
Saliency-Aware Neural Architecture Search

Ramtin Hosseini and Pengtao Xie
UC San Diego

rhossein@eng.ucsd.edu, p1xie@eng.ucsd.edu

Abstract

Recently a wide variety of NAS methods have been proposed and achieved con-
siderable success in automatically identifying highly-performing architectures of
neural networks for the sake of reducing the reliance on human experts. Existing
NAS methods ignore the fact that different input data elements (e.g., image pixels)
have different importance (or saliency) in determining the prediction outcome.
They treat all data elements as being equally important and therefore lead to subop-
timal performance. To address this problem, we propose an end-to-end framework
which dynamically detects saliency of input data, reweights data using saliency
maps, and searches architectures on saliency-reweighted data. Our framework is
based on four-level optimization, which performs four learning stages in a unified
way. At the first stage, a model is trained with its architecture tentatively fixed. At
the second stage, saliency maps are generated using the trained model. At the third
stage, the model is retrained on saliency-reweighted data. At the fourth stage, the
model is evaluated on a validation set and the architecture is updated by minimizing
the validation loss. Experiments on several datasets demonstrate the effectiveness
of our framework.

1 Introduction

Neural architecture search (NAS) [76, 41, 47], which aims to automatically identify highly performant
neural architectures, has received much attention recently. Existing NAS methods treat all elements
in an input data example (such as pixels in an image, tokens in a sentence, etc.) as being equally
important, without considering the different saliency of individual elements, which leads to less-
optimal performance. In machine learning applications, an input data example typically consists
of many data elements. For instance, an image example consists of a grid of pixel elements and a
sentence example consists of a sequence of token elements. When used to make a prediction, different
data elements have different importance (or saliency). For example, when predicting which object
category an image belongs to, pixels in foreground object regions are more important than those in
background regions. Such saliency information is not leveraged by existing NAS methods.

In this paper, we aim to bridge this gap, by proposing a saliency-aware NAS method which automati-
cally identifies the saliency of data elements and leverages that to search for better architectures. Our
framework is formulated as a four-level optimization problem. At the first level, the model tentatively
fixes its architecture and trains its first set of network weights. At the second level, the trained model
generates saliency maps using an adversarial attack based method [18]. At the third level, input data
is reweighted using saliency maps and the second set of model weights are trained using reweighted
data. At the fourth level, the two sets of trained model weights are evaluated on a human-provided
validation set and the architecture is optimized by minimizing the validation losses.

The major contributions of this paper are as follows:

• We propose a framework which performs end-to-end detection of saliency and leverage saliency-
reweighted data to improve neural architecture search.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

• We formulate our method as a multi-level optimization problem which performs model training
on unweighted data, saliency map generation, model retraining on saliency-reweighted data, and
architecture update in a unified manner.

2 Related works

Neural architecture search (NAS). Early NAS approaches [76, 45, 77] are mostly based on
reinforcement learning (RL) which use a policy network to generate architectures and evaluate
these architectures on validation sets. The validation loss is used as a reward to optimize the policy
network and train it to produce high-quality architectures. Differentiable search methods [5, 41, 65]
parameterize architectures as differentiable functions and perform search using efficient gradient-
based methods. In these methods, the search space of architectures is composed of a large set of
building blocks where the output of each block is multiplied with a smooth variable indicating
how important this block is. Under such a formulation, search becomes solving a mathematical
optimization problem defined on the importance variables where the objective is to find an optimal set
of variables that yield the lowest validation loss. This optimization problem can be solved efficiently
using gradient-based methods. Differentiable NAS research is initiated by DARTS [41] and further
improved by subsequent works such as P-DARTS [11], PC-DARTS [66], etc. P-DARTS [11]
grows the depth of architectures progressively in the search process. PC-DARTS [66] samples
sub-architectures from a super network to reduce redundancy during search. Our proposed framework
is orthogonal to existing NAS methods and can be used in combination with any differentiable
NAS method to further improve these methods. Besides RL-based approaches and differentiable
NAS, another paradigm of NAS methods [40, 47] are based on the evolutionary algorithm where
architectures are formulated as individuals in a population. High-quality architectures produce
offspring to replace low-quality architectures, where the quality is measured using fitness scores.

Saliency detection. Many methods [70, 75, 56, 44, 51, 50, 46] have been proposed for saliency
detection, based on perturbing inputs [70, 75], propagating gradients [3, 55, 56], attention [37, 69, 44],
model approximation [49, 2], etc. Several works [51, 50, 46] show that leveraging saliency of input
data can enhance model’s predictive power. Rieger et al. [50] leverage domain-specific rules or
knowledge to provide “groundtruth” saliency. Such rules/knowledge are difficult to obtain in many
applications. Pillai and Pirsiavash [46] encourage a prediction model to produce saliency maps that
are consistent with those generated by GradCAM [53]. GradCAM is an unsupervised approach;
without any supervision from humans, its generated saliency maps may not be reliable. For example,
it is shown in [57] that GradCAM cannot highlight adversarial image patches that cause wrong
predictions. In [51], saliency maps are either labeled by humans or auto-generated based on gradient
magnitude with no human supervision, which suffers the same problems as [53, 50]. Different from
existing works, our method generates saliency maps with weak supervision such as human-provided
class labels. Such weak supervision is much easier to obtain than human annotations of saliency
maps and can yield more reliable saliency maps than using no supervision at all.

Bi-level optimization. Many ML methods [19, 4, 20, 41, 54, 72] have been formulated as bi-level
optimization (BLO) problems. In these methods, network weights are learned by solving an inner
optimization problem defined on a training set while meta parameters are learned by solving an
outer optimization problem defined on a validation set. BLO-based methods have been applied
for neural architecture search [41], hyperparameter tuning [19], learning rate adaptation [4], data
selection [54, 48, 64], meta learning [20], label correction [72], etc., where meta parameters are
neural architectures, hyperparameters, importance weights of data examples, meta network weights,
etc. Many optimization algorithms [14, 21, 23, 32, 42, 67] have been developed for solving BLO
problems where convergence analysis is provided.

3 Methods

In this section, we propose a four-level optimization based framework to perform saliency-aware
neural architecture search. For the ease of presentation, we assume the task is image classification. In
the experiments, we show that our method can be applied for other tasks as well.

2

Train model
weights𝑊!

Generate
saliency maps

Saliency-
reweighted data Train model

weights𝑊"

Measure validation
loss

Update
architecture

Figure 1: Overview of our framework.

3.1 A four-level optimization framework

In our framework (Figure 1), a model has a learnable architecture A and two sets of learnable network
weights W1 and W2. W2 is a tensor that has the same dimensions as W1. The weight values in W2 and
W1 are different. It consists of four stages performed end-to-end. At the first stage, the model trains
its network weights W1 with the architecture A tentatively fixed. At the second stage, the trained W1
generates saliency maps for input images: a saliency score is calculated for each pixel. At the third
stage, images are reweighted using saliency maps and saliency-reweighted images are used to train
model weights W2. At the fourth stage, the trained W2 is evaluated on a human-labeled validation set
and the architecture A is updated by minimizing the validation loss.

Stage I. At the first stage, the model trains its first set of network weights W1 by minimizing a loss
L on training dataset D(tr), with the architecture A tentatively fixed:

W ∗
1 (A) = argminW1

L(W1,A,D(tr)). (1)

To define the training loss, we need to use both the architecture parameters A and network weights
W1. However, A cannot be updated by minimizing the training loss. Otherwise, a trivial solution of
A will be yielded: A can perfectly overfit the training data but will make incorrect predictions on
unseen data examples. W ∗

1 (A) denotes that the optimal weights W ∗
1 depends on A. This is because

L(W1,A,D(tr)) is a function of A, and W ∗
1 depends on L(W1,A,D(tr)).

Stage II. At the second stage, the trained W ∗
1 (A) is used to generate saliency maps. Specifically,

given an input image x, we first use W ∗
1 (A) and A to predict the class label (denoted by f (x;W ∗

1 (A),A))
of x. Then an adversarial attack based approach [22, 18] is leveraged to calculate saliency scores of
pixels. Adversarial attack adds small random perturbations δ to pixels in x so that the prediction
outcome on the perturbed image x+δ is no longer f (x;W ∗

1 (A),A). Pixels perturbed more are more
correlated with the prediction outcome f (x;W ∗

1 (A),A) and are considered to be more salient. This
process amounts to solving the following optimization problem:

{δ ∗
i (W

∗
1 (A),A)}N

i=1 = argmax{∥δi∥∞≤ε}N
i=1

∑
N
i=1 ℓ(f (xi +δi;W ∗

1 (A),A), f (xi;W ∗
1 (A),A)) (2)

where δi is the perturbation added to image xi and ε is a small norm-bound. N is the number of
images. f (xi+δi;W ∗

1 (A),A) and f (xi;W ∗
1 (A),A) are predictions made by W ∗

1 (A) and A on xi+δi and
xi. Assume the number of classes is K. f (xi +δi;W ∗

1 (A),A) and f (xi;W ∗
1 (A),A) are K-dimensional

vectors containing prediction probabilities on individual classes. ℓ(·, ·) is the cross-entropy loss
with ℓ(a,b) =−∑

K
k=1 bi logai. In this optimization problem, we aim to find perturbations for each

image so that the predicted outcome on the perturbed image is largely different from that on the
original image. The learned optimal perturbations are considered as saliency scores of pixels: larger
perturbations indicate that the corresponding pixels are more correlated with the prediction outcome
and therefore are more salient. δ ∗

i depends on W ∗
1 (A) and A since δ ∗

i depends on the loss in Eq.(2),
and the loss is a function of W ∗

1 (A) and A.

Stage III. At the third stage, given the saliency scores {δ ∗
i (W

∗
1 (A),A)}N

i=1, the second set of model
weights W2 are trained. We use the saliency scores to reweight the pixels: x⊙δ , where ⊙ denotes
element-wise multiplication (we compare with other reweighting mechanisms in Table 4). Pixels that
are more salient are given more weights. Then W2 is trained on these weighted pixels:

W ∗
2 ({δ ∗

i (W
∗
1 (A),A)}N

i=1,A) = argminW2 ∑
N
i=1 ℓ(f (δ ∗

i (W
∗
1 (A),A)⊙ xi;W2,A), ti), (3)

3

where f (δ ∗
i (W

∗
1 (A),A)⊙ xi;W2,A) is the prediction made by W2 and A on the weighted image

δ ∗
i (W

∗
1 (A),A)⊙ xi, and ti is the class label. W ∗ depends on {δ ∗

i (W
∗
1 (A),A}N

i=1 and A since W ∗

depends on the loss in Eq.(3), and the loss is a function of {δ ∗
i (W

∗
1 (A),A)}N

i=1 and A.

Stage IV. At the fourth stage, W ∗
2 ({δ ∗

i (W
∗
1 (A),A)}N

i=1,A) and W ∗
1 (A) are evaluated on a human-

labeled validation set D(val). The architecture A is updated by minimizing the validation losses:

minA L(W ∗
2 ({δ ∗

i (W
∗
1 (A),A)}N

i=1,A),A,D
(val))+ γL(W ∗

1 (A),A,D
(val)), (4)

where γ is a tradeoff parameter.

Four-level optimization framework. We integrate the four stages into a unified four-level opti-
mization framework and obtain the following formulation:

minA L(W ∗
2 ({δ ∗

i (W
∗
1 (A),A)}N

i=1,A),A,D
(val))+ γL(W ∗

1 (A),A,D
(val))

s.t. W ∗
2 ({δ ∗

i (W
∗
1 (A),A)}N

i=1,A) = argminW2 ∑
N
i=1 ℓ(f (δ ∗

i (W
∗
1 (A),A)⊙ xi;W2,A), ti)

{δ ∗
i (W

∗
1 (A),A)}N

i=1 = argmax{∥δi∥∞≤ε}N
i=1

∑
N
i=1 ℓ(f (xi +δi;W ∗

1 (A),A), f (xi;W ∗
1 (A),A))

W ∗
1 (A) = argminW1

L(W1,A,D(tr)).

(5)

In this framework, there are four optimization problems, each corresponding to a learning stage. From
bottom to up, the optimization problems correspond to learning stage I to IV respectively. The first
three optimization problems are nested on the constraint of the fourth optimization problem. These
four stages are conducted end-to-end in this unified framework. The solution W ∗

1 (A) obtained at the
first stage is used to generate explanations at the second stage. The saliency maps {δ ∗

i (W
∗
1 (A),A)}N

i=1
obtained at the second stage are used to train W2 at the third stage. The solutions obtained at the first
and third stage are used to calculate validation losses at the fourth stage. The architecture A updated
at the fourth stage changes the training loss at the first stage and consequently changes the solution
W ∗

1 (A), which subsequently changes {δ ∗
i (W

∗
1 (A),A)}N

i=1 and W ∗
2 ({δ ∗

i (W
∗
1 (A),A)}N

i=1,A).

Optimization algorithm. To solve the problem in Eq.(5), we used a standard algorithm developed
in [41], which is broadly used in many previous works and demonstrated to be effective in the literature.
The convergence analysis of this algorithm has been given in many works [21, 23, 32, 42, 67]. The
optimization algorithm is not the focus or contribution of our work. In this algorithm, we calculate
the gradient of L(W1,A,D(tr)) w.r.t W1 and approximate W ∗

1 (A) using a one-step gradient descent
update of W1. We plug the approximation W ′

1 of W ∗
1 (A) into ℓ(f (xi +δi;W ∗

1 (A),A), f (xi;W ∗
1 (A),A))

and obtain an approximated objective denoted by Oδi . Then we approximate δ ∗
i (W

∗
1 (A),A) using a

one-step gradient ascent update of δi based on the gradient of Oδi . Next, we plug the approximation
δ ′

i of δ ∗
i (W

∗
1 (A),A) into ℓ(f (δ ∗

i (W
∗
1 (A),A)⊙ xi;W2,A), ti) and get another approximated objective

denoted by OW2 . Then we approximate W ∗
2 ({δ ∗

i (W
∗
1 (A),A)}N

i=1,A) using a one-step gradient descent
update of W2 based on the gradient of OW2 . Finally, we plug the approximation W ′

1 of W ∗
1 (A) and the

approximation W ′
2 of W ∗

2 ({δ ∗
i (W

∗
1 (A),A)}N

i=1,A) into the validation loss and get the third approximate
objective OA. A is updated by descending the gradient of OA. These steps iterate until convergence.

4 Experiments

In this section, we present experimental results. Please refer to the supplements for detailed hyperpa-
rameter settings and additional results (e.g., on inference costs, ablation studies).

4.1 Experiments on image classification

Following [41] the architecture A is parameterized in a differentiable way. A contains a set of
importance weights, each multiplied to the output of a candidate architecture block. Architecture
search amounts to learning these weights using gradient methods. After learning, blocks with top
weights compose an architecture. Each experiment consists of two phrases: 1) architecture search
where an optimal cell is identified, and 2) architecture evaluation where multiple copies of the optimal
cell are stacked into a larger network, which is retrained from scratch.

4

Table 1: Test errors on CIFAR-100 (C100) and CIFAR-10 (C10), number of model parameters (in
millions), and search cost (GPU days on a Nvidia 1080Ti). SANAS-darts2nd represents that SANAS
is applied to DARTS-2nd. Similar meanings hold for other notations in such a format. * means the
results are taken from DARTS− [12].

Method Error-C100 Error-C10 Param. Cost

*ResNet [26] 22.10 6.43 1.7 -
*DenseNet [30] 17.18 3.46 25.6 -
*PNAS [39] 19.53 3.41±0.09 3.2 150
*ENAS [45] 19.43 2.89 4.6 0.5
*AmoebaNet [47] 18.93 2.55±0.05 3.1 3150
*GDAS [17] 18.38 2.93 3.4 0.2
*R-DARTS [71] 18.01±0.26 2.95±0.21 - 1.6
*DARTS− [12] 17.51±0.25 2.59±0.08 3.3 0.4
AutoFormer [8] 17.42±0.17 2.72±0.09 3.7 2.8
Sampling [24] 17.30±0.10 2.75±0.11 3.8 2.0
*DropNAS [27] 16.95±0.41 2.58±0.14 4.4 0.7
*DrNAS [10] - 2.54±0.03 4.0 0.4
*ISTA-NAS [68] - 2.54±0.05 3.3 0.1
*MiLeNAS [25] - 2.51±0.11 3.9 0.3
*GAEA [38] - 2.50±0.06 - 0.1
*PDARTS-ADV [9] - 2.48±0.02 3.4 1.1
*Darts2nd [41] 20.58±0.44 2.76±0.09 3.1 4.0
EC-darts2nd [51] 20.05±0.31 2.83±0.12 3.3 5.7
CDEP-darts2nd [50] 19.53±0.46 2.75±0.05 3.2 5.3
GMPGC-darts2nd [46] 19.08±0.36 2.81±0.07 3.2 5.6
Ours-darts2nd 16.42±0.09 2.54±0.05 3.2 4.6
†Pcdarts [66] 17.96±0.15 2.57±0.07 3.9 0.1
EC-pcdarts [51] 17.83±0.28 2.63±0.11 4.1 0.9
CDEP-pcdarts [50] 17.88±0.13 2.75±0.08 4.0 1.1
GMPGC-pcdarts [46] 17.73±0.09 2.64±0.05 4.0 1.0
Ours-pcdarts 16.19±0.04 2.49±0.03 3.9 0.8
†Prdarts [73] 16.48±0.06 2.37±0.03 3.4 0.2
EC-prdarts [51] 17.32±0.14 2.58±0.08 3.5 1.1
CDEP-prdarts [50] 16.86±0.07 2.54±0.05 3.4 1.3
GMPGC-prdarts [46] 16.37±0.10 2.46±0.06 3.6 1.1
Ours-prdarts 16.01±0.03 2.30±0.04 3.6 0.8
†Pdarts [11] 17.52±0.06 2.54±0.04 3.6 0.3
EC-pdarts [51] 17.25±0.11 2.68±0.07 3.8 1.3
CDEP-pdarts [50] 17.49±0.08 2.63±0.10 3.6 0.9
GMPGC-pdarts [46] 17.33±0.10 2.59±0.07 3.7 1.1
Ours-pdarts 15.16±0.09 2.45±0.03 3.6 1.1

Datasets We used three datasets: CIFAR-10 [35], CIFAR-100 [36], and ImageNet [15]. Both
CIFAR-10 and CIFAR-100 contain 60K images from 10 classes. For each of them, we split it into
a train, validation, and test set with 25K, 25K, and 10K images respectively. ImageNet contains
1.2M training images and 50K test images from 1000 objective classes. Following [66], we randomly
sample 10% of the 1.2M images to form a new training set and another 2.5% to form a validation set,
then perform a search on them.

Experimental settings We experimented with the search spaces in DARTS [41], P-DARTS [11],
and PC-DARTS [66]. The tradeoff parameter γ is set to 2. The norm bound ε of perturbations is set
to 0.03. During architecture search, for CIFAR-10 and CIFAR-100, the architecture of the target is a
stack of 8 cells. Each cell consists of 7 nodes. Initial channel number is 16. The search algorithm was
based on SGD, with a batch size of 64, an initial learning rate of 0.025 with cosine scheduling, an
epoch number of 50, a weight decay of 3e-4, and a momentum of 0.9. We update the architecture A
every 5 mini-batches (iterations), update model weights W2 and perturbations δ every 3 mini-batches,

5

and update W1 on every mini-batch. The rest of hyperparameters mostly follow those in DARTS,
P-DARTS, and PC-DARTS. We compare with the following baselines: 1) explanation constraints
(EC) [51]; 2) contextual decomposition explanation penalization (CDEP) [50]; 3) global max pooling
+ GradCAM (GMPGC) [46]. The mean and standard deviation of 10 random runs are reported.

Results and analysis on CIFAR-100 and CIFAR-10 Table 1 shows results on CIFAR-100 and
CIFAR-10. Applying our framework to DARTS, P-DARTS, and PC-DARTS, test errors are greatly
reduced, which shows that by end-to-end detecting and leveraging saliency of pixels, the quality of
searched architectures can be improved. Another observation from Table 1 is: the performance gain
of our method does not come at the cost of substantially increasing model size (number of parameters)
or search cost.

Table 2: Top-1 and top-5 test errors on ImageNet in the
mobile setting. Results marked with * are obtained from
DARTS− [12] and DrNAS [10]. The rest notations are the
same as those in Table 1.

Method Top-1 Top-5

*Inception-v1 [60] 30.2 10.1
*MobileNet [28] 29.4 10.5
*ShuffleNet 2× (v2) [43] 25.1 7.6
*NASNet-A [77] 26.0 8.4
*PNAS [39] 25.8 8.1
*MnasNet-92 [61] 25.2 8.0
*AmoebaNet-C [47] 24.3 7.6
*PARSEC-CIFAR10 [6] 26.0 8.4
*GDAS-CIFAR10 [17] 26.0 8.5
*DSNAS-ImageNet [29] 25.7 8.1
*AutoFormer [8] 25.3 7.4
Sampling [24] 25.3 -
*SDARTS-ADV-CIFAR10 [9] 25.2 7.8
*PC-DARTS-CIFAR10 [66] 25.1 7.8
*ProxylessNAS-ImageNet [5] 24.9 7.5
*FairDARTS-ImageNet [13] 24.4 7.4
*PR-DARTS [73] 24.1 7.3
*DARTS−-ImageNet [12] 23.8 7.0
*Darts2nd-cifar10 [41] 26.7 8.7
EC-darts2nd-cifar10 [51] 26.4 8.5
CDEP-darts2nd-cifar10 [50] 26.5 8.5
GMPGC-darts2nd-cifar10 [46] 26.3 8.2
SANAS-darts2nd-cifar10 (ours) 24.8 8.3
*Pdarts-cifar100 [11] 24.7 7.5
EC-pdarts-cifar100 [51] 24.5 7.3
CDEP-pdarts-cifar100 [50] 24.6 7.4
GMPGC-pdarts-cifar100 [46] 24.5 7.4
SANAS-pdarts-cifar100 (ours) 23.8 6.6
*Pcdarts-ImageNet [66] 24.2 7.3
EC-pcdarts-ImageNet [51] 24.0 7.2
CDEP-pcdarts-ImageNet [50] 23.9 7.3
GMPGC-pcdarts-ImageNet [46] 24.0 7.3
SANAS-pcdarts-ImageNet (ours) 22.2 6.1

Table 1 shows that our methods outper-
form EC, CDEP, and GMPGC. These
methods use GradCAM, gradient magni-
tude, and pretrained semantic segmenta-
tion models to calculate saliency scores,
which are not very reliable. In con-
trast, the calculation of saliency in our
method is weakly supervised by the vali-
dation loss of the second model calcu-
lated on human-provided class labels,
which have higher fidelity. As analyzed
earlier, saliency with higher fidelity can
result in higher-quality architectures.

Results on ImageNet In Table 2, we
compare different methods on ImageNet.
In experiments based on PC-DARTS,
architectures are searched on a subset
of ImageNet. In other experiments, ar-
chitectures are searched on CIFAR-10
and CIFAR-100. Ours-darts2nd-cifar10
denotes that our method is applied to
DARTS-2nd and performs search on CI-
FAR10. Similar meanings hold for other
notations in such a format. The ob-
servations made from these results are
consistent with those made from Ta-
ble 1. The architectures searched us-
ing our methods are consistently better
than those searched by corresponding
baselines. These results again show that
by end-to-end detecting and leveraging
saliency can improve architecture search.

Sanity check of saliency maps We
evaluate saliency maps generated by
the adversarial saliency method using
model parameter cascading randomiza-
tion tests [1]. The model architecture
is searched by SANAS on ImageNet.
Figure 2(left) shows that saliency maps
change considerably as more layers are
randomized, on multiple ImageNet examples. Figure 2(right) shows the Spearman rank correlation
(with absolute values) between original saliency maps and randomized saliency maps, on ImageNet.
The rank correlation consistently decreases as more layers are randomized. These results demonstrate
that saliency maps generated by the adversarial saliency method are sensitive to model parameters
and pass the sanity check.

6

Figure 2: Sanity check of saliency maps. Logits−n is the n-th layer below the logits layer.

Figure 3: Visualization of saliency maps.

Table 3: Human evaluation of saliency.

Ratings
Darts2nd 3.30±0.24
EC-darts2nd [51] 3.42±0.16
CDEP-darts2nd [50] 3.58±0.11
GMPGC-darts2nd [46] 3.51±0.12
SANAS-darts2nd (ours) 3.93±0.06
Pdarts 3.26±0.14
EC-pdarts [51] 3.59±0.21
CDEP-pdarts [50] 3.46±0.19
GMPGC-pdarts [46] 3.50±0.09
SANAS-pdarts (ours) 4.07±0.11

Human evaluation of saliency We randomly sam-
pled 100 images from the test set of ImageNet and gen-
erated saliency maps for them using different methods.
Then we asked three undergraduates to judge whether
the saliency maps are sensible. The ratings are from
1-5 (higher is better). Table 3 summarizes the mean
and standard deviation of ratings. Our methods achieve
significantly higher ratings (significance test results are
in the supplements), which demonstrates that our meth-
ods can generate more accurate saliency maps than the
baselines. Inter-annotator Kappa score is 0.71, which
shows strong agreements among annotators.

Visualization of saliency In Figure 3, we visual-
ize the saliency maps generated for some randomly-
sampled ImageNet images. These saliency maps are very sensible. Warmer color (representing higher
saliency) regions correspond to objects. Colder color regions correspond to background. These
results show that our method is effective in generating correct saliency maps. In contrast, the saliency
maps generated by baselines are less sensible. For example, in the schipperke, hay, container ship,
ice lolly images, higher saliency regions of baselines are in the background instead of on objects.

Ablation studies In terms of how to use saliency scores to reweight pixels, we compare the element-
wise product between pixels and saliency scores in Eq.(3) with 1) element-wise addition between
pixels and saliency scores; 2) element-wise product between pixels and the absolute values of saliency

7

Table 4: Test errors of different reweighting mechanisms.

CIFAR-100 CIFAR-10
Ours+darts Ours+pdarts Ours+darts Ours+pdarts

Product 16.4±0.09 15.2±0.09 2.54±0.05 2.45±0.03
Addition 20.3±0.27 17.7±0.03 2.71±0.11 2.53±0.06
Absolute 16.8±0.11 15.4±0.12 2.55±0.08 2.48±0.07
Concatenate 17.9±0.11 16.4±0.06 2.74±0.07 2.61±0.08
No reweight 20.6±0.44 17.5±0.06 2.76±0.09 2.54±0.04

scores; 3) concatenate saliency map with input image and feed the concatenation into the second
model W2; 4) no reweighting. Table 4 shows results where our method is applied to DARTS2nd and
P-DARTS. From this table, we make the following observations. First, product works better than
addition. The reason is: magnitude of saliency scores (perturbations) is very small; adding them
to pixels does not render a significant change of pixel values, and consequently cannot distinguish
important pixels from unimportant ones. In contrast, the relative difference between saliency scores
is significantly large; multiplying them to pixels can better distinguish important and unimportant
pixels. Second, reweighting pixels using signed saliency score and absolute saliency scores does not
have a significant difference. This shows that signs of saliency scores do not matter too much. Third,
product works better than concatenation. The possible reason is: compared with concatenation,
product can better differentiate important and unimportant pixels using the saliency scores. Fourth,
reweighting pixels works better than no reweighting. This demonstrates that multiplying saliency
scores to inputs is indeed helpful in identifying important pixels, which helps to improve classification
performance.

In the next ablation study, we compare the adversarial attack (AA) based saliency detection method
with another two saliency detection methods, including integrated gradients (IG) [59] and SmoothGrad
(SG) [56] by plugging them into our framework. These studies are performed on Darts2nd and Pdarts.
Table 5 shows the results, where we make two observations. First, our framework with IG and SG
still outperforms vanilla Darts2nd and Pdarts. This demonstrates that our framework is a general
one that generalizes beyond a single saliency detection method. Second, IG and SG perform worse
than AA. A possible reason is: IG and SG restrict the definition of saliency to be gradient-based.
In contrast, AA treats saliency scores as optimization variables and automatically learns them by
solving an optimization problem, which is more flexible.

To better understand the effectiveness of the proposed four stages performed end-to-end, we compare
with the following two ablation settings, which are performed on Darts2nd and Pdarts.

• Perform the four stages separately (denoted as Separate) instead of end-to-end.
• Perform stages I, II, III by optimizing the weighted sum of their objective functions with weights 1,

0.5, 1, in a multi-task learning (MTL) manner (denoted as MTL).

Table 5: Ablation results on saliency detec-
tion methods.

CIFAR-100 CIFAR-10
Darts [41] 20.58±0.44 2.76±0.09
IG+darts 16.92±0.08 2.62±0.06
SG+darts 17.05±0.11 2.59±0.03
AA+darts 16.42±0.09 2.54±0.05
Pdarts [11] 17.52±0.06 2.54±0.04
IG+pdarts 15.83±0.08 2.47±0.03
SG+pdarts 15.81±0.05 2.48±0.04
AA+pdarts 15.16±0.09 2.45±0.03

Table 7 shows the results on Separate and MTL. We
make two observations. First, our end-to-end method
works better than Separate which conducts the four
stages separately. Conducting the four stages end-to-
end can enable them to mutually influence each other
to achieve the overall best performance. In contrast,
when conducted separately, earlier stages cannot be
influenced by later stages (e.g., stage I cannot be influ-
enced by stage IV), which leads to worse performance.
Second, our method performs better than MTL. The
tasks in stages I-III have an inherent order: before de-
tecting saliency maps using a model, we first need to
train this model; before training the second model on
saliency-reweighted data, we need to detect the saliency
maps first. MTL performs these three tasks simultane-
ously by minimizing a single objective, which breaks
their inherent order and therefore leads to worse performance. In contrast, our method preserves this
order using multi-level optimization.

8

Table 6: Results on the GLUE benchmark. “# Param.” denotes the number of model parameters.
“Infer” denotes the speedup of inference time compared with BERT12.

Method # Param. Infer SST-2 MRPC QQP MNLI QNLI RTE Average
BERT12 109M 1x 93.5 88.9 71.2 84.6 90.5 66.4 82.5
BERT12-T 109M 1x 93.3 88.7 71.1 84.8 90.4 66.1 82.4
BERT6-PKD 67.0M 1.9x 92.0 85.0 70.7 81.5 89.0 65.5 80.6
BERT3-PKD 45.7M 3.7x 87.5 80.7 68.1 76.7 84.7 58.2 76.0
DistilBERT4 52.2M 3.0x 91.4 82.4 68.5 78.9 85.2 54.1 76.8
TinyBert4 14.5M 9.4x 92.6 86.4 71.3 82.5 87.7 62.9 80.6
BiLSTMSOFT 10.1M 7.6x 90.7 - 68.2 73.0 - - -
AdaBERT 8.3M 16.1x 91.9 85.3 70.2 81.9 86.9 64.8 80.2
EC-AdaBERT 8.7M 15.8x 91.9 85.6 70.7 81.8 86.9 65.0 80.3
CDEP-AdaBERT 8.8M 16.4x 92.5 85.9 70.6 82.2 87.4 65.2 80.6
GMPGC-AdaBERT 8.1M 15.5x 92.0 85.6 71.4 82.8 87.1 65.0 80.7
Ours-AdaBERT 8.2M 16.3x 93.4 87.0 71.8 83.7 88.5 66.6 81.8

Figure 4(right) shows how the test error of SANAS-darts2nd on CIFAR100 varies with γ . When γ = 0,
the validation loss of W1 is not used for architecture search and the performance is inferior (compared
with γ = 2). A γ in the middle ground which properly balances the two validation losses yields
the optimal performance. Using the validation loss of W1 only is equivalent to vanilla DARTS-2nd
(results are in the supplements).

4.2 Experiments on text classification

In this section, we apply the proposed framework for text classification. The Gumbel softmax
trick [31] is leveraged to deal with non differentiability of texts.

Dataset We conduct experiments on six datasets in the GLUE benchmark [63]: SST-2, MRPC,
QQP, MNLI, QNLI and RTE. SST-2 is a sentiment classification dataset where the input text is movie
review and the output label is whether the review is positive or negative. In MRPC and QQP, the
input is a pair of sentences and the output is whether they are semantically equivalent. MNLI, QNLI,
and RTE are textual entailment recognition datasets.

Baselines We compare with the following baselines: 1) BERT [16], 2) BERT-PKD [58], 3) Distil-
BERT [52], 4) TinyBERT [33], 5) BiLSTMSOFT [62], 6) AdaBERT [7], 7) EC-AdaBERT [51], 8)
CDEP-AdaBERT [50], and 9) GMPGC-AdaBERT [46].

Table 7: Ablation results on Separate and MTL.

CIFAR-100 CIFAR-10
Separate+darts 18.05±0.27 2.68±0.06
MTL+darts 18.26±0.12 2.70±0.05
Ours+darts 16.42±0.09 2.54±0.05
Separate+pdarts 16.49±0.07 2.51±0.03
MTL+pdarts 16.83±0.10 2.52±0.04
Ours+pdarts 15.16±0.09 2.45±0.03

Hyperparameter settings Candidate opera-
tions are commonly used operations in convolu-
tional networks, including 1D convolution, di-
lated convolution, pooling, identify, and zero. In
dilated convolution, the kernel size includes 3,
5, and 7. Each convolution operation consists of
an Relu-Conv-BatchNorm sequence. For pool-
ing, we used average pooling and max pooling,
where the kernel size is set to 3. The “SAME"
padding is utilized for convolution and pooling.
We optimize weight parameters using SGD. The
initial learning rate is set to 2e−2. It is annealed
using a cosine scheduler. The momentum is set to 0.9. We use Adam [34] to optimize the architecture
variables. The learning rate is set to 3e−4 and weight decay is set to 1e−3.

Main results Table 6 shows the results. We make the following observations. First, our method
works better than AdaBERT, which is an NAS method without saliency detection. This further
demonstrates the effectiveness of saliency detection in improving NAS. Second, our method works
better than EC, CDEP, and GMPGC. This further shows that performing saliency detection and
NAS jointly is better than conducting them separately as the three baselines do. Third, compared

9

with BERT12 and BERT12-T, our method achieves similar performance while using much fewer
parameters and being much faster during inference.

Qualitative results Table 8 shows salient words detected by different methods on a randomly
sampled sentence (whose sentiment is labeled as being positive). As can be seen, our method can
successfully recognize the words “entertaining" and “please" which are mostly relevant to a positive
sentiment. In contrast, the two baselines fail to do that.

5 Conclusions and discussions

0
1
2
5

100
20.58
17.65
16.39
19.42

20.58

17.65
16.39

19.42

16

18

20

22

0 1 2 5

Er
ro
r(
%
)

Gamma

CIFAR-100

Figure 4: How errors change with γ .

In this paper, we propose to leverage the saliency infor-
mation of input data to improve NAS. Our work makes
the following contributions. First, our method can detect
saliency and perform NAS end-to-end, based on a four-
level optimization framework. The framework performs
four stages in a unified way: train a preliminary model,
generate saliency maps using the preliminary model, re-
train the model on saliency-reweighted data, and update
architecture by minimizing validation losses. Second, our
framework is end-to-end differentiable, allowing using efficient gradient-based algorithms as solvers.
Third, our method provides a mechanism to evaluate generated saliency maps by checking whether
they are helpful for improving classification performance. We demonstrate the effectiveness of our
method on several datasets.

Table 8: Top-2 salient words (marked with red color)
detected by different methods.

EC an entertaining mix of period drama and
flat-out farce that should please history
fans.

GMPGC an entertaining mix of period drama and
flat-out farce that should please history
fans.

Ours an entertaining mix of period drama and
flat-out farce that should please history
fans.

EC a very witty take on change, risk and
romance, and the film uses humor to
make its points about acceptance and
growth.

GMPGC a very witty take on change, risk and
romance, and the film uses humor to
make its points about acceptance and
growth.

Ours a very witty take on change, risk and
romance, and the film uses humor to
make its points about acceptance and
growth.

One major limitation of this work is
that it cannot be easily applied to non-
differentiable NAS methods that are based
on reinforcement learning (RL) and evolu-
tionary algorithm (EA). The reason is that
our method uses a gradient-based optimiza-
tion algorithm to solve the multi-level op-
timization problem. For non-differentiable
NAS methods, their non-differentiable ob-
jective functions do not have gradients,
which therefore are not compatible with
the gradient-based algorithm used by our
method. Please see Appendix ?? for dis-
cussion on how to extend our method to
non-differentiable NAS methods. Another
limitation of our method is its higher time
cost than baselines, due to the extra compu-
tation needed for detecting saliency maps.
Considering the benefits and limitations
of our method, we recommend using our
method in applications that strongly need
high-performance architectures capable of
generating sensible saliency maps but do not
have strong efficiency requirements on archi-
tecture search time. For applications which
have high restrictions on search cost but al-
low sacrificing some performance and ignor-
ing saliency maps, other NAS methods might be better choices. Please see Appendix ?? for a more
detailed discussion.

One potential negative societal impact of our work is: in mission-critical applications such as disease
diagnosis and autonomous driving, if saliency maps generated by our method are not correct, they may
mislead human decision-makers. For future works, we plan to investigate these ideas: 1) formulate
saliency-based network pruning [74] as a saliency-aware NAS problem and automatically search for
the optimal pruning decisions based on detected saliency; 2) extend the notion of saliency from input
data to blocks in neural networks, develop multi-level optimization based frameworks to detect the
saliency of blocks, and perform pruning on blocks based on detected saliency.

10

References
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.

Sanity checks for saliency maps. Advances in neural information processing systems, 31, 2018.

[2] David Alvarez-Melis and Tommi S Jaakkola. Towards robust interpretability with self-explaining
neural networks. arXiv preprint arXiv:1806.07538, 2018.

[3] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and
Klaus-Robert Müller. How to explain individual classification decisions. Journal of Machine
Learning Research, 11(Jun):1803–1831, 2010.

[4] Atilim Gunes Baydin, Robert Cornish, David Martínez-Rubio, Mark Schmidt, and Frank D.
Wood. Online learning rate adaptation with hypergradient descent. CoRR, abs/1703.04782,
2017.

[5] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target
task and hardware. In ICLR, 2019.

[6] Francesco Paolo Casale, Jonathan Gordon, and Nicoló Fusi. Probabilistic neural architecture
search. CoRR, abs/1902.05116, 2019.

[7] Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding, Hongbo Deng, Jun
Huang, Wei Lin, and Jingren Zhou. Adabert: Task-adaptive bert compression with differentiable
neural architecture search. arXiv preprint arXiv:2001.04246, 2020.

[8] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching trans-
formers for visual recognition. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 12270–12280, 2021.

[9] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via
perturbation-based regularization. CoRR, abs/2002.05283, 2020.

[10] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Drnas:
Dirichlet neural architecture search. CoRR, abs/2006.10355, 2020.

[11] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. In ICCV, 2019.

[12] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei, and Junchi Yan. DARTS-:
robustly stepping out of performance collapse without indicators. CoRR, abs/2009.01027, 2020.

[13] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair DARTS: eliminating unfair
advantages in differentiable architecture search. CoRR, abs/1911.12126, 2019.

[14] Nicolas Couellan and Wenjuan Wang. On the convergence of stochastic bi-level gradient
methods. Optimization, 2016.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[17] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four GPU hours. In
CVPR, 2019.

[18] Christian Etmann, Sebastian Lunz, Peter Maass, and Carola-Bibiane Schönlieb. On the con-
nection between adversarial robustness and saliency map interpretability. arXiv preprint
arXiv:1905.04172, 2019.

[19] Matthias Feurer, Jost Springenberg, and Frank Hutter. Initializing bayesian hyperparameter
optimization via meta-learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

11

[20] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.

[21] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

[22] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[23] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In International Conference on Machine Learning,
pages 3748–3758. PMLR, 2020.

[24] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In European Conference
on Computer Vision, pages 544–560. Springer, 2020.

[25] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture
search via mixed-level reformulation, 2020.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[27] Weijun Hong, Guilin Li, Weinan Zhang, Ruiming Tang, Yunhe Wang, Zhenguo Li, and Yong
Yu. Dropnas: Grouped operation dropout for differentiable architecture search. In IJCAI, 2020.

[28] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[29] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xunying Liu, and Dahua
Lin. DSNAS: direct neural architecture search without parameter retraining. In CVPR, 2020.

[30] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

[31] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[32] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International Conference on Machine Learning, pages 4882–4892. PMLR,
2021.

[33] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. Tinybert: Distilling bert for natural language understanding. arXiv preprint
arXiv:1909.10351, 2019.

[34] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

[35] Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on cifar-10. Unpub-
lished manuscript, 40(7):1–9, 2010.

[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[37] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016.

[38] Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Geometry-aware
gradient algorithms for neural architecture search, 2021.

12

[39] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan L. Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
ECCV, 2018.

[40] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu.
Hierarchical representations for efficient architecture search. In ICLR, 2018.

[41] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search.
In ICLR, 2019.

[42] Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel opti-
mization with non-convex followers and beyond. Advances in Neural Information Processing
Systems, 34, 2021.

[43] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet V2: practical guidelines
for efficient CNN architecture design. In ECCV, 2018.

[44] James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng Sun, and Jacob Eisenstein. Explainable
prediction of medical codes from clinical text. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1101–1111, 2018.

[45] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. In ICML, 2018.

[46] Vipin Pillai and Hamed Pirsiavash. Explainable models with consistent interpretations. UMBC
Student Collection, 2021.

[47] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

[48] Zhongzheng Ren, Raymond Yeh, and Alexander Schwing. Not all unlabeled data are equal:
Learning to weight data in semi-supervised learning. In H. Larochelle, M. Ranzato, R. Had-
sell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 21786–21797. Curran Associates, Inc., 2020.

[49] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1135–1144. ACM, 2016.

[50] Laura Rieger, Chandan Singh, William Murdoch, and Bin Yu. Interpretations are useful:
penalizing explanations to align neural networks with prior knowledge. In International
Conference on Machine Learning, pages 8116–8126. PMLR, 2020.

[51] Andrew Slavin Ross, Michael C. Hughes, and Finale Doshi-Velez. Right for the right reasons:
Training differentiable models by constraining their explanations. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, pages 2662–2670, 2017.

[52] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[53] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international conference on computer vision, pages
618–626, 2017.

[54] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-
weight-net: Learning an explicit mapping for sample weighting. In Advances in Neural
Information Processing Systems, pages 1919–1930, 2019.

[55] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

13

[56] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[57] Akshayvarun Subramanya, Vipin Pillai, and Hamed Pirsiavash. Fooling network interpretation
in image classification. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 2020–2029, 2019.

[58] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

[59] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pages 3319–3328. PMLR, 2017.

[60] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In CVPR, 2015.

[61] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2019.

[62] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-
specific knowledge from bert into simple neural networks. arXiv preprint arXiv:1903.12136,
2019.

[63] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[64] Yulin Wang, Jiayi Guo, Shiji Song, and Gao Huang. Meta-semi: A meta-learning approach for
semi-supervised learning. CoRR, abs/2007.02394, 2020.

[65] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture
search. In ICLR, 2019.

[66] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
PC-DARTS: partial channel connections for memory-efficient architecture search. In ICLR,
2020.

[67] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization.
Advances in Neural Information Processing Systems, 34, 2021.

[68] Yibo Yang, Hongyang Li, Shan You, Fei Wang, Chen Qian, and Zhouchen Lin. Ista-nas:
Efficient and consistent neural architecture search by sparse coding, 2020.

[69] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1480–1489, 2016.

[70] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European Conference on Computer Vision, pages 818–833. Springer, 2014.

[71] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank
Hutter. Understanding and robustifying differentiable architecture search. In ICLR, 2020.

[72] Guoqing Zheng, Ahmed Hassan Awadallah, and Susan T. Dumais. Meta label correction for
learning with weak supervision. CoRR, abs/1911.03809, 2019.

[73] Pan Zhou, Caiming Xiong, Richard Socher, and Steven C. H. Hoi. Theory-inspired path-
regularized differential network architecture search. CoRR, abs/2006.16537, 2020.

[74] Jihong Zhu and Jihong Pei. Progressive kernel pruning with saliency mapping of input-output
channels. Neurocomputing, 467:360–378, 2022.

14

[75] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neural
network decisions: Prediction difference analysis. International Conference on Learning
Representations, 2017.

[76] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR,
2017.

[77] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In CVPR, 2018.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The contributions are summarized in Lines 37-42,
which are consistent with the main claims made in the abstract and introduction.

(b) Did you describe the limitations of your work? [Yes] The limitations are described in
Lines 352-354.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] The
potential negative societal impacts are discussed in Lines 354-356.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] The data is
publicly available. The code is proprietary.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] The major training details are described in Lines 170-229. Additional
training details are described in the supplements.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Error bars (standard deviations) are reported in Table 1,
2, 4, and 5.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] They are included in the
supplements.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] They are cited in

Line 199.
(b) Did you mention the license of the assets? [N/A] These datasets are public.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] These datasets are public.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] These datasets are well-known public datasets,
which do not contain personally identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] The instructions are included in the supplements.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] Our study does not need IRB approvals.
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] The study is a voluntary study, which does
not involve compensation.

15

	Introduction
	Related works
	Methods
	A four-level optimization framework

	Experiments
	Experiments on image classification
	Experiments on text classification

	Conclusions and discussions

