Limitations

Our main theorem relies on a few assumptions, which are detailed in Section 2. One assumption
is that o satisfies Assumptions [2 and[3, which require o to be sufficiently differentiable and have
nonzero Hermite/Gegenbauer coefficients. While this allows for common activations such as sigmoid
or tanh (with a generic bias term), it does not include activations such as ReLLU. We believe that
either considering a smoothed version of ReL'U or including a randomized bias term can help us
work around this non-differentiability issue. Additionally, we believe the boundedness assumption is
not essential and can be overcome with an appropriate truncation argument; however, making the
boundedness assumption is useful for simplifying the proof.

Another assumption is that the covariates are drawn from the uniform distribution on the unit sphere
Sd-1 (\/E) This assumption is necessary in order to invoke the statistical characterization of the NTK
developed in [25139], and we note that either the uniform-on-sphere or Gaussian data assumption
has been made in a number of prior works [25} 23| [39, 26]. In practice, data can be normalized
to be isotropic. Furthermore, neural networks have been observed to generalize better than kernel
methods in a wide variety of settings, and thus we believe our results are indicative of a more general
phenomenon.
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A Spherical Harmonics: Technical Background

Below we present relevant results on spherical harmonics, Gegenbauer polynomials, and Hermite
polynomials. These results are from [25) [39], and a more in depth discussion of the technical
background can be found in those references.

For ¢ € Z=°, define B(d, () as

_ _ ¢
B(d, () = 20+d 2<€+d 3

d
(7 —ar e, &

and define

nk—ZBdE Oa(d¥). (34)

We let L?(S*1(v/d), 1) denote the space of square-integrable functions over the sphere of ra-
dius v/d, with respect to the uniform probability measure . We use the shorthand ()2 =
() L2(s4-1(va) )+ and likewise for | f| 2.

The normalized spherical harmonics {Yk(? Yo<i<B(d,k),k>0 are a sequence of polynomials such that

Yk(j) is degree k, and the Yk(f? form an orthonormal basis of L2(S*(v/d), p), i.e:
<Yk(,dz)’ Yn(gbL2 = 5km6ij- 35

For x ~ S~V (1/d), let 7}, be the probability measure of v/d(x,e) and 7} _, be the measure of
(x, e), where e is an arbitrary unit vector.

The Gegenbauer polynomials {Q(® } ;> are a basis of L2([—d, d], 7}_,) such that Q\? is a degree
k polynomial with Q(d)( d) = 1 and

@ o) _ 1
(@17 Q5 ) r2(—aani_ ) = m@k (36)
The following identity relates spherical harmonics and Gegenbauer polynomials:
A
(d) _ (d) (d)
Qp ((xy)) = B(d, k) ; Y ()Y (y)- (37)
We also use the following fact about Gegenbauer polynomials:
d d 1
(@5 (6, QU (v Mhae = s @ (G ) (38)
Furthermore, f € L?([—/d, Vd], 74_,) can be decomposed via Gegenbauer polynomials as
- ZAM(U’) R\ (Vdz) (39)
d
Aark(f) = (£ Q" (VA)) o _vavan (40)

Thus Hf||L2([ Vd i) T Zk>0 (dak))‘z,k(f)

Let «y be the measure of a standard Gaussian on R. The normalized Hermite polynomials {hy, } >0
are an orthonormal basis of L?(RR,~) such that hy, is degree k. For f € L?(R,7), let ux(f) :=
(f, hi) L2(r ) be the kth hermite coefficient. One observes that Tc}_l converges weakly to v. As a
result we have the following connection between Hermite and Gegenbauer coefficients:

wr(f) = Jim B(d, k) * Ak (f). (41)
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A.1 Assumptions

We additionally require ¢’,c” to satisfy the following assumptions, which are that the Her-
mite/Gegenbauer coefficients are nonzero and well behaved:
Assumption 3. We assume o, o’ satisfy the following:

(a) Let o' satisfy py(o') # 0 for ¢ < 4k and Y-, ,, p17(0') > 0. As a result, we can let
p2(o’) = 04(1) for ¢ < 4k.
(b) Let o” satisfy

d'h min G (o) = Qa(1), (42)

where )\d’e(o,ll) — <0.//7 gd)(ﬂ')>L2([fﬂ,ﬁ],T§71)‘

A.2 Computing 3

Below we discuss how to express X in terms of the Gegenbauer coefficients of o’, A\j ¢(c”). First,
observe that that 3 is a matrix of d x d blocks, where the 4, jth block is equal to

a;a;

u(Wo,i, Wo,j),

where u : S 1(Vd) x S¥1(v/d) — R¥*? s the function
u(61,60,) =E, [0/ (6]x)0’ (67 x)xx"] .

[25) Lemma 7] shows that there exist scalar valued functions w1, u2, ug such that
u(01,0:) = u1 (87 02)1y + u2(67 62)[6:0; + 6205 + u3(67 62)[6:67] + 6651,
where w1, ug, ug can be computed in terms of the quantities
Tr(u(6:,6,)), 61u(6:,0,)0;, 6Tu(6:,6,)6;.

It thus suffices to compute these quantities. We assume that we can compute arbitrarily many
Gegenbauer coefficients of ¢”.

Note that
Te(u(6:,62)) = d - E,[o’ (67x)o (67%)]
07 u(6,,02)0, =E, [0’ (0] x )BTX o’ (67x)61x]
01 u(61,0:)0: = E,[0" (0] x) (6] x)* - o' (07 x)].

All these expressions are of the form E,,[ (61 x)g(03 x)]. For arbitrary f, g, let their decompositions
into Gegenbauer polynomials be:

2) =Y Mp(HBA QP (VAz),  gz) = Aanlg)B(d k)Q (Vz).

k>0 k>0

Then, by Equation [3§]
Eu[f(07x)g(07%)] = > Aawl(/)Aae(9)Bd, ) B(d, O, | QL (Va0 x)Q" (vd6T )

k050
:Z)\dk DAax(9)B(d, k) ;(cd)(def%)a
k>0

which can be computed to desired precision by truncating this infinite sum accordingly. This only
requires knowledge of the Gegenbauer coefficients of f, g. Given the Gegenbauer coefficients of a
function v (z), [25, Lemma 6] gives a formula for the Gegenbauer coefficients of zi(z). We can
therefore write the Gegenbauer coefficients of zo”(z), 220’ (z) in terms of those of ¢/, and thus we
can approximate this sum to the desired precision. This procedure allows us to express X in terms of

the Gegenbauer coefficients of o”.
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B Expressivity Proofs

B.1 Quad-NTK Proofs
B.1.1 Preliminaries

Lemma 4 (Expressing polynomials with random features). Let p > 0, and let o satisfy the following
two assumptions:

(a) o € L([=Vd. Vi, 7j_,)
(b) d” - ming<, Ag (o) = Qa(1), where Mg (0)* = <U’Ql(cd)(\/a'»LQ([*\/E,\/E],Téfﬂ'
= 1, there exists a function a € L?(S9=1(1)) such that

Ewy~sa-1(1) [U(WOTX)a(WO)] = a(ﬂTx)p,

and a satisfies the norm bound

For

Ha’HzLZ(Sd*l(l)) S dP

Proof. We can decompose ¢ into a sum over Gegenbauer polynomials

:i)\d,k(o) QWY (Vdz),
k=0

By Equation[37]
B(d,k)
=2 D0 M)V 0V (Vawo).
k>0 =1

Let a be decomposed into spherical harmonics as

B(d,k)

Z Z kY, \fwo)

k>0 i=1

for some coefficients cy; with } ;54 EB(d k) cl

orthonormal basis of S~ (1/d), we have

, < oo. Since the spherical harmonics form an

B(d,k)

EWONSd—l(l) [O'(WgX> Z Z )\dk Ckl ()( )

k>0 =1

Next, for an arbitrary function f € L?([—/d,V/d], 74_1), we can decompose

= Aax(f)B(d, k)Qx(Vdp x)
k>0
B(d.k)

=3 3 MWD YLD (VaB).

k>0 i=1

For f(t) = at?, A1 (f) = 0 for k > p, and thus

P
= Z Ak (HYD )Y D (Vag).
k=0 1i=1

Define the sequence of coefficients {cy; fo<k<p,1<i<B(d,k) bY

cri = YD (VdB)Aax(F)Ng4(0),
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which are well defined for sufficiently large d by assumption (b) of the lemma. Since there are only
finitely many nonzero cy ;, the function a(wy) is in Lo (S971(1)). Also,

B(d,k)

EWONSd—l(l)[ ( Z Z )\dk Ckz ()< )

k>0 i=1
p B(dk)

=3 > MWD YD (Vap)

k=0 =1
T
= a(f" x)?,
as desired. To obtain a norm bound on a, we can write
p B(dk)

lallz = > s

k=0 =1

= dp||fHL2([7\/3,\/E],Téfl)
S,
since

Il L2 (e vavari_ ) ~d—ee IFllL2@a);
and thus [| f[| ;2 a.va, )= = 0O4(1). O

Lemma 5 (Expressivity via infinitely many neurons). Let k > 1, and let o be a twice-differentiable
activation such that o' satisfies Assumption|3| Then, there exist functions w,w_ : S4~1(1) = R
such that
Eu, [0 (wl'x) (WT3)? — (w73)?)] = a(875)"+,
and
Ew, [lw ]z +[Iw-|l2] < d*~*

Proof. Note that since ¢” is continuous and bounded, 0" € L?([~+/d,/d],} |). Therefore
applying Lemmawith activation o’ and degree k — 1, there exists a function a satisfying

Ewo~si-1(1y [0 (wg x)a(wo)] = (87x)" !

and
lall7z(sa-1(1y) S d°7
Define
w (wo) = v/max(0,a(wy)) - 8
w_(wg) = /—min(0, a(wy)) - B
Then
(wix)? — (whx)? = (87%)? (max(0, a(wo)) + min(0, a(wo))) = a(wo) (5" x)?,
Ew, [U”(WOT )((WJTFX)2 (w X)2>] = Ew, [a”(onx)a(wo)] (8Tx)?
= a(fTx)" 1 (BTx)?
— a(ﬁTX)k—H
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Finally, we have the norm bound
Ew, [[[Willz + W3] = Ew, [max(0, a(wo))? + min(0, a(wo))?]
= Ew, [a(wo)Q]
Sdh

~

B.1.2 Proof of Lemmall]
Proof. We show this Lemma holds with probability 1 — d—1°.

Define M := | 5% |. Define for i € [R] define the subnetwork ff,(x, W¢) by

i 1
fQ(X7WQ) = 2\/* Z ”(W({rx) ((XTWQJ‘)Q - (XTWQ,T+m/2)2> :
r=(i—1)M+1

We will now construct Wq € R¥>™ For RM < r < m/2, set WQr = WQrym/2 = 0. Asa
result, we have that

fo(x,Wq) = Z fég(X, Wo).
i€[R]
Our construction will proceed by expressing «; (81 x)**1 with fé? (x, Wq). For fixed ¢ € [R], let
w'_, w'_ be from the infinite width construction in Lemma so that

Ew, [0 (wix) (w02 = (' "%)2) | = aa(B )"+
For integers (¢ — 1)M + 1 < r <M, define
(WQurs W@ rtmy2) = V/2/M - (mY/ AW (wo, ), m' *w' (wo,,)).

Then,
i 1
fo(xWq) = i Z " (wg,x) (x"wo,r)? = (X" W@ rimy2)?)
r=(t—1)M+1
1 M
=1 Z o (wi x)a' (wo ) (87 x)*.

r=(i—1)M+1

Note that we can bound
k-1 B(d,k")
o) £ 3D [ (Vawo)
=0 gj=1
h—1 B(dK) V2 /1 B Yz
(ST a) (5% v
k=0 j=1 k=0 i=1
1 1/2
= ||a’|| .2 (Z B(d,k;))
k=0
< dk_l.
Therefore letting Z, = o’ (w{ ,x)a’(wo,,)(87x)?, we have | Z,| < d*. Also, the Z, are i.i.d and
satisfy E[Z,] = (87x)**1. Therefore by Hoeffding’s inequality, with probability 1 — $d~''n~" we
have
1 iM
|fé2(xj5WQ) - ai(ﬂng)k+1‘ = M Z Z,. —E[Z,]
r=(i—1)M+1
-/ dF
=0 ;
(=)
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where we omit poly(R) dependencies inside the big O notation.

ldfll

Union bounding over j € [n], with probability 1 — 3 over the initialization,

H(xj; W Dxj) <o< )
%?ﬁ‘fQ(XJ @) — ai(Bix;)"| Jm

Since the above holds for all i € [R], union bounding over i yields that with probability 1—1d 'R >
1—3d=10
2 9

jnéé[ﬁlfQ(Xj,WQ) —fo®) <Y Hé?ﬂfc,g (x;: Wq) — i (87 x;)" |

i€[R]
-/ dF
<0 .
\/ﬁ
To bound the norm of W, observe that
M . )
IWells.4 = Z S Wi (wor)ll3 + W (wo) 3.

i€[R) r=(i—1)M+1

Since we can upper bound
lw'y (wo,r) 1z + Ilw (wo, )l < a'(wo,r)* S d**Y,

for fixed i € [R] by Hoeffding we have that with probability 1 — £d~'! over the initialization

1 M . . , . - - _ /21
X Il I o)l B [+ I 13] <0 ().
r=(i1—1)M+1

Union bounding over each i € [R] and using M = ©(m/R) = ©(m), with probability 1 — $d~1°
over the initialization we have that

) ) q2(k—1)
Wollsa S Y Bwg (W43 + [Wel3] + —=
i€[R] \/ﬁ
2(k—1)
< dkfl + d
~ \/ﬁ
< dk—l
as desired. O

Corollary 2. The solution W ¢ constructed in Lemma satisﬁes

< m71/4d%

Proof. From the proof of Lemmal[l] either [|w, |2 = 0,0r (i — 1)M 4+ 1 <r < iM orm/2 + (i —
DM +1 <r <m/2+ iM for some i in which case

lw, [l < 2m~Y/4/a?(wo)] < 2m~Y/4d"=

B.2 NTK Proofs
B.2.1 Symmetric Initialization

Recall the definition of the NTK featurization map

p(x) = vee(Vw f(x; W) = vee({—=0"(w( . x)x}rem }) € R™

(e
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The symmetric initialization makes this different from the NTK features in [25}139], which for width
m = m/2 is given by

1 .
@(x) = vec(Vw f(x; Wo)) = Vec({ﬁgl(warx)x}re[m]}) e R™
These two features are related by
_ | ¢(x)
o= | )
For the bulk of this section we consider the features ¢(x) in order to invoke the results from
(25, 139].

B.2.2 Preliminaries

For arbitary N < md, let Dy = {x; };e[n] be a dummy dataset of size NV, where each x; is sampled
i.i.d from S4~1(1/d). We define the following random matrices which depend on Dy

Denote by
p(x1)”
By — @(x2)" c RN xmd
P(xn)T
the feature matrix, and let
Ky = &y®L c RVY
be the empirical kernel matrix.

The infinite-width kernel matrix K¢ € RY*¥ has entries

(K%} = Ewlo'(whx;)o' (whx;)x] x;].

Also, define Xy € R™4xX™d (4 pe the empirical covariance matrix, so that
T 1 ~ s (o \T
PNy = P(xi)p(xi)"
and let . I
3= E# [@(X)@(X)T] c Rmdxmd
be the population covariance matrix.
We let o’ satisfy assumption E Along with the boundedness of ¢’, this allows us to invoke the

following lemmas from [39]:

Lemma 6 ([39], Theorem 3.2). With probability 1 — d—'1,

- N N
KOV KA KS 2 — Iyl <O [/ = + —
KX} 2 KyKy Nllop < ﬁ1d+md

Asin [39], let ¥ <, € RN ™ pe the evaluations of the degree < / spherical harmonics on the N
data points.

Lemma 7 ([39], Lemma 2). Ler d’log?d < N < d'*'/logdC. With probability 1 — d—'* the
infinite-width kernel matrix can be decomposed as

1
d
where 7y, > 0 is a sequence satisfying

Yo =d '(1+oa(M)pi(0"), e =pia(@)+oa() fork>1, vopi=> w  43)
k'>¢

KR :==vsIn + ‘I’SZAQSe‘I’ge + A,
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and A2, is a diagonal matrix where B(d, k) ™'~y has multiplicity B(d, k), for k < {. Furthermore,

the remainder A satisfies
~ N
[Allop <O (\/ d“l) ;

and the spherical harmonic features W <, satisfy
. ‘
<0 ( d) .
op N

By assumption 70 =0(d™!) and v = O(1) for £/ > 1.

The following Lemma gives the eigenvalues of the empirical kernel matrix K and the infinite-width
kernel matrix K%7:

1
HN‘PEZ‘II<5 -1,

Lemma 8 (Follows from [39], Lemma 6). With probability 1 — d—', the following all hold:
For1 <V </t npy_1<i<nygy,
XK, Ai(Ky) = O(N -d' ).

Additionally,

M(KR), M(Ky) = O(N).
Finally, for i > ny,

Ai(KR), Ai(Ky) = ©(d).
We also use the following classical results throughout the proofs in this section.

Lemma 9 (Weyl’s Inequality). For two psd matrices A1, Ao € RP*P,
[Ai(A1) = Ai(A2)] < [|Ar — Asllop (44)
foralli € [p)].

Definition 3 ([13]). For r < p, let U1, Uy € RP*" both have orthonormal columns. Then the
distance between the subspaces spanned by U1, Us is
diSt(Ul,UQ) = Omin ||U10 — U2||

cOrxr op’

(45)

where O"*" is the space of v X r orthogonal matrices.

Lemma 10 (Davis-Kahan sin-6 theorem [17, [13]]). For two psd matrices A1, Ay € RP*P [et
A = U1A1U1T and Ay = U2A2U2T be their eigendecompositions (sorted by decreasing eigen-
values), and let Uy = [Ui <, Ui sy, Uz = [Us <, Usqs,] be their eigenvectors, where
U, <, Us <, € RPX". Furthermore, assume |A; — As||op < (1 —1/v/2)(A (A1) — Ar1(AD)).
Then

21A; — Asll,
dist(Uy <,, Ug <) < 1A 2lop

46
h )‘T(Al) - )‘T+1(A1) (40)

B.2.3 Eigenvector Lemmas

Throughout this section, we condition on the event where Lemmas @, @ are all true.

Lemma 11. Define ~
K = d'y>kIN + d\I’SZAQSElIlgfv

and let K have eigendecomposition UA2UT, Define W<, ¢ RN*" to be the first ny, columns

of W<y, (where k < {), and also let fJSk be the first ny columns offJ, with I~J'>;.c the remaining

columns. Then
~ 1
T

U < .
<kVY>k o ~ \/(,71

1
—v
H vN -~
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Proof. Let Wy, € RNXne="k be the (ny, + 1)-th to ny-th columns. We can then decompose
K = dW <, A2, WL, +dU, A7, UL, + dysi Iy
and
K= [Uc U] diag(Acy,Asy) [Ucp Usi]”
where Uy, € RVX™:. Let u € RV =" be a vector such that |[ul|y = 1 and || ®Z, U ul, =
Hlllgkfj>k||op. Finally, define t = \Ilgkfj>ku. We then have:

b

u’Aspu =u’UZ, KU, u
> du’ UL, @, AL, L, Uspu + dysp.
=du" A2, 0+ dysk
Z d-d*|[a|3 + dysr,
since Apin(AZ),) = O(d™").

Define ~
Kop = d¥, A2, 0L,

and define K+ ), = K — ng. By Weyl’s inequality,
Xi(K<k) = Mi(K)| < Kok lop-
For i > ny, \;(K<y) = 0, in which case
)‘i<I~<) < ||K>kH0p 5 AN -d~F1

Therefore we can upper bound
ulAsu <dN-dF 1
Altogether, we have
dN -d™"t 2 d - d7F(|al3 + dysi,

which yields
1. 1
ﬁ”uﬂz S ﬁ
By definition, ||al|o = ||\Il£kfj>k|\op, S0
e s
as desired. O

-9 T — —
Lemma 12. Let K7 have eigendecomposition K¢ = UA U, where U<y, Us, are the first ny,
remaining N — ny, columns of U respectively. Then

o B J2h—l—1
dist (U§k7U§k) <0 < N )

Proof. By Lemma Ay (K2) — Ay 41 (KSP) = dN - d=F. Since

oo o A N oo oo
KX = Kllop = d[|Allop <O 1 | <A (KR) = An+1(KY)
d

by Davis-Kahan we have

P N W
) < _—h=lop_ = Ee—
dlSt (nga USk) ~ dN . d*k O N ’
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Lemma 13. Ler Ky have eigendecomposition Ky = U NA%,U%. Then

m

_ . Nd2k—3
dist (UgleN,gk) =0 ( — )
Proof. By Lemmal6] we can write
K¥VPKNKE 2 =1y + Ay,
where Ay < O (1/ ) Rearranging, we get

KN: %+K?1/2ANK?1/27

where we can bound

IKS 1/2ANK 1/2”017 < AN [op KR lop < \/Z7

since || K% ||op < N. Since K% has eigengap O(N - d'~*) we can again apply Davis-Kahan to get
K2 AnKZ o Nd2—3
dist (U<k,UN <k;) N.- d1 & = O T .

2 ~
Lemma 14. Let 3 have~eigendecompositi0n Xy =Vy ATNV% where Vy € RN et 3
have eigendecomposition ¥ = VA?VT, Let VN = [Vn <k Vnsi|, V=[V<i Vsi] where
V. <k, V< € RMX" Then, with probability 1 — n=1!,

~ d2k
dist (VN,gkaVSkz) S O W .

Proof. By [42] 5.6.4], with probability 1 — n =11 we have

- ~ r ~
1= = Elop <0 (/%) - IZll

where r = Tr(3)/||2|,p is the effective rank. We can upper bound Tr(3) < d, and thus

1= - 2120 (150 ) -0 ()

since ||3|,, < d. By Lemma|§L

O

1

A (BN) = An1(Bn) = - OV - d'F) =e(d"").

Therefore by Davis-Kahan, we can bound

.”EN_EHOP < ﬁ

dist (Vn,<k, V<) S d—k+1 ~\ N

O

The following lemma is a consequence of the preceeding eigenstructure and matrix perturbation
lemmas, and partitions the eigenvectors of X into groups corresponding to large, medium, and small
eigenvalues.

Lemma 15. Let N > d**,m > N°/2. For1 < K < 2k, np_1 < i < ng, we have \i(Z) =
O(d*=*"). Also, for i > nagp, A ( ) < Apyy (2).
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Proof. Since
~ d?
||2N—2||0p§ N’
by Weyl’s inequality we have
2
N(EN) - NE) S5

Since for ng 1 < i < ny we have \j(Zy) = N7I\(Ky) = @(dl’kl) >4/ 2 since N > di*;
therefore \;(X) = ©(d'~*"). Furthermore, for i > ny,
2
Xi(2) S~ N + (2N K @(d1 2k)

As a consequence, we can write the eigendecomposition of 3 as

Ay 0 07 (Qf
T=[Q Q Q3|0 Ay 0 |QF],
0 0 Azl |QTf

where Q; € R™4*" are the large eigenvectors, Qy € R™3X"2k="k are the medium eigenvectors,
and Q3 € Rmdxmd—nar gre the small eigenvectors; concretely,

>\7nin(A1) = @(dlik) > G(dik) = )\maw(AZ)

and
)\mzn(A2) = ®(d1_2k) > /\maz(Ag).

B.2.4 Proof of Lemmalf2l

Proof. We show this Lemma holds with probability 1 — d~1°. Condition on the events where

Lemmas|6] [7][8] [14] hold.

Pick N so that d* < N < d**t! for ¢ = 4k, and choose 1 = N®/2. We form a dataset of N
samples by adding another N — n samples i.i.d from Sd_l(\/&). Let yn € RY be the vector where
yni = fr(x;) where i € [N]. Recall that Yoy € RNV *7% denotes the evaluations of the degree
< k spherical harmonics on the N data points. Since fi(x) is a degree < k polynomial, we can
orthogonally decompose it in terms of the degree < k spherical harmonics, i.e

k  B(d,k)

Z > wYin(x

—0 t=1
where S2F,_ S PR 2 1 Therefore we have
yn =Pw”
for w* € R™ where |[w*|2 =1
Observe that @ v has SVD @y = Uy Ay VY. Define w* = ﬂgk'llgkw*. Then
Uqw* = U, UL, O opw™
= (L, — U5, UL @ oyw”
=yn — U, UL, @ w,
and thus
lyn = Ucpw™|| < U5, UL, @ cpow”|
< [OL% <l opllw7 |

<N

~ d )
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by Lemmal[T1] Also,

19| < [ <llopllw™[| < VN

By Lemmas [I2]and13] we have
. ~ 1
dist (US]ﬁ UN,Sk) g ﬁ
Thus there exists an orthogonal O; such that Hﬂgk —Un <01
hence

= dist (fjgkuUN,gk) and
op

vy = UnciOr%* || < llyn = Ui || + [0k = U101 |97
op
< N

~J d N
Since Uy < = @NVNSkA;[lQﬁ, we have

- . N
lyn — @NVN <k AR, 0w || S/ =
Finally, by Lemma|[T4] we have

ko
diSt(VNék,VSk) < N < d_k,

and thus there exists an orthogonal O3 such that ||V <t — V< O2|lop < d—* and hence

<

~

~ %

w

lyn — @nV<xO2AL' 01w || < [lyny — BNV <Ay 01w + H‘I’N(VN,Sk ~ V<i02)AL ., 01
N —1 ~ %
= TlIenllopl Vg = V<rOallopll Ay, <illop 19l

5\/%+\/N-d*k-\/N—1dk—1-\/N

<X
~V

Therefore, letting v* = V§k02A]:I1<k01W

1 *
N”yN —®nvi3 S

SHE

Note that v* satisfies

V113 < AR < 15,1971 = O (d*71) .

Since the {x;},c|n) are i.i.d, we can treat the dataset D as a subsample of n data points. Since
[fe(x)[? < e = ©(d"), and |g(x)"v*[* < [|G(x)[*[[v*[|* = ©(d*), we can bound (fi(x) —
¢(x)Tv*)? < dF. Also,

Ex [(fr(x) = ¢(0)"v*)!] S d"En [(fr(x) — a(x)"v*)?] S d* .
Therefore by Bernstein’s Inequality, with probability 1 — d~1!, we can bound
En [(fe(x) = &(x)"v")?]

1
< -

To conclude we must relate ¢ to (. Observe that
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Therefore \; () = 2X;(X) fori < 7, and \;(X) = 0 otherwise. Furthermore, if v is an eigenvector

of 3, then [_vv} is an eigenvector of 3. As a result, if u € span({vi(f])}ie[nk]), then [_uu} €
span(P<y). Letting z* = % [_Vv*] , we get that z* € span(P<y), and also ¢(x)7z* = ¢(x)Tv*.

Therefore

n [(Fe(x) = o(x)"2")°] <

)

3|

and also ||z*||2 < d*~!. Union bounding over all high probability events, this holds with probability
1—4d=1 >1—d=19, as desired. O

B.3 Proof of Theorem2]

Proof We condition on the events of Lemmas|[T} 2} [I6] [17} [I8] holding, which occurs with probability
5d~ 10 >1-— d- 9

We proceed by the probabilistic method. For r € [m], let the o, be random variables with o, ~
Unif({£1}) i.i.d, and let S = diag(oy,...,0m,) be the diagonal matrix of random signs. Let
W§ = W + W3S be a (random) solution. We will show that in expectation over S the training
error and all the regularizers are small, which implies the existence of a S which makes all these
quantities small.

Bounding the Empirical Loss. First, observe that we can write

E, |fo(x; Wg) + fo(xs W) — fL( W) — fo(x; Wq)| (47)
< Ep |fo(xsWQS)| 4+ Ep [ fo(x; Ws) — fo(x; Wo)l. (48)

Since fo(x; Wq) = fo(x; W@S), the second term can be deterministically bounded as

E, |fQ(X'WL + Wg@8) — fo(x; WgS)|

IN

Q\rZMo— wi %) (o (w) Fx + (wi)Tx)? = (wo)Tx)?)|

% > B (W) (20, (Wo): + (W)

IN

IN

Z 2(l(wr)rll2 + [(WQ)rll2)

IN

A
5\
SJ‘H

We next bound the first term in expectation using Lemma

2\ 1/2
ESE, |10 WoS)| < (EsEn (/20 Was)))
1
< ﬁ“WQHF

1 k—1
m-4ad 1 .
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Since the loss is Lipschitz, we can bound the empirical loss as

EsL?(W3) = ESE,[0(f*(x), fo(x; WE) + f1(x; W§))]
|

< EsE, [f*(x) — fo(x; Wg) — fr(x; Wg)
< EsEy|fsp(x) — fo(x; Wo)
+ EsE,|fr(x) — frx; W)

+]EsEn\fL x; Wg) + fo(x; Wg) — fL(xWi) — fo(x; Wo)|

& JE i

S Emzn b

A

where we used the bounds in Lemmas|I] 2} along with the lower bounds on m in the assumption of
the theorem.

Bounding the Regularizers. We begin with R;:
R1(WS) = || /(6P WL + Py WoS) |7
< | fo(x: P WoS) |12
< |1f(x WoS)|Z2,
since our construction guarantees that P~ ;W = 0.
By Lemma([T9]
1 1 k1
Es| fL(x WeS)[72 < —[Wollf Sm™2d 7.
Therefore -
EsR1(W§) Sm™2d =z .
R can be bounded as
R2(W$) = [ fo(P<Wg)l[7
< (s We)llze
S We)llZe + 1L ( WSl
By Lemma[20]
1f2( W22 S B [(fo(x Wi))?]
< En [fk(x)z] + En [(fL(Xva) - fk(x))Q]

dk
n

where the last step uses Lemma|[I6] Therefore, again applying Lemma [I9]

<l4+mid=T <1

EsRo(WE) <1+ Esl|fr(s WaS)||2:

R3 can be bounded as
R3(Wg) =E, [(fL(% P. W + P>kWQS)2]
[(fL(2: P> WS))?]
E, [(f1(z; WS))?] + E, [(f1(x; P<xWoS))?]
since our construction guarantees P~ W = 0.
By Lemma([T9]

E
E,

By Lemma@
n [(f1(2:P<kW8))?] < 2|/ fr(x; Pk WS)lIZ2,
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which can be upper bounded by 2|| f1(x; W¢S)||2,. Therefore

EsE, [(f1(2:P<xWqS))?] < Es|f1(z; WoS)|} Sm~3d= .
Altogether,
1 k—1
EsRs(Wg) Sm™2d = .
Finally, to bound R4, observe that
[Wsll2,4 < [Will24 +[[WgS

24 = |[|[Wp

2,4+ [Wgl

2,4
. k=1 .
By the construction [|[Wg|l24 < d"7 . Also, since W, € span(P<y), by Lemmawe have
IWelloa <m™d5 [Wyp < m=3d %
Therefore |[W§|l2,4 S d*7, and thus

Ra(Wg) S d*1).

O

Corollary 3. The solution W* satisfies

IW*|[p S mid™T.
Proof. We have
IWH[r < [[WLllF+ [[Wg]lF.
By construction |[W7 || < d*=", and also
W7 F Smi W7 2.4 <m%d%.
Q Q2,4 <
The desired claim follows since we assume m > d* 1. ]

Corollary 4.
k—
W a0 S m~/4d "7

Proof. We can writte
W 2,00 < [[WZ 2,00 + IWGS™[|2,00 = [[WLll2.00 + [[W§ 2,00

By Corollary W5ll2,00 S m~Y4d"3" . Also, since W3 € span(P<y), we can apply Lemma
t0 get [|[W [la.00 < m™2d2||[W 5, || < m~2d" 2. Altogether, since m > d2¥, we get

[W¥|o,00 S m~H4d" 7

B.4 Expressivity Helper Lemmas
Lemma 16. With probability 1 — d— 10,
E,[fe(x)?] < 1.
Proof. Since || fx||z2 = 1 and f is degree k, | fx(x)|? < ny, for all x. Furthermore,
Eu[(Ife()? = 1)%] < Eu[fu(x)"] < ny.

Therefore by Bernstein’s Inequality, with probability 1 — d~1° we have

Edfi(x)?] ~1<C (N/”’“fgd ¥ ”’“l;jgd> <1

since n > d*logd > nylogd O
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Lemma 17 ([42, Exercise 4.7.3]). With probability 1 — d—19

[Eex 1|, < 5

Lemma 18. Recall

With probability 1 — d—1°

Proof. Observe that

E, (5L, ee)7 (2L, = (=L,,) B,

Therefore by [42] 5.6.4], with probability 1 — d—1°

o |BL, 0 e (2L, - Pa

since n > d* log d.

Lemma 19. On the event where Lemmaholds, for all W we have

ESEA (/205 WS))’) £ W]}

Furthermore, we have

s 11 0 WS) |32 = EsE,[(f (5 WS))?) £ —[[W][2.

Proof. We have

1
"m

2
EsE,[(fL(x; WS))?] = ESE,, <\an X)X wrar>
2

IN

~

1
< 2
— W]
The proof in the population case is identical.

Lemma 20. On the event where Lemmall8| holds,

S 06 PW) e < B[l Py W))?] <

forall W.
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Proof. We can write
En [(fo(2;P<kW))?]
= vec(W)E, [P<p(x)p(x) P<y] vec(W)

= vee(W)'5E, B, (2L, ) Fox)p()T (2L,,)}] 2L, vee(W)

<ng
— vee(W)'SZ, (ng +E, [(zfénk )%go(x)cp(x)T(z:;nk)%] . ng) 22, vee(W).
Therefore, by Lemmal[I8§]
|En[(f2.(x; P<iW))?] = || f1.(x; P<i W) | 72|
= [vee(W)22,, (B [(BL,) ex)ex)"(EL,,)}] - Par) BL,, vee(W)|

IN

vec(W)T' 2, vec(W) (’

B, [(5L,,) e(e(x)T(2L,,)}] - P

)

1
< iveC(W)TESnkvec(W)

1
= SIfe 6 P W) 3,
as desired. O

Lemma 21. For any W € span(P<y,), we have

1k
[Wll2,0o <m™2d2 ||W||p

and .
_1 _k
[Will2,e <m™3d>[W][p

Proof. For (r,s) € [m] x [d], let e(, ;) denote the ((d — 1)r 4 s)th canonical basis vector in R,
so that e%; oVec(W) = {wr},. Let ey, ..., cp, be scalars such that Sk 2 = ||W||% and

ng
vec(W) = Z CiVi.
i=1

By Cauchy, we can bound
(W, e0)| < IWls-1leqs)lls-
Observe that

2
WS- = A < AW
=1

Furthermore, since ef,. ¢ (x) = \/%a’ (Wi, x)x,
1 1
leqsE = Eu [ (ef0e()?] < —E,fx2] < —.

By Lemma An,, = ©(d~**1), and thus we can bound

—1y-3 1 k=1
[(We(r,s))| <m™ 22 [Wllp <m™2d = [[W]p.
Thus every row w,. satisfies
_1 .k
[wrlle <m™2d2 [W]|g,

SO
[Wllo,s < mT-m™2d3[[W]|p <m™ 1d%||W|p.
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C Landscape Proofs

C.1 Coupling Lemmas

Recall that LR (W) = E, [£(y, f1(x; W) + fo(x; W))] denotes the empirical loss of the quadratic

model. As in [[7]], we begin by showing the losses, gradients, and Hessians for ﬁQ(W) and i(W)
are close for W satisfying a norm bound. This is given by the following 3 coupling lemmas.

Lemma 22 (Coupling of Losses).

L(W) = LOW)| 5 d¥2m~ W3,

Lemma 23 (Coupling of Gradients).

[(VL(W). W)~ (VL(W), W)| £ a2 (WS [W ) -max | (9w £ W), W)

Lemma 24 (Coupling of Hessians).
]sz(W)[Vv,W] - VQﬁQ(W)[VV,W}‘

) ~ _ ~ 12
S AP (W + W) (dnwn§,4 + x| (Vw i W), W+ max

(9105, W), W)

+ & WJ3 4 [WII3 o

While these Lemmas are similar in structure to those in [[7]], extra care must be taken to properly deal
with the effect of the f7, terms. These proofs are presented in Appendix|C.1.2}

C.1.1 Auxiliary Results

We first prove some intermediate results which are used in the proofs of the coupling lemmas:

Lemma 25 (Coupling of Function Values).

76 W) = ol W) — fals W) < i W]

Proof.
|f(x: W) = fr(x; W) — fo(x; W)
1 - T T T / T T 1 " T T 2
= ﬁ Z U(WU,TX + W, X) - U(WOJ‘X) -0 (WO,TX)(WT X) - 50 (WO,TX)(WT X)
r=1
1 m
< N Z 0" | oo IW %[
r=1
1 m
< T lwlx|3.
r=1

Lemma 26 (Coupling of Function Gradients).

(T F1(06: W) + T fo (6 W), W) = (Ve 06 W), W) | € = 3 o

r=1

33



Proof. Taylor expanding ¢’, we have
lal(ngrx +wlix)— o' (wl,x)+ o”(wgﬂ,x)(w x)| < |wlx|%
Therefore

(Vw15 W) + Vaw fo (x: W), W) = (Vaw f(x; W), W)|

= w2 i ) (W) 0" (WG, 3) (W X) (87 %) — o (Wi 3w %) (%))
< filw x|+ W) = (o )+ 0" (] ) ()|
< j%gw?xnwfxﬁ
O
Lemma 27.
ma |(Vow f(xis W), W)| £ By [ (7206 W) T 4 antmt W Wi

Proof. We can decompose

En [(Tw £ W), W)?| < 2E, [(Vwf(x:0), W)?| + 2B, [(Vwf(x:0) = Vw /(3 W), W)?

‘We can bound

(Vw f(x;0) — Vw f(x; W), W)2 < |[Vw f(x;0) — Vw f(x; W) || W%
~ " d
< HWH% 2_; E |g’(w§7.x) — U’(Wg:TX + W?X)

| 2
m

- d
IWIE " S (whx)?

r=1

IN

A

d2 2 A7112
— W %W %-
< WIEIWIE
Thus
A7\ 2 < X 2 d2 2 A2
B, [(Vw (W), W)2| S By [(f20 W))?| + S W W],

So

max
i€[n]

n 1/2
<va(Xi§W)7V~V>‘ < <Z<va(Xi§W)7V~V>2>

Z 2 ) 1/2
(n(E (W2 + W) )

E. (7206 W))?]” + dndm =t W] | W]

N

2/\
m\»a
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C.1.2 Proof of Coupling Lemmas
Proof of Lemma By Lipschitzness of the loss,
L(W) = L2(W)| < E, €y, f(x; W) = €y, fL (6 W) + fo o W))|
SEn [f(x W) = fL W) = fo(x W)
1 m
< —=> Eqlw;xf
=Y

d32m

< C\f Z w13

<Cm~ 1/4d3/2||WH§’,4-

Proof of Lemma[23] The gradients are
(VL(W), W) = E, |¢/(y. £(x: W) - (Vw f (x W), W)
(VEQ(W), W) =B, [£(y, f10 W) + fo (W) - (Vaw 106 W) + Vi fo (3 W), W)
Therefore
(VL(W), W) — (VL(W), W)
< B [y, S0 W) + fo (3 W))| - [(Tw f1.(x5 W) + Vi fo(x W), W) = (Vi f(x; W), W) |
[w’( FL6 W) + fo s W) = £(y, £xs W) - [(Tw W), W)

m

Z (W x|wTx[2] + B (|06 W) = fulx W) = fo(x W) - [ (Vaw f(x; W), W)

.

by Lemma @ The first term is

m

- 2
fZE [Tl W] < —— Z TR+ T

r=1

m
<< \/ﬁ ; w3+ 1w 13

< Ca¥Pm (W, + W) -
The second term can be bounded as
Eo (1106 W) = fL(x W) = folx W) (Vaw £ W), W)

< B |06 W) = f1( W) = fo (s W)l - max (Vi (xi; W), W)|

< O W (Ve o W), W)
T i€n

by Lemma

Proof of Lemma The Hessians are
V2L9 (W)W, W]

= En

Oy, fL(s W) + fo(x; W))

HMS
5
S
s
NeJ

L"(y fL(x W) + fo(x; W) ( Vw f1(x; W) + Vw fo (x; W), W>)>2]
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and

VZL(W)W,W]| = E, le (y, f(x; W)) \anr w0r+wr)Tx)(wZ“x)2]

En £ (3, (s W) (V£ (W), W’

The difference between the first terms can be bounded by

En [(¢/(y, fL(x; W) + fo(x; W) = £ (y, f Zar (wg,x TTX)Q]

i - T N2 (A (L M, T T
+En -\/ﬁ;KWT X) (U (WO,TX) o (WO,TX+WT X))|‘|

[ 1 & 1 i
< B |1f106 W) + fo(xi W) = flxs W) —= 37 [Tk | + —=E, | 3 [w! x| W] x|
| ¢ i & NP
1 m m 1 m
< B | [ Do Iwlxl ) (DX ) |+ =B | [whal e
e | () (5 N )S
1 m
< 32 Ik 2 —]E 34 21wl ol?
< ot | Xl Dw x|+ = Z Wl 2wl
d5/2 m 3 _ ) d32 m
< PR (S ) (i) + i 2o (s + 5 1)
r=1 r=1
d5/2 - d3/ 5
< S W AW + T (W + (W)
< O (d2m = (Wl + IWIE.) W) -

The difference between the second terms is upper bounded by

E, {(f”(y, fLs W)+ fo(xs W) — 07 (y, f(x; W)))Wwf(X;W),VNV)Q}

+E | (Vw206 W) + T fg (6 W), W) ) — (Ve o W), W)?

The first term can be bounded by

max(Vw f(x;; W), W)2 - E,, | f(3x; W) + fo(x; W) — f(x; W)

i€[n]

max(Vw f(x;; W), W)2 - Cd*2m~4|W |3 ,.

1€[n]

IN
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Also, by Lemma [26] we can bound

£, | (Vw206 W) + T S W), W) — (Vw3 W), W)?

< E, <f2 W x||w] x?) (VW L5 W) + Vaw fo (W), W) + (Vw f (x; W), Wﬂ
m 1 m ~

<, (St ) (S wtsitat 2 st )|

(f ~ Vin &

2

1 (& ~ 1 &
S E, |— |wix||wlx|? +max(Vf(x;, W), W) -E, | —= wlx||lwlx|?
S B | (DI ) (Ve W), W) B | 2 5 W
3 d32 190 [ 4+ (7 o, W), W) - 2m =5 ([W 0 4 W)

r=1

< AIWIE I WIB oo+ max (Vi W), W) -2 (W + W, )

C.2 Proof of Lemma[3

Proof. We would first like to show that the quadratic model has good landscape properties. To prove
this, we begin by showing any approximate stationary point must be “localized," in that the values of
the regularizers at these stationary points must not be too large.

. . k—1
Lemma 28 (Locahzatlon) Let Ay = Epmins A3 = m2d= "% pins M = d=26="Deg, . Assume
m > max (d¥tin2e 2 o+ /3¢ 87/13 n am‘fn) and v < m~1. Then, for any v-first-order

stationary point W 0fL>\, we have

Ro(W) < d2+D/5g /s
R3(W) <m~2d 5 e /3

— min

Ry(W) < d™5 e /3,

mzn

IN

Next, we show that for these localized points, the landscape of L9 is “good.”

Lemma 29. Let W} = P<,;W*, W = P« W. There exists a universal constant C such that

Eg [VQﬁQ(W)[W*S, W*S|| — (VLO(W),W — 2W} + W) 4+ 2L%(W) — 2L°(W™)
(49)

m A [WIB, + d*m = (W p(|Wi |[p + Wi F) + Rs(W*)F + Rs(W )%)
(50)

As a corollary, we obtain that for localized W, this error term can be made arbitrarily small for
sufficiently large m.

Corollary 5. Assumem > d— 3 L 5;5,2/ 3. Then, additionally under the assumptions of Lemmali,

any v-first-order statlonary point W satisfies

Es |V2LO(W)[W*S, W*S|| —(VL? (W), W —2W} + W)+ 2L% (W) —2L2(W*) < £,nin.

Our final step is to show that the landscape of L is good. To do this, we first show that the landscapes
of the quadratic model and original model couple for localized points. This coupling is given by the
following lemma.
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Lemma 30. Assume the conditions of Lemma 3] Corollary[3] and let W be a v-first order stationary
26(k+1) ,22/3
3 € . Then,

min

point. Furthermore, assume m. 2 nd

L(W) - I:Q(W < Emin

)
‘ﬁ(ww — LR2(W*)| < ermin

‘(Vﬁ(W),W COWE £ W) — (VIQ(W), W — 2W + W)| < epmin

’ES [v“'i(W)[W*s,W*sﬂ _Es [inQ(W)[W*s,W*S]} < Emin-

An immediate corollary is that the landscape of L must be good.

Corollary 6. Let W be a v-first-order stationary point of L. Under the same conditions of Lemmal3]
Corollary[5] Lemma[30} we have

Eg [VQJi(W)[W*S, W*S]} — (VL(W),W — 2W} + W) + 2L(W) = 2L(W*) < epmin.

To conclude, we must show that adding the regularizers has a benign effect on the landscape

Lemma 31. Define
R(W) = MR1(W) + A2R2(W) + A3R3(W) + AR4(W) (51
10 be the total regularization term. Under the conditions of Lemma[3| we have

EsV2R(W)[W*S, W*S] — (VR(W), W —2W3 + W)+ 2R(W) — 2R(W*) < £pin. (52)

Lemma 3| now directly follows by adding the results of Corollary [6|and Lemma

C.3 Proof of Corollary/[l]

Proof. Let W be an (v, y)-SOSP of Ly(W). Then

<VL)\(W),W — 2W2 + WL> < V”W — 2W2 + WL”F
<v.-mMidE—se1/6
< m—1/4d§—ég—1/6
< Emin,

. _ 4k—2
since we have chosen v < m~Y2 m >d" s

e~ 14/3 Also,

VZLA(W)[W*S, W*S] > —||[W"| %

> —’}/ml/Qd(k_l)/Q
> - 1/AgUe1)2
> —Emin,

since we have chosen v < m*3/4, m > d2k=1g—4, Altogether, we can bound
L\(W) S L\(W*)+(VL\(W),W —2W] + W) — ]ES[VQL,\(W)[W*S,W*SH + Emin < Emins

as desired. O
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C.4 Proofs of Intermediate Results

C.4.1 Proof of Lemma[2§]
Proof. Let W be an v-first-order stationary point of L. Then
(VLA(W), W) < v[|[W]p. (53)
We have that
(VLO(W), W) = E, [('(y, fL06 W) + fo(xs W) - (2f(x: W) + fr.(x W)

First, by convexity we can bound

E, [0y, fu(6 W) + fo(x W) - (fo(x W) + f(x; W))] = L?(W) — L9(0) > 1.

Secondly, we can bound

d
< — W2,
m|| %

-
NE
B

ﬂ

IEy, [¢'(y, fr.(x; W) + fo(x; W) fo(x; W) < E, [

Finally, by Lemma 23]

(VLO(W), W) — (VL(W), W) Sd‘"’”m‘”“llwllgz;~m?)]<|<Vf(x;W),W>|~
’ i€[n
Altogether,

(VE(W), W) > 1 — L |W|2 — Cd®/2m /4

vm

We next turn to the regularizers. R, for i = 1,2, 3 are all quadratics, so (VR;(W), W) = 2R,;(W).
Also it is true that (VR 4(W), W) = 8R4(W). Plugging into (53), we get

VWl > <v (ﬁ(W) £ MRUW) + ARa(W) + AsRa(W) + /\4R4(W)) ,W>
—1—dm 2 |W|} — Cd**m~5|[W|3 , - max (V£ (x; W), W)l.
? i€ln

o (Vo W), W)

Therefore (using v < m~1/4),
MRy (W) + AaRo (W) + A\3R3 (W) + MR4 (W)
< 1+dm 3| W3+ d*m =5 [W3, - max | (V£ (x; W), W) | + [ W[

~

< L+dm W3 + & 2m T [WS, - (nFE, [(fo (6 W)X + dnbm~ 2 [W3),
where the last step follows from Lemma

We can bound

En [(fL(x: Pk W) + fL(x; P<eW))?]

En [(fL(x: Pk W))? + (fL(x; P<xeW))?]

E, [(fo(x;PoxW))?] + [ fo(x P<uW)l|7

R2(W) + R3(W).

En [(f1(x; W))?]

ANRZAN

Therefore by AM-GM,

Ao Ro (W) + )\3R3(W) + )\4R4(W) (54)
S1+dm 2 |W[E +m 13 |WS, +m Tk, [(f1(x; W))?] +m ™ 1{|WI3 d* *nim =2 |W|%
(55)

S1+d|W3, +m™1d 203 W3, +m~1d®| WS, +m ™ in (Ry(W) + R3(W)),
(56)
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where the last step uses |W||p < m7 |[W||g.4.

Since m~in < Emin/2 < Aa/2,\3/2, we have

_1 1 1
M| WISy S T+ d[WI5 4 +m™1d2n2 W5, +m™1d*|W|3, (57)
Therefore, plugging in \y = d—2*~Vg, .
Wik < max (4572305, a5 10 mt/12a24/31/0p 0 110 =Lk +/2¢, 12
L . (58)
Since €., < 1 we trivially have d 7 577;7{8 < d* ;1%6. Also, since m > d4k+4n25;3n, we
have
d%e—l/ﬁ > m,1/12d23k+ 1/6 —1/3.
Additionally, assuming m > d*¢/ 3(’”1)5;31/13, we have
AT V6 S g gL/ 712
Therefore we can bound
< q¥Fto1/e
and thus
Ra(W) = [W]5, S d™5 il (59)

In this case, the RHS of can be upper bounded by d||W/||3 ,. Plugging back into (56), we get

AQRQ(W) +)\3R3( ) < d2 k+1)/3 —1/3

mzn )

which yields the bounds
Ro(W) S d?M0/3 8 (60)
Ra(W) Sm~2d"c e, 1P, (61)
O

C.4.2 Proof of Lemma[29
Proof. Observe that
VLO(W)[W, W]
=E, [ (y, fr(x; W) + fo(x; W)) Z(M WOr fX)Q]
B |00 Fu W) + ol W) (T o W) + T ol W), W))) |

and therefore for any diagonal matrix of random signs S = diag(oy,...,0m),

VLO(W)[W*S, W*S]
= 2E, [('(y, fL(x; W) + fo(3x; W)) fo(x; W¥)]

+E, [y, fr(x; W) + fo(x; W)) (\/> Z aro, (o' (Wi x)x"wi + o’ (w ,x)w! xx"w:
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The expectation of the second term over the random signs S can be upper bounded by

2
1 m
EsE,, o (o (W Tox . 1T /A
S [(\/m;ﬂa or (o' (wo,x)x" wy + 0" (wg . x)w, xx" W)

S

1 & . 2
= En lm Z (O-I(Wg:TX)XTW’I‘ + O-//<Wg:7‘x>w’l‘ XXTW,,,) ]

N

1 m
E, T %2 T T %\2
|jn TEZI(X wr)e+ (w,xx" w))

1 . .
S D (Wil 4 & we P w )
r=1
d d?
< Z|IW*||2 2
N mH % + 5.4
S moEE s W,
Therefore
Es [V2LO(W)[W'S, W"S)]| (62)

<2, [0 (y, f (W) + fo (3 W) fo (3 W) + C(m™3d™ 5 +m~1d+ [WI3,) (63)
Next, define A = W — 2W7 + W . We have

(L9UW), A)
=E, [E’(y, fo(x; W) + fo(x; W)) <\/1% (aro’ (Wi, x)xT A, + arU/I(WaTX)WZXXTAT)>]
=E, [K’(y,fL(x;W) + fo(x; W)) <fL x; A) Zar (Wg.,x WZWXXTAT>‘|

=En [0'(y, fL(x: W) + fo(xs W) (fL(x; W) — 2fL(X7 WL) + L Wi) +2fo(x; W)

m

+E, [y, fL(x; W) + fo(x; W)) ( Zar W07 x)wlxxT (—2(w} ), + (WL)7-)>

The second term can be bounded in magnitude as

En |0y, [ W) + fo(x; W)) <\/17n Zara”(ngrx)wfxxT(—%Wz)r + (WL)T)> |

IN

l\FZ|W xx" (=2(W), +(WL)r)|]

N

ﬁ S w4+ Hw)e )

< Em”E[We([Wille + W)
Also, we have that
En [l (y, fr (6 W) + fo(s W) ([ W) = fr(xs Wi))]| < En | fr(x; W — W)
E, [(fL(xPxW))?]’
= R3(W)?,

Nl

and similarly

Bl (g, f1.06 W) + f(x W)) (2.0 W) = fL(x WE))]| < B | fr(x; W* = W) S Ra(W")?2.
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Altogether, we have for some constant C* > 0,

(LOUW), A) 22E,, ['(y, f1.(x; W) + fo (3 W) (fo(xs W) + fL(x; W) — fr(x; W*))](64)

— O (dPm7E | W p([Willr + [Willr) + Rs (W) + Rs(W)*). (65)
Finally, by convexity of ¢ we have
LO(W) — LY(W™) (66)

< Enll(y, fo(x W) + fo(x; W) (fL(x; W) + fo(x; W) — fr(x; W¥) — fQ(X;W*))](~67)

Combining (63), (63), and (67), we get that
Es [V2LO(W)[W'S, W'S]| — (LY(W), A) +2(L(W) — LO(W™))
< O (m7 5 T AW P WR(IWE e+ W #) + Ra(WF + Ra(W)?).
as desired. O
C.4.3 Proof of Corollary 3]
Proof. First, note that we have the bounds
IWEle < d®=D72
Ry(W*)z < madh—1/4,
Also, by Lemma 28] for v-first order stationary point W we can bound
[Wile < m"/ 4| Wila,e < m!/ a5~ 8e, 1F

Tk+4+1 72/3
in

Rs(W)2 <m Y4d 5 e

Furthermore, since vec(W ) € span(P<k), we can write

Ra(Wr) = vec(Wy) Scpvec(Wr) > Ao, (8)[Wr|[f = O(d ") - [ W

Therefore

Wil < d* DRy (W)E <d™v &, 207,
Altogether, by Lemma@ we can bound

Es |V2L9(W)[W*S, W*S]] —(VLO(W),W — 2W} + Wp) + 2L%(W) — 2L9(W*)

SmTET 4 A WL+ Em W R([Wille + [Welle) + Ra(W*)2 + Ry(W)3

_1 k41 _1 k+3 2k—1 _1/3 2 _1 1 k_ 1 —1/6 5k—1 _2/3 _ 1 Tk41 _2/3
SmTid T +mTdzd s Emin +d'm=2 -mids ®Emin ~dE min T Tdr Emin
1 k=1 1 ,TRET _1/3 _1 Tht10 _j5/6 _1 TR+l _9/3
— 1
=m~2d 2z +m d s g, +mid 5 g " +m id = g 1
Sfminv
. 14k+20 —9292/3
since we have assumed m 2 d™ s Emm/ . O

C.4.4 Proof of Lemma 30

Loss Coupling. By Lemma 22| we can bound

‘ﬁ(W) —EW)| < @¥2m VYW

|3
2,4
—1/4dk+15*1/2

min

<m

S Emin
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4k+4 .—6
form > d** e 0 .

Similarly,

L(W*) — L2W")

< @2 W,

< B2 VA g3(k=1)/4

< oin

since m > a3+ 4

Gradient Coupling. Next, by Lemma[23] we have
(VL(W),W —2W} + W) — (VL?(W),W — 2W} + W)
SEPmTVA WS4+ A

54) max | (Vw f(x; W), A)l,
where A := W — 2W7 + W, First, observe that
[All2,a < W24 +2[WELll2,4 + [[Will2,4
< | Wllaa + 2m~ VAdR 2 W ||+ m = 4dH 2 (WL ||,
where we applied Lemmal|21] Plugging in the bounds for [[W |2 4, [[W |

A s < d5—oe, /6 4 1/4gk/2. q7et g 23

2,4, WE get

min min
E_1 _—1/6
< ds 66‘nn’n )
: 4k —2
since m > d*¥e = .

Also, by Lemma 27

max (Vw f(x; W), A)|

< n'2E, [(f1(x; A2 + dnFm= 2| W| | A p
1/2 1
<0, [(F206 A7) + dnd [Wa o Alla.

Observe that
En [(fL(xA))°] S En [(f2(x Pk W))?] + Ey [(fL(x: Wi))?] + En [(fL(x3 W7))?]
S Rs(W) +E, [(f(xs W))?] + E, [(fL(x; W7))?],

where we first decomposed W = P+ ;W + W, and then used the definition of R3. Since
W, € span(P<;), by Lemma[20| we have

Eq [(fo(s W) S /e W72 = R2(W),
and similarly

En (L WL))?] S En [(f5(2)?] +En [(fLs W) — f(x))?] S 1.

Altogether
E, [(f1(x 8))7] £ Ra(W) +Ra(W) £ d?F+0/5 18,
Plugging this back in,
o [(Vw f (6 W), A)| € nl2d "< 30 nbd a7 e
e|n
SUATARRE

since d=% < €,in. Therefore
(VL(W),W —2W?% + W) — (VL?(W),W — 2W} + W)

3/2, —1/4 gk—Li _—1/2 1 ,2k&2 —1/3
< d’’“m d*"ze, " -nzd 3 €,
o —1/4, 1 5(k+1) —5/6
=m n2 8 Emin

S Emin,
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20(k+1) ,22/3
3

sincem >n?d~ 3 ¢, 5

Hessian Coupling. By Lemma [24] we have
’ES [VQﬂ(W)[W*S,W*S}] ~ Es [inQ(W)[W*s,W*S]H

< Eg ‘VQJi(W)[W*S,W*S] - VziQ(W)[W*S,W*S]‘

S P (W 1 I) (W 0+ s (T i W), WS)

+ & WI|3 o [W73

By Lemma[27]
Es max |(Vw f(x;; W), W*S)|*

i€[n]
< nEsE, [(fr(x; WS))?] + d®nm ™" |W 7| W* || %
Sn-mTH W E + d?

7k+7 _
< nd 1/3

€min >

13,4

where we used Lemma 19 to bound ESE,, [(fL(x; W*S))?], and then plugged in the bound for
W ||2,4 from Lemma[28[and the bound for |[W* |2 4 from Theorem 2]

By Corollary 4, we can bound ||[W*||2,00 S mid'T. Plugging these two bounds in, along with
the bound for [W||2 4, we get

‘Es [V%(W)[w*s,w*sﬂ — Es [v2£Q(W)[W*s,W*S]”

< PPmmEd e 2 ond T e d T e Y m 2

Emin Emin min

1 13(k+1) —5/6
<mTind 5 g, +m

< Emin,

_ (7k+4) _2 3

26(k+1) ,22/3
3

M b
since we've assumed m > ntd= s e o

C.4.5 Proof of Lemma[31]
Proof. Let us first consider the regularizer R4(W). From the proof of [7, Corollary 3], we have
EsV?R4(W)[W*S, W*S] — (VR4(W), W) + 2Ry (W) = 2R4(W*) < —R4(W) + CR4(W*)
for an absolute constant C'. Thus
EsVZ*R4(W)[W*S, W*S] — (VR4(W), W — 2W3} + W) 4 2R, (W) — 2R4(W™*)
< —Ra(W) + CRy(W*) +8[WIizs D [Iwell* IKWE o[l + [{W L} ])
< —Ra(W) + CR4(W*) + 8| WII3 4 (2 W llza + [Wl2,)

By Lemma[21] we can bound

Wiz + [Well2a < m™ 12 ([WEle + [Welr)
< m VAT 2

min

< m-YVAgF—s.2/3

mzn :

Plugging this in, along with the bound for ||[W||3 4, yields
EsVZ*R4(W)[W*S, W*S] — (VR4(W), W — 2W3; + W) 4 2R, (W) — 2R4(W*)
SRa(W?) ¥ e, I m /a5 78e 2

< RA(W*) 4 m~ Vg 5 110

Emin

44



and thus

EsV2A\R4(W)[W*S, W*S] — (VAR4(W), W — 2W3 + W, + 20 R4 (W) — 2\, R4 (W?*)

S MRA(W?) + Aym~VAg 5 11/

_1/4 ;5k%2 _5/6
55min+m /d s Emin

5 Eminy
where we used \yR4(W™*) < €5, and Ay = d—2(k=1)¢ . and then used the assumption m >
d(20k+8)/3€—22/3_

We next deal with the other 3 regularizers. Observe that we can write
Riot(W) := M R1 (W) + MaR2 (W) + A3R3(W) = vec(W)T Avec(W)
for some psd A € R™4*™d We get that
EsV*Riot(W)[W*S, W*S] — (VR 0t (W), W — 2W] + W) + 2R (W) — 2R 01 (W*)
< 2EBsRi0t(W*S) — 2R 0t (W) + dvec(W)T Avec(W?) — 2vec(W) T Avec(W 1) + 2R 10t (W) — 2R 0t (W)
< 2EsRi0t(W*S) 4 4vec(W)T Avec(W3) — 2vec(W) T Avec(W ) — 2Rt (W3).
Since W, W7 € span(P<y), we get that
vec(W)T Avec(W 1) = Agvec(W)T T vec(W),

and
vec(W)” Avec(W3) = Aavec(W) o vec(W5).
Therefore
4vec(W)T Avec(W3) — 2vec(W)T Avec(W 1) < 2 avec(Wi )T S<pvec(W)

=20 R(W1)
S Az
5 Emin-

Also,

EsRiot(W*S)

= MESE,, [(fL(6P=xW*S))?] + \oEsE,, [(f1.(x; P<xW*S))?] + AEsE, [(f1(x; P>xW*S))?]
<mPd™T epin (BSE, (£ W*S))?] + EsE, [(fz(x; W*S))?])
- 1
< 1 . k-1 L * (|12
Nm2d 2 Emin m”W ||F
_ k=1 "
Semin-d 7 ||W ”3,4
S Emin-
Therefore

Es V2R 10t (W)[W*S, W*S]|— (VR 101 (W), W—2W*% + W 1)+ 2R 101 (W) —2R 10t (W*) < £yt
(63)

Summing this with the effect of R4 on the landscape, we obtain
Eg [V2R(W)[W*S, W*S]] — (VR(W), W —2W} + W) + 2R(W) — 2R(W*) < €pin.

as desired. O
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D Optimization Proofs

D.1 Geometric Properties

In this section we show that the regularized loss L) is £-smooth and p-Hessian-Lipschitz inside a
norm ball.
Lemma 32 (Loss Hessians are Lipschitz).

Hv%(wl) - v2£(w2)H < &*2|W, — W p.
op

Proof. Recall that

VEL(W)[W, W] = E, [5’(31, FOGW)) ==Y a0” ((wo, + Wr)TX)(VVfX)Q]

[0, £ W)) (Vw f (3 W), W2
Thus
‘(v?ﬁ(wl) - v?ﬁ(wz)) [W,W]‘

<—= Z]E (W "(y, f(xs W1))o" ((wo,r + W %)) = €' (y, f(x; Wa))o" (Wo,r + W3 ,%)))|

En [£"(y, f(x; W1))(Vw f (3, W), > —"(y, f(x; W2) ) (Vw £ (x; W2)7V~V>2’
To bound the first term, since £', o’ are both Lipschitz and can be upper bounded by 1, we get
1€ (y, F (s W1)o" (Wo,r + W1 %)) = £ (y, f(x; Wa))o" ((wo,r + w3, X))
<1y, F(xs W) = £y, f(x; Wa))| + |0 (Wo,r + Wi %)) — 0" ((Wo,r + W3,x))]
< |f(xs W) = f(x Wa)| + | (Wi — wa,) x|

< = war x| 3 oo 4w 0) — (o + w2 0)

1
< (Wi — wa, ) x| + NG ; [(w1,s — wa,s) x|

Therefore
Z]E |(W%)? (€' (y, £ (3 W) o (Wo,r + W1, %)) — €' (y, (3 W2)) o (Wo,r + W5,%))) |
1 3 1 m 3
< ﬁEn |(wzx)2(wl7,. — W27.,-)TX| + - Tgl E, ‘(WZX)2(W1,5 - Wz,s)TX|
d3 /2 M
Z [[¥%,.[|* Wi, —worl+ 7||W||F Z [W1,s — Was|
s=1
d3 /2

< \FIIWIIFIIWl Wallr.
To bound the second term, we have
' (y, Fos W) (Vw (x5 W1), W) = (y, £ W) )(Vw f(x; W2), W)?
< [(Tw (6 W), W) = (Vw0 W), W2 |+ (Vi f o W), W2 187y, o W) = £y, fx; W)

< [WIEIVw f (3 W1) = Viw f(x; Wa) [ Vw £ (x: W1) + Viw £ (x; W)
+ [ WIEIVw £ (5 W) [P £ (x: W) — f(x; Wa)].
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Since ¢’ is bounded by 1, we can bound || Vw f(x; W3)|| < v/d. Next, we have

1
IVw f(3x; W) = Vw f(x; Wa) |7 < EHU/((W&WLT)TX)X — o' ((wg,, wa,r) T x)x|?
d & 2
— Z |(W1,r - WQ,T)TX|
m r=1

< Cyw, - w2
=m 1 2 F-

IN

Finally,

|lf(x; W) — f(x; Wo)| < — Z|W1T Wor) x|

< \[le - Wa[F.
Altogether,

(g, 06 W) (Tw (6 W), W2 = £y, £ (x5 W) (Vaw f (x: W), W)?)
< W32 Wy = Wallp.

Therefore

|(V2L(W1) = V2L(W2) ) [W, W]| < [[W 32 W — Wal

SO

Hv%(wl) “VILOWL)| < a2 Wy — W[

op
O]

Lemma 33 (Regularized loss is Hessian-Lipschitz). The regularized loss Ly is O(AyI'®)-Hessian-
Lipschitz inside the region {W | |[W||p <T}

Proof. Fori = 1,2,3, the regularizer R; is a convex quadratic, so V?R;(W1) = V2R,;(W3). As
for the regularizer R4, we have

2 m
VIR4(W)[W, W] = 32 (Z [[w | [*w Wr> +8[Wl3, <Z2 )2+ [[w||? IIWr|2>

r=1 r=1

Therefore, for [|[W|z = 1,

V2R (W)W, W] = V2R 4(W2)[W, W]|

m m
<32 (Z(val,rn?wir + l[wa, PwE,) ) (Z Iwa 2wl — ||wQ,T||2w2T,T>v~vr>
r=1

r=1

)12

+8 2 Wil34(wi, w,)? = 2| W[5 4 (w3, %,)? + ([Will5allwr[* — W23
r=1

We can bound the first term using

m

D (Wi lPwi, + llwe,|Pwg, )W,

r=1

m

<2

rT=

(HW1||2 6+ [Wall36) IW]le
= HWIHQ,G + ||W2H2,6-

+ [lwar [P, |
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and

m

m

Z(”WLTHQW,{,T - ) 2 T, )VNVT < Z H||W1,T||2W1,r -
r=1 r=1
m

<> lwielPw, —
r=1

m
S Iwir = wa (W ? + lwa,|*)
r=1

< |IW1 — W2||F(||W1||§,4 + HW2||§4)

war || W,

For the second term, we bound

m

D IWal3a (Wi, ¥0)? = [Wal3 4 (w3, W)

r=1

m
< Z H||W1||2 4 W1, rW1 r ||W2H2 4W2,rWo rH
m

<> (Iwals,

r=

3
—

D) (NIWI3 w1 — W3 swa.r||)

=

<
S

T

(W3,

) (IWIZ g+ [Wall3 ) Wi — wa, |

H

(||W1||2 4+ W23 4) (

17+ W23 4| W2l r) [W1 — Wal|p.

Finally, we bound
2 (1wl

<D IWlEallwarl® = W34l we, 1]

r=1

<D IWllga = IWall o] Wl + [Wall3 4 [ Wl = llwe, |

r=1

— [IW2[3

3

3

m

Z [worll + 1w DlIwr

< IWllf [[IWall2,s — W23 4

+ ||W2||2 4) + W3 4 (IWillr + [[Wel )| W: —
+ (W3 4) + [ Wall34(IWillp + [[W2[F)) [W1 — Wap.

W1 %Wy — W2||2 a(]
(W[ 3(]

S
<

Altogether, when ||W1|| g, || W2||r <T, and using ||W]||2,2x < [|[W||r for & > 1, we get that
’va(Wl)[WW} - v2R4(W2)[VV,VV]‘ <TO|W, — Wl.
Therefore L) is O(I'®)-Hessian-Lipschitz.

Lemma 34 (Regularized loss is smooth). The regularized loss Ly is O(A\4I'® + m!/?)-smooth.

Proof. Recall that
VZi(W)[W,W] = E, lel(y f(x; W)) Zar WO rt WV)TX)(W?X)2‘|

[0, £ W)) (Vw f (W), W2
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and thus, for |[W||p = 1,

V2L(W)IW, W[ <~ 3" B [(#7 %)) + Enl|[ Vv f (x: W12 W]

m r=1

< LWz 4w
m

<d

Therefore L is O(d)-smooth.

Next, consider the regularizers. R, Ro, R are all convex quadratics, and since ||o(x)|| < v/d, we
can upper bound the smoothness of R1, R2, R3 by d. Therefore the smoothness of A\;R1 + AaRs +

—1

. k
A3R3 is at most m'/2d= "7 epin - d < mt/2,

Finally, we consider R 4. For |W/||z = 1, we can bound

m 2 m
VZR4(W)[W, W] = 32 <Z IIWrIQWTTVW> +8[W3 (Z 2(w, w)? + ||wT||2||vVT||2>

r=1 r=1

m 2 m
<32 (Z IIWTI3IIV~VTI> + 24 WII34 Y [lw, || [, ||
r=1

r=1
< 32(W(SsIWIF + 24| W3, | W 1%
< 32|W[5 6 + 24| W I3, [ W[5
< 56|/ W%

Therefore Ly is O(A4T'® 4 m!/2)-smooth. O

D.2 Proof of Theorem 3]
We prove the following formal version of Theorem 3]

Theorem 5. For v,7, choose n = Tfng, for sufficiently small constant c and define ¢ =

min(v, y2m=5/2), o = O(&). Then with probability 1 — d—8, perturbed gradient descent reaches a
(v,7)-SOSP within T = O(m3&~2) timesteps.

Proof. We follow the same strategy as [30, Theorem 8]. We first show that perturbed gradient descent
stays in a bounded region. Then, we can use the smoothness and Hessian-Lipschitz parameters in this
region for the purpose of a convergence result. Throughout, we condition on the high probability
event where the construction in Theorem 2l holds.

Let T' = m!/2. 1 claim that perturbed gradient descent stays in the region {|W|| | [W| < T'}. We
prove the claim by induction. |[W?|| = 0 so clearly the base case holds.

Assume that ||[W?|| < I'. The gradient descent update on W is
W« W — ngVL(W!) =V (MR1U(W) + AaRa(W) + A3R3(W')) — nAa VR4(WY).

Observe that the learning rate is n = T‘;’ng = TCFF for a sufficiently small constant c. We can bound
[VL(W?")|| < v/d and, as in the proof of the previous lemma,

[V (MRUW?Y) + AR (W) + AR5 (W) || < m2 | W 5.
Therefore
anﬁ(wt) + 7V (MRUW?) 4+ A Ro (W) + A R3(WH)) H SATITVA 4+ AT m 2

5 )\ZIF—5m1/2
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Finally, since the w,. component of VR4(W) is 8]|W |3 4[|w[*w,., we have

{W' =\ VRy(W)}, = wy (1= 8hanl|[ WHI2 4 [[wr?)
t

wi (1= 8l 0| W3 4| wi )

Note that
8P WH |5 4 [wh|* <8c <1
for ¢ small enough. We then have

— 2
IW* = A VRy(W)[[5 = D Iwil|* (1 — 8l W3 4wy 1?)
<D Iwil? (1= 8l [ W I3 4w ]|?)

= [W![5 =8I~ [W'|I5
< W[5 — 80~ 0m ™ [W'|[.

We split into two cases. If [W?||p < T'/2, then
W = A VR4(W)||r <T/2
and

ani(wt) + 0V (MRLW?) + AR (WH) + AsR3(WH)) H < @21 P52
<TI/4,

so [[WiHL|| < 3T/4.
Otherwise, I' > ||W'||p > T'/2, so

c
< - m2
<T@ 64m )

Then

||Wt+1||F <T(1- 67047”—2) +d2(k_1)€:n%nr_5ml/2

C
<T (1 _c —2) 7
= 128"
since T'¢ = m?3 > m5/2q2k-1"1

min®

Finally, the perturbation moves at most 7||=|| 7, and since E||Z!|| z = o, with probability 1 — d~°
each of the T perturbations is bounded by I'm~31~! >> o Therefore even after the perturbation we
have || Wt!||z < T, completing the induction step.

Lemmas @, @ tell us Ly is O(A\ym®/?) Hessian Lipschitz and O(\ym?) smooth throughout the
entire gradient descent trajectory.

Our goal is to converge to a (v, v)-SOSP; this is equivalent to converging to a £-SOSP as defined in
(30, 31]], with & := min(v, W) > min(v, y?m~%/2). Therefore by [30, 31]], with probability 1 —
d~? perturbed gradient descent on the regularized loss with learning rate ) = o7 and perturbation
radius ¢ = ©(¢) will encounter an £-SOSP in at most 7' = O (Asm?¢~2) < O (m?:~?2) timesteps.
Union bounding over the high probability events, this occurs with probability 1-3d=° > 1—-d=%. O
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E Generalization Proofs

E.1 Proof of Theorem{|

Recall the definition of the empirical Rademacher complexity:

Definition 4. Let F be a class of functions from R? to R. Given a dataset D = {xy,...,%,}, the
empirical Rademacher complexity of F is defined as
1 n
Rp(F):=E n — ; )] - 69
D( ) oce{+1} ?ggn;az‘f(XZ)] (69)

We next show that the Rademacher complexities of the linear term and the quadratic term can be
bounded.

Lemma 35 (Rademacher complexity of linear term). Let W C R™*9, and define the function class
FEOW) = {x fE(x;P<xW) : W € WY}. Then, with probability 1 — d~° over the draw of D,

dk
Ro(FrOW) S/ — - swp [If(6 P<iW)| 7. (70)
n wew

Lemma 36 (Rademacher complexity of quadratic term). Let W C R™*4, and define the function
class F(W) := {x > f9(x; W) : W € W}. Then, with probability 1 — d~° over the draw of D,

d
RD(IQ<W)>§@~ sup [ W][% (71)

Wwew

Lemma 35 is presented in Appendix [E.2} Lemma[36 follows directly from [7, Lemma 5, Theorem
6].

Equipped with these Rademacher complexity lemmas, we can now prove the main generalization
result.

Proof of Theoremd] By Lipschitzness of the loss and Lemma [25] we can bound

L(W) =E,[l(y, f(x; W))]
SEu[l(y, fo(xs W) + fL(x; W) + Eu f(xs W) — fo(x; W) — fr(x; W)

< B[y, fo(x; W) + fLix W) +m~ % Y B, [wlx]?

r=1

< E, [0y, fo(x; W) + fr.(x W))] + Cm ™ 5[ W3 ,.

Again by Lipschitzness, we can bound

E by, fo(xs W) + fr(x; W) < Eu[l(y, fo(xi W) + fL(x: P<xW))] + E,| fr.(2; P~ W)
< Eu[l(y, fo(xs W) + fL(x; P<x W) + [ fL(x; P W) 2.

Similarly, we can lower bound

[SIE

L(W) > En[l(y, fo(x; W) + fL(x; P<x W) = Cm ™3 [W][3 4 — (B, [(fr(x; P1))?])

Since L ,\(W) < Cepin, the value of each regularizer satisfies R; (VV) < CA L&, nin. By our choice
of (A1, A2, A3, Ag), we have

RAW) = || fr(PsiW) 2. Sm2d 7,
Ro(W) = [If2(sP<xW)|F- S 1,

Ra(W) = E, [(f(; P=yW))?] Sm 2d' 7,
R4(W) = W3, < d?*=1.
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Therefore

1 d(k 1) 1 k-1

L(W) <E, [y, fo(x; W) + fL(x; P W) +C-m™1d T +m id 7,

and similarly

1 d(k 1) 1 k—1

LIW) > E,[l(y, fo(x; W) + fL(x;P<yW))] = C-m~1d 1 —m~id 7.

Since L( ) < C&min, We thus have that

1 ,3(k—1)

E.[l(y, fo(x; W)+ fr(x;P<xW))] S epin, +m ™ 1d™ 7

Next, define the set
— (W eR™?: |Wlloy < Cd'T || f1( P<W)|2. < C}.
By construction, we have W cW. Furthermore, define the function class
L:={(x,y) = Uy, fo(x; W) + fL(x;P<x, W)) : W € W}.

By the standard empirical Rademacher complexity bound, with probability 1 — d~* over the draw of
D’

Eull(y, fo(xs W) + fL(x P < W))] — B [0y, fo(x: W) + f1(x; P<,W))]] < 2Rp (L),

By the Rademacher contraction Lemma [43]], since ¢ is 1-Lipschitz we can bound (conditioning on

Lemmas [35] [36)
Ro(L) < Rp(FEW) + FROW)) +n~ 3
< Rp(FEW)) + Rp(FAW)) +n?

[N

dk d _
5\/7. sup [|fL(xP<xW)[|72 +1/— - sup W% +n
n wWew mn- wew
dk: d 1
S\/7+\/7' SUP W5, +n"2
Sy
2
< \/7
~ n

Union bounding over the high probability events, with probability 1 — 3d=° > 1 — d~%, we have

3(k—1)
4

L(W) <E,[l(y, fo(x; W) + fL(x; P<t W)+ C - m~1d
< B[ty fo (W) + fr(x; Py W))]| + 2Rp(L) + C-m~1d "1
13k dk
_|_ _

<€mzn+m id— T
n

dk
’I”L

since m > d3kF—Vg 2 O

< 6TVLIJL +

E.2 Proof of Lemma[33

Proof. Recall that we can write f1,(x; W) = ¢(x)Tvec(W), where ((x) is the NTK featurization
map. Also, recall

Sen, =By [p(x) T Prip(x) ZA viv
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‘We can then bound

Rop(Fir(W)) = Eo

sup —ZO’ZfL X P<kV6C(W))‘|

wew 1

(T

sup Z oip P<kvec(W)1

Wew;

=-E o <ny <n

sup Zol TPy (=t )1/221/2 vec(W)}

IA

iP<rp(x

1
= sup |vec(W)|=.,, Eo
nwew t
zgnk
where the last step follows by Cauchy-Schwarz. By definition,
lvee(W)ls.,, = vee(W)"S<p, vee(W) = || fL(x; P<i W)|[72.

Also, we can bound

ZUiP§k<P(X)
i=1

1/2
) /

IN

ZUiP§k<P(X)
i=1

= (nEnlp(x)"P<iEL,, Poro(x)))!/?
1/2
= (nTr (B0 [(BL, )2 Parp(x)p(x) " Pr(EL,,,)12]) )
By Lemma|18] with probability 1 — d~? we have
w [(BL) PPepx)p0) P (BL,,) ] - Par]| <

T 1
zﬁnk Zﬁnk

1

5
Furthermore, E,, [(Egnk)1/2ng4p(x)g0(x)TP§k(ET§nk)1/2} and P <, have the same span, which
is dimension ny, = ©(d"). Therefore

T (B, [(BL,,)" P00 Par(EL,, )] ) < 0(d"),
Altogether, we get the bound

< Vndk,

~

Z 0P <pp(x)
i=1

i
=L,

SO

dk
Ru(FrW) S/ — - sup [[fL(x;P<W)|Za.
n. wew

F Proof of Theorem 1]

Proof. Choose m = ntd =5 e22/3, Set the regularization parameters as A\ =
mt/2d— T 6mm,)\2 = Emin, A3 = mt/2d— T smmn,)\4 = d2k=Dg in. Also, set 7 = ny,

n = c\y 'm~3 for small constant ¢, and ¢ = O(m ™).

For v = m~ "2,y = m=3/%, & = min(v,y*m~%/?) = m~*. Therefore by Theorem E, with

probability 1 — d— we reach a (v, 7)-SOSP within .7 = O(m3c~2) = O(m!") timesteps. Call this

pointW

By Corollaryl Lx(W) < Cemin- Flnally, by Theoreml with probability 1—d 8 L( ) < Cemin-
Setting e,min = £/C, we get that L(W) < e with probability 1 — d~7, as desired. O
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G Additional Experiments

G.1 Additional Simulations
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Figure 3: We train fr, + fg with varying A\;, while keeping A3 fixed

In Figure [3, we conduct the same experiment as in Figure [T, while additionally using the R4
regularizer. We fix A3 = 0.01 while varying \;. Since we cannot compute R, exactly, we use an
unbiased estimate at every timestep by sampling a new set of x’s and computing E[f, (x; P~ W)]
on this set. In the leftmost pane, we plot a moving average of our estimate of R;.

First, we observe that even when A\; = 0, the regularizer R, is an order of magnitude smaller than
Rs was when we set A3 = 0 (50 versus 500). Furthermore, in the rightmost pane, we see that the
test loss of the model is small regardless of which value of \; was chosen. This provides additional
evidence that R is kept small throughout the training process.

G.2 CIFAR10 Experiments

To demonstrate the significance of our approach on “realistic" datasets/models, we consider experi-
ments with CNNs on CIFARI10.

[8] showed that, in practice, training the second-order Taylor expansion of the network tracks the
true gradient descent dynamics far better than the network’s linearization does. This is further
demonstrated in Figure E Here, we train a 4-layer CNN with width 512, ReL'U activation, av-
erage pooling between each layer, and the standard PyTorch initialization, on the cats vs. horses
CIFARI1O classification task. We train via SGD with batch size 128. For both the train loss and
test loss, the dynamics from training fr, 4 fo tracks the true network dynamics better than just the
linearization fr,. Furthermore, f;, + fo acheives a lower test loss than f;, (the true network beats
both Taylorizations).

f 0.9 f
0.8 — fitfo 08 — fi+fo
— f ) — fi
a 0 0.7
§ 0.6 §
£ % 0.6
204 @
0.5
0.2
0.4
0.0
0 50 100 0 50 100
epochs epochs

Figure 4: fr + fq tracks the true network dynamics far better than just fr.

In Table[I, we additionally measure the test loss of the linear and quadratic terms after 100 epochs
of training the full model. We observe that both the linear and quadratic term have a nontrivial loss
(< 1), and thus learned a nonzero component of the signal. This provides evidence that in real neural
networks, both the linear and quadratic terms learn a nontrivial component of the signal.
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Model f lfitle| [Ji
Test Loss 0.340 0.699 0.887
Test Accuracy | 90.8% | 76.7% | 60.2%

Table 1: The test loss and accuracy of f, fr, and fr + fg evaluated on the iterate obtained after 100
epochs of training using the model f.

G.3 Standard MLP Experimental Details

In Figure 2, we demonstrated that “standard” neural networks can effectively learn low-degree dense
and high-degree sparse polynomials. We trained a 2-layer neural network with standard PyTorch
initialization and width 100 to learn the target function f*(x) = xT Ax + h3(87x), where A is
a high-rank matrix chosen so that x — xT Ax has an L? norm of 1. Here, hs is the 3rd Hermite
polynomial, and thus h3(37x) is a sparse cubic only depending on the random direction 3 (the
Hermite polynomial is chosen for this task so that it is orthogonal to the quadratic term, making it the
“hardest” low-rank cubic to learn).

For varying values of dimension d from 10 to 100 and number of samples n, we train our network via
vanilla gradient descent with fixed learning rate 0.05. The initialization, small width, fixed learning
rate, and lack of regularization are designed to mimic a standard deep learning setup. For each value
of d, we compute the minimum 7 required such that the test loss is < 0.1 (note that the test loss of
the zero predictor is 1.0). Figure[2]is a log — log plot of d versus this optimal n.

In Figure [2, we observe that the number of samples needed to obtain 0.1 test loss roughly scales
with d?. We convincingly see that much fewer than d® samples (the red dashed line) are needed.
The NTK, on the otherhand, requires 2(d®) samples to learn any cubic function. The minimax
sample complexity to learn arbitrary quadratics is ©(d?), and therefore this experiment shows that
standard neural networks learn “dense qudratic plus sparse cubic" functions with optimal sample
complexity. This provides further evidence that the low-degree plus sparse task is worthy of theoretical
study.

Experimental Details. All experiments were run on an NVIDIA RTX A6000 GPU. We use the JAX
framework [[10] along with the Neural Tangents API [40]. Code for all experiments can be found at
https://github.com/eshnich/escape_NTK.
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