
Appendix

Lemma 5 (Davis Kahn sin⇥ bound [21]) Let ⌃, ⌃̂ 2 RD⇥D be symmetric, with eigen values
�1 � · · ·�D and �̂1 � · · · �̂D, where ⌃vi = �ivi, 8i 2 [D] and ⌃̂v̂i = �̂iv̂i, 8i 2 [D]. Further,
define E = [v1, · · · , vd] 2 RD⇥d

, Ê = [v̂1, · · · , v̂d] and assume that �⇤ = �d � �d+1 > 0.

Then, we have that,
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Lemma 6 (Concentration of sub-Gaussian covariance) Let D be a zero-mean sub-Gaussian dis-
tribution in RD s.t. for X ⇠ D, we have that, khX,xik 2  KkhX,xik2, 8x 2 RD. Denote the
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i.i.d⇠ D. Then 8� > 0,
we have that,
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with probability � 1� �, for some fixed small constant C.

Proof: Refer to Theorem 4.7.1 and Exercise 4.7.3 in Vershynin [17]. ⇤
Note that in large data regime, i.e. n >> D, only the first term dominates while in the small data
and large dimension regime the second terms dominates. In large data regime, for any given error
parameter ✏ > 0, one can sample n large enough and so the first term dominates the second one.

Lemma 7 (Concentration of Projection matrix) Let X 2 RD be a zero mean sub-gaussian random
vector with bounded sub-gaussian norm i.e.

9K 2 R s.t. khX, vik 2  KkhX, vikL2 8v s.t. kvk2 = 1
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covariance matrix ⌃ = E[XX
>]. Further, let the eigen decomposition of ⌃,⌃n be given as,
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>
i

and ProjE =
Pd

i=1 uiu
>
i and ProjEn

=
Pd

i=1 ûiû
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d true and empirical eigen subspaces E = span({ui}|di=1) and En = span({ûi}|di=1) respectively.
Then, if n � CdK4k⌃k2
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where �⇤ is the eigen gap between top d and the rest eigen subspace of true covariance matrix ⌃.

Proof: Let E>
En = U cos⇥(E,En)V T denote the singular value decomposition of E>

En and
cos⇥(E,En) = diag(cos ✓1, · · · , cos ✓d) be the diagonal matrix with the cosine of principal angles
{✓1, · · · , ✓d} between E and En subspaces as its diagonal entries. With this definition, it is easy to
show that,
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Next, using sin⇥ variant of Davis Kahn theorem 5, we have,
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Note that we have used the fact that L2 norm is upper bounded by Frobenious norm. Next, using
concentration bound for covariance matrix of sub-gaussian random vectors 6(in large sample regime),
we have, w.p. � 1� �,
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Using it along with (16), gives us, w.p. � 1� �,
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Finally, choosing n � CdK4k⌃k2
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, establishes the lemma.

⇤

Lemma 8 (Performance difference lemma for a general policy) Let ⇡,⇡0 be two time and history
dependent non-Markovian policies acting in environment MDP M. Then, the performance difference
between the value function of these policy in environment M is given by :
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Further, if ⇡,⇡0 are Markovian, we have,
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Proof: We provide a complete proof of the performance difference lemma for self sufficiency.
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Further, if ⇡,⇡0 are Markovian, it simplifies to
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