU days on a Tesla v100). Results marked with * are obtained from DARTS−

(Chu et al., 2020a), NoisyDARTS (Chu et al., 2020b), and DrNAS (Chen et al.,
2020). The rest notations are the same as those in Table 1 of the main paper.

Method Error(%) Param(M) Cost

*DARTS-1st (Liu et al., 2019) 3.00±0.14 3.3 0.4
Ours-DARTS1st 2.77±0.02 3.4 0.8

Figure 2: Screenshot of instructions given to participants in human studies.

The convolved feature maps are padded to preserve their spatial resolution. The order for
convolutional operations is ReLU-Conv-BN. Each separable convolution is applied twice.
The convolutional cell has 7 nodes. The output node is the depthwise concatenation of all
intermediate nodes, excluding the input nodes. The first and second nodes of cell k are
equal to the outputs of cell k− 2 and cell k− 1, respectively. 1×1 convolutions are inserted
when necessary. Reduction cells are located at the 1/3 and 2/3 of the total depth of the
network. In reduction cells, operations adjacent to the input nodes have a stride of 2.
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For CIFAR-10 and CIFAR-100, during architecture search, the network is a stack of
8 cells, each consisting of 7 nodes, with the initial channel number set to 16. The search
is performed for 50 epochs, with a batch size of 64. Network weights W1 and W2 were
optimized using SGD with a learning rate of 0.025, a momentum of 0.9, and a weight decay
of 0.0003. The architecture variables A were optimized using Adam (Kingma and Ba, 2014)
with a learning rate of 0.001, a momentum of (0.5, 0.999), and a weight decay of 0.001.
The learning rate was scheduled with cosine scheduling. The architecture variables were
initialized with zero initialization.

During architecture evaluation, for CIFAR-10 and CIFAR-100, a larger network is
formed by stacking 20 copies of the searched cell. The composed large network is trained on
the combination of D(tr) and D(val). The initial channel number was set to 36. We trained
the network with a batch size of 96, an epoch number of 600. On ImageNet, we evaluate
two types of architectures: 1) those searched on a subset of ImageNet; 2) those searched on
CIFAR-10 or CIFAR-100. In either type, 14 copies of optimally searched cells are stacked
into a large network, which was trained on the 1.2M training images, with a batch size of
1024 and an epoch number of 250. Initial channel number was set to 48. Other hyperpa-
rameters are the same as those in architecture search. Cutout, path dropout of probability
0.2 and auxiliary towers with weight 0.4 were applied.

I.2. PC-DARTS based experiments

For methods based on PC-DARTS, including Ours-pcdarts, GMPGC-pcdarts, CDEP-pcdarts,
EC-pcdarts, the experimental settings are similar. The search space of PC-DARTS follows
that of DARTS. For architecture search on CIFAR-100 and CIFAR-10, the hyperparameter
K was set to 4. The network is a stack of 8 cells. Each cell contains 6 nodes. Initial channel
number is set to 16. The architecture variables are trained using the Adam optimizer for
50 epochs. The learning rate is set to 6e − 4, without decay. The weight decay is set to
1e − 3. The momentum is set to (0.5, 0.999). The network weight parameters are trained
using SGD for 50 epochs. The initial learning rate is set to 0.1. Cosine scheduling is used
to decay the learning rate, down to 0 without restart. The momentum is set to 0.9. The
weight decay is set to 3e− 4. The batch size is set to 256. Warm-up is utilized: in the first
15 epochs, architecture variables are frozen and only network weights are optimized.

The settings for architecture evaluation on CIFAR-100 and CIFAR-10 follow those of
DARTS. 18 normal cells and 2 reduction cells are stacked into a large network. The initial
channel number is set to 36. The stacked network is trained from scratch using SGD for 600
epochs, with batch size 128, initial learning rate 0.025, momentum 0.9, weight decay 3e−4,
norm gradient clipping 5, drop-path rate 0.3, and cutout. The learning rate is decayed to
0 using cosine scheduling without restart.

We combine our method and PC-DARTS to directly search for architectures on Ima-
geNet. The stacked network starts with three convolution layers which reduce the input
image resolution from 224×224 to 28×28, using stride 2. After the three convolution layers,
6 normal cells and 2 reduction cells are stacked. Each cell consists of N = 6 nodes. The
sub-sampling rate was set to 0.5. The network was trained for 50 epochs. Architecture
variables are trained using Adam. The learning rate is fixed to 6e − 3. The weight decay
is set to 1e − 3. The momentum is set to (0.5, 0.999). In the first 35 epochs, architecture
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variables are frozen. Network weight parameters are trained using SGD. The initial learning
rate is set to 0.5. It is decayed to 0 using cosine scheduling without restart. Momentum is
set to 0.9. Weight decay is set to 3e − 5. The batch-size is set to 1024. Epoch number is
set to 250. Eight Tesla V100 GPUs were used.

For architecture evaluation on ImageNet, the stacked network starts with three convolu-
tion layers which reduce the input image resolution from 224×224 to 28×28, using stride 2.
After the three convolution layers, 12 normal cells and 2 reduction cells are stacked. Initial
channel number is set to 48. The network is trained from scratch using SGD for 250 epochs,
with batch size 1024, initial learning rate 0.5, weight decay 3e− 5, and momentum 0.9. For
the first 5 epochs, learning rate warm-up is used. The learning rate is linearly decayed to
0. Label smoothing and auxiliary loss tower is used.

I.3. P-DARTS based experiments

The search process has three stages. At the first stage, the search space and stacked network
in P-DARTS are mostly the same as DARTS. The only difference is the number of cells in
the stacked network in P-DARTS is set to 5. At the second stage, the number of cells in
the stacked network is 11. At the third stage, the cell number is 17. At stage 1, 2, 3, the
initial Dropout probability on skip-connect is 0, 0.4, and 0.7 for CIFAR-10, is 0.1, 0.2, and
0.3 for CIFAR-100; the size of operation space is 8, 5, 3, respectively. The final searched
cell is limited to have 2 skip-connect operations at maximum. At each stage, the network is
trained using the Adam optimizer for 25 epochs. The batch size is set to 96. The learning
rate is set to 6e-4. Weight decay is set to 1e-3. Momentum is set to (0.5, 0.999). In the first
10 epochs, architecture variables are frozen and only network weights are optimized.

For architecture evaluation on CIFAR-100 and CIFAR-10, the stacked network consists
of 20 cells. The initial channel number is set to 36. The network is trained from scratch
using SGD. The epoch number is set to 600. The batch size is set to 128. The initial
learning rate is set to 0.025. The learning rate is decayed to 0 using cosine scheduling.
Weight decay is set to 3e-4 for CIFAR-10 and 5e-4 for CIFAR-100. Momentum is set to
0.9. Drop-path probability is set to 0.3. Cutout regularization length is set to 16. Auxiliary
towers of weight 0.4 are used.

For architecture evaluation on ImageNet, the settings are similar to those of DARTS.
The network consists of 14 cells. The initial channel number is set to 48. The network is
trained from scratch using SGD for 250 epochs. Batch size is set to 1024. Initial learning
rate is set to 0.5. The learning rate is linearly decayed after each epoch. In the first 5
epochs, learning rate warmup is used. The momentum is set to 0.9. The weight decay is set
to 3e− 5. Label smoothing and auxiliary loss tower are used during training. The network
was trained on 8 Nvidia Tesla V100 GPUs.

I.4. PR-DARTS based experiments

The operations include: 3×3 and 5×5 separable convolutions, 3×3 and 5×5 dilated sepa-
rable convolutions, 3×3 average pooling and 3×3 max pooling, zero, and skip connection.
The stacked network consists of k cells. The k/3- and 2k/3-th cells are reduction cells. In
reduction cells, all operations have a stride of two. The rest cells are normal cells. Op-
erations in normal cells have a stride of one. Cells of the same type (either reduction or
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normal) have the same architecture. The inputs of each cell are the outputs of two previous
cells. Each cell contains four intermediate nodes and one output node. The output node is
a concatenation of all intermediate nodes.

For architecture search on CIFAR-100 and CIFAR-10, the stacked network consists of 8
cells. The initial channel number is set to 16. In PR-DARTS, λ1, λ2, and λ3 are set to 0.01,
0.005, and 0.005 respectively. The network was trained for 200 epochs. The mini-batch size
is set to 128. Architecture variables are trained using Adam. The learning rate is set to
3e−4. The weight decay is set to 1e−3. Network weights are trained using SGD. The initial
learning rate is set to 0.025. The momentum is set to 0.9. The weight decay is set to 3e−4.
The learning rate is decayed to 0 using cosine scheduling. For acceleration, per iteration,
only two operations on each edge are randomly selected to update. The temperature τ is
set to 10 and is linearly reduced to 0.1; a = −0.1 and b = 1.1. Pruning on each node is
conducted by comparing the gate activation probabilities of all non-zero operations collected
from all previous nodes and retaining top two operations.

For architecture evaluation on CIFAR10 and CIFAR100, the stacked network consists of
18 normal cells and 2 reduction cells. The initial channel number is set to 36. The network
is trained from scratch using SGD. The mini-batch size is set to 128. The epoch number is
set to 600. The initial learning rate is set to 0.025. The momentum is set to 0.9. The weight
decay is set to 3e − 4. The gradient norm clipping is set to 5. The drop-path probability
is set to 0.2. The cutout length is set to 16. The learning rate is decayed to 0 using cosine
scheduling.

For architecture evaluation on ImageNet, the input images are resized to 224×224. The
stacked network consists of 3 convolutional layers, 12 normal cells, and 2 reduction cells.
The channel number is set to 48. The network is trained using SGD for 250 epochs. The
batch size is set to 128. The learning rate is set to 0.025. The momentum is set to 0.9. The
weight decay is set to 3e − 4. The gradient norm clipping is set to 5. The learning rate is
decayed to 0 via cosine scheduling.

I.5. Implementation details

Hyperparameters mostly follow those in DARTS (Liu et al., 2019), P-DARTS (Chen et al.,
2019), PC-DARTS (Xu et al., 2020), and PR-DARTS (Zhou et al., 2020).

We use PyTorch to implement all models. The version of Torch is 1.4.0 (or above). We
build our method upon official python packages for different differentiable search approaches,
such as “DARTS1”, “P-DARTS2” and “PC-DARTS3”.

Appendix J. Experimental details of evaluating robustness against
overfitting

The four search spaces S1− S4 are designed by (Zela et al., 2020).

1. https://github.com/quark0/darts
2. https://github.com/chenxin061/pdarts
3. https://github.com/yuhuixu1993/PC-DARTS/
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• S1: In this search space, each edge has only two candidate operations. To identify
these operations, operations that have the least importance in the original search
space of DARTS are iteratively removed.

• S2: For each edge, the candidate operations are 3×3 SepConv and SkipConnect.

• S3: For each edge, the candidate operations are: 3×3 SepConv, SkipConnect, and
Zero.

• S4: For each edge, the candidate operations are: 3×3 SepConv and Noise. In the
Noise operation, every value from the input feature map is replaced with random
variables sampled from univariate Gaussian distribution.

Appendix K. Significance test results

To check whether the performance of our proposed methods are significantly better than
baselines, we perform a statistical significance test using a double-sided T-test. We use
the function in the python package “scipy.stats.ttest 1samp” and report the average results
over 10 different runs. Table 5 and 6 show the results.

Our method Baseline p-value

Ours-darts2nd GMPGC-darts2nd 3.65e-3
Ours-darts2nd CDEP-darts2nd 6.29e-5
Ours-darts2nd EC-darts2nd 1.40e-6
Ours-darts2nd Darts2nd 5.51e-10

Ours-pcdarts GMPGC-pcdarts 2.64e-5
Ours-pcdarts CDEP-pcdarts 3.59e-6
Ours-pcdarts EC-pcdarts 1.35e-5
Ours-pcdarts Pcdarts 2.59e-7

Ours-prdarts GMPGC-prdarts 6.33e-3
Ours-prdarts CDEP-prdarts 1.27e-3
Ours-prdarts EC-prdarts 5.49e-4
Ours-prdarts Prdarts 3.41e-3

Ours-pdarts GMPGC-pdarts 5.75e-8
Ours-pdarts CDEP-pdarts 9.83e-9
Ours-pdarts EC-pdarts 6.62e-7
Ours-pdarts Pdarts 8.57e-9

Table 5: Significance test results on CIFAR-100

From these two tables, we can see that the p-values are small between baselines methods
and our methods, which demonstrate that the errors of our methods are significantly lower
than those of baselines.

Appendix L. Additional visualization of saliency maps

In this section, we present additional visualization of the saliency maps generated for some
images (Figure 3) in ImageNet.
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Our method Baseline p-value

Ours-darts2nd GMPGC-darts2nd 4.46e-7
Ours-darts2nd CDEP-darts2nd 6.82e-5
Ours-darts2nd EC-darts2nd 7.49e-8
Ours-darts2nd Darts2nd 1.25e-5

Ours-pcdarts GMPGC-pcdarts 6.64e-6
Ours-pcdarts CDEP-pcdarts 2.71e-7
Ours-pcdarts EC-pcdarts 9.39e-6
Ours-pcdarts Pcdarts 5.05e-5

Ours-prdarts GMPGC-prdarts 6.47e-5
Ours-prdarts CDEP-prdarts 7.53e-6
Ours-prdarts EC-prdarts 9.72e-6
Ours-prdarts Prdarts 2.88e-4

Ours-pdarts GMPGC-pdarts 8.51e-6
Ours-pdarts CDEP-pdarts 2.49e-7
Ours-pdarts EC-pdarts 4.73e-8
Ours-pdarts Pdarts 9.58e-5

Table 6: Significance test results on CIFAR-10

For each image, our method performs a PGD adversarial attack to generate a perturba-
tion matrix δ. The size of δ is the same as image size, where δij denotes the perturbation
at pixel (i, j). Then we take the element-wise absolute value of δ and get |δ|. Pixels with
larger values in |δ| are more important. We use a heatmap to visualize |δ| where pixels
with warmer colors (e.g., red) are more important and are more suitable to be used as
explanations.

Figure 4 shows the saliency maps and Figure 5 shows the overlay of saliency maps on top
of original images. As can be seen, the highly salient regions (warmer color regions) in our
method are very sensible. They correspond to objects. In contrast, the colder color (e.g.,
blue) regions correspond to background. These results show that our method is effective in
generating correct saliency maps.

Appendix M. Details of hyperparameters

M.1. Adversarial attack settings

To calculate the perturbations δ, we use 7 iterations PGD (Madry et al., 2017) attack with
settings shown in Table 7.

M.2. Full lists of hyperparameter settings

Table 9, Table 10, Table 11, and Table 12 show the hyperparameter settings of our methods
during architecture search on CIFAR-10 and CIFAR-100. Table 13 shows the hyperparame-
ter settings of Ours-PCDARTS during architecture search on ImageNet. Table 14 and Table
15 show the hyperparameter settings in the architecture evaluation phrase. Notations used
in these tables are given in Table 8.
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(a) (b) (c) (d) (e) (f )

(g) (h) (i) (j ) (k) (l)

Figure 3: Original images.

(a) (b) (c) (d) (e) (f )

(g) (h) (i) (j ) (k) (l)

Figure 4: Heatmaps of perturbations (absolute value).

(a) (b) (c) (d) (e) (f )

(g) (h) (i) (j ) (k) (l)

Figure 5: Overlay of saliency maps to original images.
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PGD

Iterations 7

Perturbation ϵ 0.03 (8/255)

Step size 2/255

Norm l∞

Table 7: Hyperparameters for PGD attack to obtain perturbations δ.

Table 8: Notations in WSEDP
Notation Meaning

A Architecture
W1 Network weights of the first model
W2 Network weights of the second model

D(tr) Training data

D(val) Validation data

Name Value

Hyperparameters for training network weights W1 and W2

Initial learning rate 0.025

Minimum learning rate 0

Epochs 50

Momentum 0.9

Weight decay 3e-4

Batch size 64

Gradient clipping 5

Initial channels 16

Layers 8

Hyperparameters for learning architecture variables A

Optimizer Adam

Learning rate 3e− 4

Weight decay 1e− 3

β (0.5, 0.999)

Table 9: Hyperparameters for Ours-DARTS2nd during architecture search on CIFAR-10
and CIFAR-100.
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Name Value

Hyperparameters for training network weights W1 and W2

Initial learning rate 0.025

Minimum learning rate 0

Epochs 50

Momentum 0.9

Weight decay 3e-4

Batch size 64

Gradient clipping 5

Initial channels 16

Layers 6

Hyperparameters for learning architecture variables A

Optimizer Adam

Learning rate 3e− 4

Weight decay 1e− 3

β (0.5, 0.999)

Table 10: Hyperparameters for Ours-PCDARTS during architecture search on CIFAR-10
and CIFAR-100.

Name Value

Hyperparameters for training network weights W1 and W2

Initial learning rate 0.025

Minimum learning rate 0

Epochs 50

Momentum 0.9

Weight decay 3e-4

Batch size 64

Gradient clipping 5

Initial channels 16

Layers 5,11,17

Hyperparameters for learning architecture variables A

Optimizer Adam

Learning rate 3e− 4

Weight decay 1e− 3

β (0.5, 0.999)

Table 11: Hyperparameters for Ours-PDARTS during architecture search on CIFAR-10 and
CIFAR-100.
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Name Value

Hyperparameters for training network weights W1 and W2

Initial learning rate 0.025

Minimum learning rate 0

Epochs 50

Momentum 0.9

Weight decay 3e-4

Batch size 64

Gradient clipping 5

Initial channels 16

Layers 5,11,17

Hyperparameters for learning architecture variables A

Optimizer Adam

Learning rate 3e− 4

Weight decay 1e− 3

β (0.5, 0.999)

Table 12: Hyperparameters for Ours-PRDARTS during architecture search on CIFAR-10
and CIFAR-100.

Name Value

Hyperparameters for training network weights W1 and W2

Learning rate 0.5

Minimum learning rate 0

Epochs 50

Momentum 0.9

Weight decay 3e-4

Batch size 1024

Gradient clipping 5

Initial channels 16

Layers 8

Hyperparameters for learning architecture variables A

Optimizer Adam

Learning rate 3e− 4

Weight decay 1e− 3

β (0.5, 0.999)

Table 13: Hyperparameters for Ours-PCDARTS during architecture search on ImageNet.
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Name Value

Optimizer SGD

Learning rate 0.025

Minimum learning rate 0

Epochs 600

Momentum 0.9

Weight decay 3e-4

Initial channels 36

Batch size 96

Number of layers (cells) 20

Gradient clipping 5

Auxiliary weight 0.4

Cutout length 16

Initial drop probability 0.3

Table 14: Hyperparameters during architecture evaluation on CIFAR-10 and CIFAR-100.

Name Value

Optimizer SGD

Learning rate 0.5

Minimum learning rate 0

Epochs 250

Momentum 0.9

Weight decay 3e-5

Initial channels 48

Batch size 1024

Number of layers (cells) 14

Gradient clipping 5

Auxiliary weight 0.4

Initial drop probability 0

Table 15: Hyperparameters during architecture evaluation on ImageNet.
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Appendix N. Architectures visualization

Figures 6 to 13 show the normal cells and reduction cells searched using our methods on
CIFAR-10 and CIFAR-100.

(a) Normal cell

(b) Reduction cell

Figure 6: Cells searched by Ours-DARTS2nd on CIFAR-10.
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