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Abstract

We address the problem of incremental semantic segmentation (ISS) recognizing
novel object/stuff categories continually without forgetting previous ones that have
been learned. The catastrophic forgetting problem is particularly severe in ISS,
since pixel-level ground-truth labels are available only for the novel categories
at training time. To address the problem, regularization-based methods exploit
probability calibration techniques to learn semantic information from unlabeled
pixels. While such techniques are effective, there is still a lack of theoretical
understanding of them. Replay-based methods propose to memorize a small set
of images for previous categories. They achieve state-of-the-art performance at
the cost of large memory footprint. We propose in this paper a novel ISS method,
dubbed ALIFE, that provides a better compromise between accuracy and efficiency.
To this end, we first show an in-depth analysis on the calibration techniques to
better understand the effects on ISS. Based on this, we then introduce an adaptive
logit regularizer (ALI) that enables our model to better learn new categories,
while retaining knowledge for previous ones. We also present a feature replay
scheme that memorizes features, instead of images directly, in order to reduce
memory requirements significantly. Since a feature extractor is changed continually,
memorized features should also be updated at every incremental stage. To handle
this, we introduce category-specific rotation matrices updating the features for
each category separately. We demonstrate the effectiveness of our approach with
extensive experiments on standard ISS benchmarks, and show that our method
achieves a better trade-off in terms of accuracy and efficiency.

1 Introduction

Humans are capable of learning new concepts continually, while preserving or even improving
previously acquired knowledge. Artificial neural networks are, however, prone to forget the knowledge
they have learned if being trained with samples for new object/scene categories alone. The reason
for this problem, so-called catastrophic forgetting [11, 27], is that parameters of neural networks
change abruptly to handle new categories without accessing training samples for previous categories.
A straightforward way to alleviate the problem is to re-train a model with training examples for entire
categories observed so far, which is however computationally demanding.

Incremental learning is an alternative approach to learning new categories continuously without
re-training on the entire dataset. While many methods have been proposed for incremental classifica-
tion [4, 21, 23, 25, 33, 36], a few attempts explore incremental semantic segmentation (ISS), where
training images for new categories are partially labeled to reduce the cost for manual annotation. That
is, pixels for new categories are labeled only, while remaining ones are marked as unknown. The
unknown regions should be considered separately, since they could contain previous categories along
with ones that would be seen in the future.
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(a) IoU scores on ADE20K [40]. (b) hIoU-memory comparison on PASCAL VOC [10].

Figure 1: (a) Quantitative comparison of intersection-of-union (IoU) scores on ADE20K. Each
model learns 50 novel categories after learning 100 categories. To be specific, there is a total of
5 incremental stages, and each model learns 10 new categories at every incremental stage. mIoU:
an average IoU score for 150 categories. hIoU: a harmonic mean between two average IoU scores
for previous (100) and novel (50) categories. (b) Quantitative comparison of hIoU and memory
requirement on PASCAL VOC. (From left to right) Each method learns 1 and 5 novel categories
after learning 20 and 16 categories, respectively. Ours-M memorizes 1K features for each previous
category. For RECALL [26] and SSUL-M [3], we consider the size of memory required to store
images only, and discard that for corresponding labels or saliency maps. Best viewed in color.

Current ISS methods can be categorized into regularization-based [2, 9, 30] and replay-based ap-
proaches [3, 26]. Regularization-based methods typically exploit knowledge distillation (KD) [15] to
preserve the discriminative ability of ISS models for previous categories. In particular, the seminal
work of [2] alleviates the semantic shift of unknown regions. Specifically, it introduces calibrated
cross-entropy (CCE) and calibrated KD (CKD) terms to learn semantic information from unknown
regions. Although CCE and CKD terms have shown the effectiveness on ISS methods [2, 9, 30],
there is still a lack of theoretical understanding. Replay-based methods propose to use a replay buffer
consisting of web-crawled or previously seen images. The replay buffer provides rich information
storing the knowledge for previous categories, but it incurs large memory footprint, particularly for
the task of semantic segmentation that typically adopts high-resolution images.

In this paper, we present a novel ISS method, dubbed ALIFE, that 1) alleviates catastrophic forgetting
and 2) reduces memory requirements. For the first aspect, we analyze gradients of CCE and CKD
terms for better understanding the effectiveness on catastrophic forgetting, and make the following
observations: (1) For unknown regions, CCE reduces logit values of new categories, which is crucial
for preventing overfitting to the new categories. However, it always raises logit values of all previous
categories, without considering whether predictions for those regions are correct or not, which lessens
the discriminative power for previous categories. (2) CKD makes it difficult to distinguish new
categories from a background one. Motivated by these observations, we introduce an adaptive logit
regularizer (ALI) that enables better learning new categories and alleviating catastrophic forgetting for
previous ones (Fig. 1(a)). For the second aspect, we propose to exploit latent features for replaying,
reducing memory footprint and avoiding data privacy issues (e.g., in medical imaging [35]). In
contrast to the replay buffer storing images directly, our approach to using the features updates
them at every incremental stage, as a feature extractor is also updated continually at training time.
Specifically, we exploit category-specific rotation matrices using the Cayley transform. Rotating
latent features is computationally efficient, while maintaining the relations between the features. We
demonstrate that exploiting ALI with memorizing features achieves a better trade-off in terms of
accuracy and efficiency (Fig. 1(b)). Our main contributions are summarized as follows:

• We show an in-depth analysis of probability calibration methods widely used for ISS [2, 9, 30],
and introduce ALI that enables our model to better learn new categories, while maintaining the
knowledge for previous categories.

• We present a novel replay strategy using category-specific rotation matrices, which helps to
alleviate catastrophic forgetting for previous categories with much less memory requirements
than replaying raw images.

• Extensive experiments demonstrate the effectiveness of our approach to using ALI and replaying
features with rotation matrices. We set a new state of the art on standard ISS benchmarks [10, 40].

2



2 Related work
Many incremental learning approaches have been introduced to preserve knowledge for previous
categories, while recognizing new ones [28]. They can be categorized into task-incremental and class-
incremental methods. Task-incremental methods [21, 23, 25] treat learning a new set of categories
as a new task. With a perfect task identifier, they classify each task separately at test time. The
perfect identifier is however often not available in practice [32]. On the contrary, class-incremental
methods [4, 8, 33, 36] attempt to recognize all categories observed so far at once without the task
identifier, being more practical. In the following, we describe class-incremental methods pertinent to
ours.
Image classification. Incremental methods typically adopt a KD technique [15] in order to encour-
age a current model to imitate softmax probabilities [1, 33] or intermediate representations [8, 18]
obtained from a previous one, retaining the discriminability for previous categories. Another line
of works focuses on preventing a classifier from overfitting to new categories, by correcting biased
weights of a classifier with a post-processing [36, 39] or normalizing a classifier [18]. Similarly, our
ALI is beneficial to alleviating the overfitting problem and maintaining the discriminative power for
previous categories, but differs in that it adaptively regularizes logit values during training. In addition,
we exploit latent features for replaying, while all the aforementioned methods rely on an image replay
strategy that entails practical issues such as data privacy and large memory requirements. To avoid
these problems, recent works employ a pseudo replay scheme that synthesizes images [20, 31, 34]
or latent features [38] of previous categories. However, they often require a generator [12], which
should also be trained incrementally. Instead of using raw images or synthesizing features, the work
of [19] proposes to store latent features. It trains a feature adaptation network (FAN) mapping the
latent features into a new feature space. The FAN might be sub-optimal, since the same network
applies to all features without differentiating categories. Adopting individual FANs for each category
might address the problem, but this requires high computational cost and large memory footprint. Dif-
ferently, we propose to train category-specific rotation matrices. This is more efficient and accurate,
as a rotation matrix is light-weight and features of each category are updated separately.
Semantic segmentation. A relatively few methods address the task of ISS, which can further be
classified into regularization-based and replay-based approaches. The first approaches [2, 9, 30] focus
on preserving knowledge for previous categories without using an experience replay. For example,
MiB [2] proposes to consider the semantic shift of a background category in ISS, and introduces
CCE and CKD terms using probability calibration techniques. While the calibration techniques are
intuitive and effective, there are still lack of theoretical explanations. We provide a gradient analysis
on CCE and CKD, and point out that CCE and CKD could disturb preserving knowledge for previous
categories and discriminating new categories from the background category, respectively. SDR [30]
and PLOP [9] propose to further regularize a current model in a latent feature space. Specifically,
SDR minimizes distances between features of the same category [6], while PLOP distills intermediate
features using a multi-scale strip pooling technique [8, 17]. The second approaches [3, 26] rely on
an image replay strategy. RECALL [26] exploits web-crawled images with pseudo labels at each
incremental stage, while SSUL [3] maintains a small set of images for previous categories, together
with corresponding ground-truth masks. Both methods show state-of-the-art results at the cost of
large memory footprint. Our approach differs in two aspects: (1) We exploit latent features for
replaying, which reduces the size of required memory significantly; (2) Our method updates a feature
extractor continually, and thus it is more flexible than RECALL and SSUL freezing the extractor.

3 Method
In this section, we first describe the ISS task briefly (Sec. 3.1), and then present our approach
consisting of three steps at every incremental stage. Specifically, we introduce ALI based on an
in-depth analysis for CCE and CKD to train a ISS model (Sec. 3.2) and present a feature replay
scheme using category-specific rotation matrices (Sec.3.3) to fine-tune a classifier using memorized
features (Sec. 3.4). Note that the last two steps are optional. Please refer to the supplementary
material for detailed derivations, more analysis, and a pseudo code of our approach.

3.1 Problem statement

Following the common practice [2, 3, 9, 26, 30], we consider a series of T learning stages. Each
stage t has its own dataset, Dt = {(xi, yi)}n

t

i=1 of size nt, where x and y are an image and a
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corresponding ground-truth mask, respectively. For incremental stages (i.e., t > 1), we have two
disjoint sets, Ctprev and Ctnew, for previously learned and novel categories, respectively. Note that
ground-truth masks are labeled only for the categories of Ctnew. Formally, we denote by y(p) a
ground-truth label at position p, and define labeled regions as follows:

Rtnew =
⋃

c∈Ct
new

Rc, (1)

whereRc is a set of locations labeled as a category c, that is,Rc = {p | y(p) = c}.
Our goal is to train a model that recognizes all categories observed so far, Ctall, the union of the
disjoint sets, i.e., Ctall = Ctprev ∪ Ctnew. In detail, our model consists of a feature extractor φ and
a classifier w. The feature extractor takes an image and outputs a convolutional feature map for
prediction, φt : x 7→ f t, where we denote by f t(p) ∈ RD a D-dimensional feature vector at
position p. A logit value for a category c is then computed by the dot product between a feature and
a classifier weight for the category c, wtc ∈ RD, as follows:

ztc(p) = wtc · f t(p), (2)

where we omit bias terms of the classifier for brevity.

3.2 Step 1

In the first step, we initialize network weights of a model at the stage t with those for the previous
stage t− 1, and train a feature extractor and a classifier of the current model with a corresponding
dataset Dt. A simple way to mitigate catastrophic forgetting for ISS is employing cross-entropy (CE)
and KD [15] terms. To this end, we compute probabilities for a category c at position p as follows:

ptc(p) =
ez

t
c(p)∑

k∈Ct
all
ez

t
k(p)

, c ∈ Ctall and qtc(p) =
ez

t
c(p)∑

k∈Ct
prev

ez
t
k(p)

, c ∈ Ctprev, (3)

which are obtained by applying the softmax function to logit values acrossCtall andCtprev, respectively.
The CE and KD terms for ISS are then defined as follows:

LCE(p) = − log ptc∗(p), p ∈ Rtnew and LKD(p) =
∑

k∈Ct
prev

−pt−1k (p) log qtk(p), ∀p, (4)

where c∗ = y(p). The CE term is defined for the labeled regionsRtnew only, indicating that logit val-
ues of previous categories always decrease. Exploiting the CE term alone is thus prone to overfitting to
new categories and leads to catastrophic forgetting. The KD term addresses this problem by transfer-
ring the discriminative power of a previous model, trained to classify previous categories, into the cur-
rent one. Note that Ctprev = Ct−1all , and the KD term computes softmax probabilities across previous
categories without considering new ones. Instead of exploiting CE and KD terms, the seminal work [2]
proposes to use CCE and CKD, widely adopted in ISS [2, 9, 30]. In the following, we analyze gradi-
ents of CCE and CKD to better understand the influences on ISS, and introduce ALI to train our model.

Table 1: Gradients of CCE w.r.t ztc.
Note that the optimization process
is carried out by gradient descent.

Conditions Gradients

p ∈ Rt
new

c = y(p) ptc − 1
c 6= y(p) ptc

p /∈ Rt
new

c ∈ Ct
new ptc

c ∈ Ct
prev ptc − qtc

CCE. The CCE loss [2] additionally computes a probability
for unlabeled regions by summing the probabilities over all
previous categories as follows:

LCCE(p) =

{ − log ptc∗(p), p ∈ Rtnew
− log ptcce(p), p /∈ Rtnew

, (5)

where ptcce(p) =
∑
k∈Ct

prev
ptk(p). This marginal difference

from the vanilla CE term brings a significant improvement on
ISS. To analyze the reason behind the improvement, we summarize in Table 1 gradients of LCCE

w.r.t ztc. The first two rows show that CCE updates logit values for the labeled regions in the same
way as in LCE. We can see from last two rows that CCE also provides gradients for the unlabeled
regions. Specifically, the third row shows that CCE reduces a logit value for new categories by the
corresponding probability ptc, if p /∈ Rtnew. This is reasonable, since all features on those regions do
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not at least belong to new categories. CCE thus helps to avoid the overfitting problem, alleviating
catastrophic forgetting. Considering the fact that qtc is always larger than ptc (See the supplementary
material), we can see from the last row that CCE raises logit values for all previous categories
by qtc − ptc in the unlabeled regions. This prevents the logit values of previous categories from
continuing to decrease in the unlabeled regions, which is however effective only when predictions
of the current model are correct. Otherwise, when predictions are incorrect, CCE rather raises logit
values of the wrongly predicted categories, aggravating the incorrect predictions.

CKD. Assuming that categories ofCtnew are likely to be labeled as a background one in the previous
stage, the CKD loss [2] is defined as follows:

LCKD(p) = −pt−1bg (p) log ptckd(p) +
∑

k∈Ct
prev\{bg}

−pt−1k (p) log ptk(p), ∀p, (6)

where ptckd(p) =
∑
k∈{bg}∪Ct

new
ptk(p). For previous categories except the background, this term

enables transferring knowledge from pt−1k to ptk directly. Similarly, a vanilla KD term in Eq. (4) also
encourages a current model to output probabilities similar to pt−1k for k ∈ Ctprev, but it distills the
knowledge from pt−1k into qtk without considering logit values for new categories. To compare KD
and CKD, we compute gradients w.r.t ztc for c ∈ Ctprev\{bg} as follows:

∂LKD(p)

∂ztc(p)
= qtc(p)− pt−1c (p) and

∂LCKD(p)

∂ztc(p)
= ptc(p)− pt−1c (p). (7)

Here we provide two cases to explain the reason why CKD better transfers the knowledge for previous
categories except the background: (1) When qtc and pt−1c are equal, the gradient of KD w.r.t ztc is zero,
indicating that ztc remains the same. However, note that ptc is lower than pt−1c in this case, since ptc is
always lower than qtc. This suggests that ztc should rather increase in order that ptc follows the target
probability pt−1c . The gradient of CKD w.r.t ztc has a negative value in the same case (i.e., qtc = pt−1c ),
suggesting that ztc increases by gradient descent. (2) When the current model already provides the
same probability as the target one (i.e., ptc = pt−1c ), it is unnecessary to adjust ztc. The gradient
of KD w.r.t ztc has a positive value, as qtc is larger than ptc (or equivalently pt−1c in this case). This
indicates that ztc decreases by gradient descent, and ptc in turn becomes lower than pt−1c . On the other
hand, CKD maintains ztc the same, since its gradient w.r.t ztc is zero. These examples describe the
effectiveness of CKD. On the contrary, CKD also has negative effects on ISS. Let us suppose the
gradients of CKD w.r.t ztc for c ∈ {bg} ∪ Ctnew as follows:

∂LCKD(p)

∂ztc(p)
=
(
ptckd(p)− pt−1bg (p)

) ptc(p)

ptckd(p)
. (8)

The problem of CKD lies in how it transfers the knowledge from pt−1bg into ptbg. In particular,
CKD makes ptckd to imitate pt−1bg , instead of directly distilling from pt−1bg to ptbg. For example,
when ptckd is lower than pt−1bg , the gradient of CKD in Eq. (8) has a negative value. Thus, logit
values for background and new categories increase by gradient descent. This in turn raises prob-
abilities for background and new categories all together, disturbing discriminating the new cat-
egories from the background at training time. In case of ptckd > pt−1bg , CKD reduces the logit
values for background and new categories, which is however problematic when ptbg < pt−1bg .
Note that the logit value for the background category ztbg should rather increase in this case.

Table 2: Gradients of ALI w.r.t ztc.

Conditions Gradients

p /∈ Rt
new

c ∈ Ct
new ptc

c ∈ Ct
prev ptc − pt−1

c

ALI. We have shown that CCE alleviates catastrophic for-
getting, while CKD better guides transferring the knowledge
of a previous model than KD. To avoid the negative effects of
CCE and CKD, we present in Table 2 a new form of gradients
w.r.t ztc. The first row is identical to the third one of Table 1
that alleviates catastrophic forgetting. The second row is similar to the gradients of CKD in Eq. (7)
that better capture knowledge for previous categories. Note that CKD excludes the background
category in Eq. (7), since it assumes that new categories of the current stage (Ctnew) are marked
as the background one at the previous stage. Differently, ours enables computing gradients for all
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previous categories including the background one (See the second row), since it does not require the
assumption. Accordingly, this form of gradients incorporates the advantages of CCE and CKD, while
discarding the negative effects. Integrating the gradients in Table 2 w.r.t ztc, we define ALI as follows:

LALI(p) = log

 ∑
k∈Ct

all

ez
t
k(p)

− ∑
k∈Ct

prev

pt−1k (p)ztk(p), p /∈ Rtnew. (9)

The first term applies the log-sum-exp function to logit values across Ctall, approximating the
maximum logit value over Ctall. The second term computes a weighted average of logit values
for Ctprev with probabilities of a previous model. In this context, ALI can be viewed as minimizing
the difference between the maximum logit value and the weighted average adaptively. That is, it
reduces the maximum logit value, while raising the logit values for previous categories. Note that
ALI does not require computing either ptcce in CCE or ptckd in CKD [2].

Training. To train our model, we use CE and ALI terms for labeled and unlabeled regions, respec-
tively. We also apply a vanilla KD term for labeled regions to further regularize our model. An
overall objective for the first step is defined as follows:

LS1(p) = LCE(p) + λALILALI(p) + λKDLKD(p)1[p ∈ Rtnew], (10)

whereλALI and λKD are balance parameters. We denote by 1[·] an indicator function whose output is
1 if the argument is true, and 0 otherwise.

3.3 Step 2

After training our model, we first extract features of new categories in order to replay them in
subsequent stages. Then, we compensate a distribution shift of memorized features, which are
extracted in the previous stage t− 1, before using them to fine-tune a classifier in the third step. To be
specific, we exploit category-specific rotation matrices to update memorized features of each category
separately. In the following, we provide detailed descriptions for memorizing features and training
matrices. Note that we freeze both a feature extractor φt and a classifier wt for the second step.

Memorizing features. We extract features for prediction (i.e., f t) and store them to replay in
subsequent stages. Specifically, given input images containing one of new categories, a feature
extractor first produces feature maps. For each image, features for each category are then averaged
using a ground-truth mask. This process is repeated until the number of features for each category
reaches a preset number S. That is, we memorize S features for each category. We provide the
pseudo code in the supplementary material.

Training matrices. Memorized features, extracted in the previous stage t− 1, are not compatible
with a current classifier wt. To address this, the work of [19] in image classification proposes to
exploit two-layer perceptrons, called FAN, where the number of parameters is roughly 32D2. Two
main limitations of FAN are as follows: (1) It updates all features without considering categories.
Adopting separate FANs for each category alleviates this issue, but it is computationally expensive. (2)
FAN ignores the relations between memorized features. The structural information in the feature
space is crucial for the generalization ability of classifiers. To address these problems, we propose to
train category-specific rotation matrices to update features of each category separately. The rotation
transform enables maintaining the relations between features within the same category, while the
number of parameters for each matrix is 0.5(D2 −D) only (See the supplementary material). To
this end, we first define a skew-symmetric matrix Sc of size D ×D for the category c ∈ Ctprev. A
rotation matrix for the category c is then defined using the Cayley transform as follows:

Rc = (I− Sc)(I + Sc)−1, (11)

where I indicates an identity matrix. Learning the parameters for the matrices is challenging, since
training samples of Dt are labeled only for Ctnew. To handle this, we extract features f t−1 from a
previous feature extractor φt−1, and compute a correlation score as follows:

vc(p) =

S∑
s=1

ReLU
(

f t−1(p)

‖f t−1(p)‖
· mc(s)

‖mc(s)‖

)
, (12)
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where we denote by mc(s) ∈ RD the s-th item in memorized features of the category c. This allows
to identify features associated with previous categories Ctprev, since f t−1 and mc(s) share the same
feature space. We then apply the softmax function over the correlation score as follows:

σc(p) =
eτvc(p)∑
p e

τvc(p)
, (13)

where τ is a temperature controlling the sharpness of σc. Note that both features f t−1 and f t at
position p encode the same semantic information. Using this fact, we define prototypes of the
category c for previous and current stages, rt−1c and rtc, respectively, by computing a weighted
average of each feature map, as follows:

rt−1c =
∑
p

σc(p)f
t−1(p), rtc =

∑
p

σc(p)f
t(p). (14)

We can match the prototypes for each category c via the corresponding rotation matrix Rc. Namely,
each matrix Rc rotates a previous prototype rt−1c to align it with a current one rtc. To train the
matrix Rc, we define an objective function as follows:

LS2 = λROTLFID + (1− λROT)LREG, (15)

where we denote by LFID and LREG fidelity and regularization terms, respectively, balanced by the
parameter λROT. The fidelity term maximizes cosine similarity as follows:

LFID =
∑

c∈Ct
prev

(
1− r̂c
‖r̂c‖

· rtc
‖rtc‖

)
, (16)

where r̂c = Rcrt−1c . This encourages the matrices Rc to align r̂c with rtc. The regularization term
enforces the rotated prototypes r̂c to be compatible with the current classifier wt to better guide the
alignment process. To this end, we compute a CE loss using the softmax classifier wt as follows:

LREG =
∑

c∈Ct
prev

− log

(
er̂c·w

t
c∑

i∈Ct
all
er̂c·w

t
i

)
. (17)

3.4 Step 3

In the third step, we first update memorized features of each category as follows:

m̂c(s) = Rcmc(s). (18)

The updated features along with training samples of Dt are then used to fine-tune a classifier wt with
the following objective:

LS3(p) = LFL(p) + λALILALI(p) + λMEMLMEM. (19)

We denote by LFL and LMEM focal loss (FL) [24] and CE terms, respectively, defined as follows:

LFL(p) = −(1− ptĉ(p))α log ptĉ(p), ĉ =

{
y(p) , p ∈ Rtnew

argmaxk∈Ct
prev

pt−1k (p), p /∈ Rtnew
, (20)

and

LMEM =
∑

c∈Ct
prev

S∑
s=1

− log

(
em̂c(s)·wt

c∑
k∈Ct

all
em̂k(s)·wt

k

)
, (21)

where we set α to 2 by default. Following [3, 9, 26, 30], we mark unlabeled regions in the training
samples of Dt as predictions obtained from a previous model on-the-fly. Note that we freeze a feature
extractor and the rotation matrices for fine-tuning the classifier.

4 Experiments
In this section, we present a quantitative comparison between our method and the state of the art,
and show ablation studies. More results including qualitative comparisons can be found in the
supplementary material.
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Table 3: Quantitative results on ADE20K [40] in terms of IoU scores. SSUL-M [3] uses a replay
buffer that consists of 300 previously seen images together with corresponding ground-truth labels.
Numbers in bold are the best performance, while underlined ones are the second best. We show
standard deviations in parentheses. Numbers for other methods [2, 29] are taken from SSUL. †:
Results are obtained by running the source codes provided by the authors.

Methods
100-50(1) 50-100(2) 100-50(5)

mIoUbase mIoUnew mIoU hIoU mIoUbase mIoUnew mIoU hIoU mIoUbase mIoUnew mIoU hIoU

Without memorized images or features

ILT [29] 18.29 14.40 17.00 16.11 3.53 12.85 9.70 5.54 0.08 1.31 0.49 0.15
MiB [2] 40.52 17.17 32.79 24.12 45.57 21.01 29.31 28.76 38.21 11.12 29.24 17.23

PLOP† [9] 42.10 16.22 33.53 23.42 48.24 21.31 30.40 29.56 40.78 14.02 31.92 20.87
(0.02) (0.15) (0.06) (0.15) (0.03) (0.08) (0.06) (0.08) (0.04) (0.03) (0.04) (0.03)

SSUL [3] 41.28 18.02 33.58 25.09 48.38 20.15 29.56 28.45 40.20 18.75 33.10 25.57
ALIFE 42.18 23.07 35.86 29.83 48.98 25.69 33.56 33.70 41.02 22.76 34.98 29.28

(0.08) (0.51) (0.12) (0.41) (0.12) (0.20) (0.16) (0.19) (0.23) (0.55) (0.34) (0.51)

With memorized images or features

SSUL-M [3] 42.79 17.54 34.37 24.88 49.12 20.10 29.77 28.53 42.86 17.66 34.46 25.01

ALIFE-M 42.28 23.58 36.09 30.28 48.99 26.15 33.87 34.10 41.17 23.07 35.18 29.57
(0.05) (0.45) (0.12) (0.36) (0.07) (0.10) (0.09) (0.10) (0.21) (0.22) (0.21) (0.23)

4.1 Implementation details

Dataset and evaluation. We evaluate our method on standard ISS benchmarks (PASCAL VOC [10]
and ADE20K [40]). PASCAL VOC provides 10, 582 training [13] and 1, 449 validation samples with
20 object and one background categories, while ADE20K consists of 20, 210 and 2, 000 samples for
training and validation, respectively, with 150 object/stuff categories. There are three incremental
scenarios for each dataset, where we denote by each scenario A-B(C). A,B and C indicate the
number of categories at a base stage, the total number of novel categories, and the number of
incremental stages, respectively. We follow the same scenarios as in [2, 3, 9, 26, 30], unless otherwise
specified. Following the common practice [3, 9], we focus on an overlapped setting, where unlabeled
regions could contain either previous or future categories. For evaluation, we report IoU scores
on the validation set for each dataset, and do not exploit test-time augmentation or dense CRF
techniques [22]. We denote by mIoUbase, mIoUnew, and mIoU the mean IoU scores over base, new,
and all categories, respectively. Computing an IoU score over all categories (i.e. mIoU) is typical, but
we have found that this does not reflect IoU scores for new categories well. To address this, as in
the evaluation protocol of zero-shot learning methods (e.g., [37]), we propose to use the harmonic
mean (hIoU) of mIoUbase and mIoUnew. For all experiments, we report scores averaged over 3
runs (i.e., different random seeds).

Training. Following [2, 3, 9, 26, 30], we adopt DeepLab-V3 [5] with ResNet-101 [14]. ResNet-101
is initialized with pre-trained weights for classification on ImageNet [7]. We use the SGD optimizer
with an initial learning rate set to 1e-2 and 1e-3 for base and incremental stages, respectively.
DeepLab-V3 is trained for 30 and 60 epochs at a base stage (t = 1) on PASCAL VOC [10] and
ADE20K [40], respectively. For each incremental stage (t > 1), we perform a cross-validation to
choose the number of epochs on PASCAL VOC, while fixing it to 60 on ADE20K. We train rotation
matrices for 10 epochs using the Adam optimizer with an initial learning rate of 1e-3, and fix a preset
number S and a temperature value τ to 1, 000 and 10 for all experiments. We fine-tune a classifier
for 1 epoch using the SGD optimizer with an initial learning rate of 1e-3. For all experiments, we
adjust the learning rate by the poly schedule. We provide a detailed description of hyperparameter
settings in the supplementary material.

4.2 Comparison with the state of the art

ADE20K. We compare in Table 3 our approach with state-of-the-art methods, including MiB [2],
PLOP [9], and SSUL [3]. Note that RECALL [26] is not designed to handle stuff categories, and
results on ADE20K [40] are not available. From this table, we have three findings as follows: (1) Our
approach exploiting the first step only, denoted by ALIFE, already outperforms all other methods
in terms of both mIoU and hIoU scores by significant margins for all scenarios. This validates the
effectiveness of our approach without memorizing features. In particular, we can see that ALIFE even
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Table 4: Quantitative results on PASCAL VOC [10] in terms of IoU scores. SSUL-M [3] memorizes
100 images in total, while RECALL [26] uses 500 images for each previous category. Note that both
SSUL and SSUL-M also require an off-the-shelf saliency detector [16] on PASCAL VOC. Numbers
in bold are the best performance, while underlined ones are the second best. We show standard
deviations in parentheses. Numbers for other methods are taken from corresponding papers. †:
Results are obtained with the source codes provided by the authors.

Methods
20-1(1) 16-5(1) 16-5(5)

mIoUbase mIoUnew mIoU hIoU mIoUbase mIoUnew mIoU hIoU mIoUbase mIoUnew mIoU hIoU

Without memorized images or features

EWC [21] 26.90 14.00 26.30 18.42 24.30 35.50 27.10 28.85 0.30 4.30 1.30 0.56
LwF-MC [23] 64.40 13.30 61.90 22.05 58.10 35.00 52.30 43.68 6.40 8.40 6.90 7.26
ILT [29] 67.75 10.88 65.05 18.75 67.08 39.23 60.45 49.51 8.75 7.99 8.56 8.35

MiB† [2] 70.42 17.70 67.91 28.25 76.68 49.03 70.09 59.81 37.98 12.28 31.86 18.56
(0.13) (1.89) (0.17) (2.44) (0.11) (0.27) (0.14) (0.23) (0.72) (0.19) (0.57) (0.28)

SDR [30] 71.30 23.40 69.00 35.24 76.30 50.20 70.10 60.56 47.30 14.70 39.50 22.43

PLOP† [9] 75.89 34.90 73.94 47.81 76.37 49.55 69.98 60.10 64.51 19.93 53.90 30.45
(0.21) (0.93) (0.24) (0.91) (0.14) (0.29) (0.18) (0.26) (0.13) (0.20) (0.06) (0.21)

SSUL [3] 77.73 29.68 75.44 42.96 77.82 50.10 71.22 60.96 77.31 36.59 67.61 49.67
ALIFE 76.61 49.36 75.31 60.03 77.18 52.52 71.31 62.50 64.44 34.91 57.41 45.29

(0.52) (1.01) (0.52) (0.84) (0.66) (0.48) (0.52) (0.41) (1.24) (1.05) (1.19) (1.18)

With memorized images or features

SSUL-M [3] 78.83 49.76 76.49 61.01 78.40 55.80 73.02 65.20 78.36 49.01 71.37 60.30
RECALL [26] 68.10 55.30 68.60 61.04 67.70 54.30 65.60 60.26 67.80 50.90 64.80 58.15

ALIFE-M 76.72 52.29 75.56 62.19 77.66 55.27 72.33 64.57 66.09 38.81 59.59 48.89
(0.57) (0.62) (0.55) (0.49) (0.36) (0.98) (0.21) (0.59) (0.64) (1.86) (0.93) (1.64)

outperforms SSUL-M [3] that memorizes 300 images along with ground-truth labels for replaying.
A plausible reason is that SSUL freezes a feature extractor, limiting the flexibility to deal with
new categories. (2) ALIFE shows substantial IoU gains over MiB [2] using CCE and CKD for all
scenarios. This verifies that both CCE and CKD are not always helpful for ISS. ALI is free from
the limitations of CCE and CKD, and it allows our model to better learn new categories without
forgetting previous ones. (3) Our approach memorizing features, denoted by ALIFE-M, improves the
performance over ALIFE in terms of all metrics for all scenarios. Note that SSUL-M even performs
worse than SSUL for 100-50(1) and 100-50(6) cases. Considering that we rely on at least 9 times less
memory requirements than SSUL-M for 100-50(1) and 50-100(2) cases, the gains from memorizing
features are remarkable compared to those of SSUL-M over SSUL.

PASCAL VOC. We show in Table 4 quantitative results on PASCAL VOC [10]. Note that a
comparison of SSUL [3] (SSUL-M) and other methods including ours is not fair, since it additionally
exploits an off-the-shelf saliency detector [16] that brings significant improvements on PASCAL
VOC. From this table, we can see that ALIFE outperforms all other methods in terms of hIoU
scores for 20-1(1) and 16-5(1) scenarios, further demonstrating the effectiveness of our approach
without memorizing features. We can also see that ALIFE-M gives substantial gains over ALIFE
in terms of all metrics for all scenarios. In particular, the largest mIoU and hIoU gains of 2.18%
and 3.60%, respectively, are reported on 16-5(5). This confirms once again that our feature replay
scheme is effective even for the most challenging scenario on PASCAL VOC. SSUL-M [3] and
RECALL [26] largely outperform ours only for 16-5(5), but they require at least 604 and 15 times
more memory footprint than ALIFE-M, respectively. Moreover, RECALL has difficulty for handling
stuff categories, and SSUL performs poorly on ADE20K [40], where the saliency detector is not
applicable. Our approach is versatile in that it is free to handle stuff categories without performance
degradation on ADE20K (See Table 3).

4.3 Discussion

MiB PLOP ALIFE
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62.5

65.0

67.5

70.0

72.5
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77.5

hI
oU

16-5(1)

MiB PLOP ALIFE
30

40

50

60

70

80

hI
oU

20-1(1)

Figure 2: Comparison of average hIoU scores
over three different category orderings on
PASCAL VOC [10].

The ordering of categories. To show the robust-
ness of our approach to different category orderings,
we generate two random category orderings for 16-
5(1) and 20-1(1) cases, and report the mean and stan-
dard deviation of hIoU scores over three orderings:
one alphabetical and two random orderings. We com-
pare in Fig. 2 our approach without memorizing fea-

9



tures, denoted by ALIFE, to MiB [2] and PLOP [9]. Results of MiB and PLOP are obtained by
running the source codes provided by the authors. We can clearly see that ALIFE produces better
results than other methods on both 16-5(1) and 20-1(1) cases.

Table 5: Comparison of IoU scores using dif-
ferent loss terms of our approach on 16-5(1)
of PASCAL VOC [10]. Labeled, Unlabeled,
and All indicate that KD is applied for labeled,
unlabeled, and all regions, respectively.

CE ALI
KD

mIoUbase mIoUnew mIoU hIoU
Labeled Unlabeled All

X 16.45 6.94 14.19 9.74
X X 75.50 49.81 69.39 60.02
X X X 77.18 52.52 71.31 62.50
X X X 75.45 49.75 69.33 59.97
X X X 76.25 50.99 70.24 61.12

Ablation study on the first step. We show in Ta-
ble 5 an ablation analysis on different loss terms of
our approach without memorizing features (Eq. (10)).
The first row shows that using the CE term alone per-
forms poorly due to catastrophic forgetting. We can
see from the second row that ALI alleviates the catas-
trophic forgetting problem remarkably. The third row
shows that additionally using the KD term for labeled
regions on top of CE and ALI terms further gives IoU
gains. On the other hand, we can see from the fourth
row that applying the KD term for unlabeled regions rather degrades the performance. Since our ALI
already encourages a current model to imitate knowledge of a previous one for unlabeled regions, we
conjecture that additionally applying the KD term for those regions is redundant. The last row shows
that using the KD term for all regions is beneficial to improving the performance slightly.

Table 6: Comparison of IoU scores using dif-
ferent loss terms of our approach on 16-5(1)
of PASCAL VOC [10]. Labeled: CE or FL
is applied only for labeled regions. All∗: To
apply CE or FL for all regions, we mark un-
labeled regions as predictions of a previous
model on-the-fly.

CE FL
ALI MEM mIoUbase mIoUnew mIoU hIoU

Labeled All∗ Labeled All∗

X 76.11 48.03 69.42 58.89
X 76.71 50.37 70.44 60.81

X 76.51 49.70 70.13 60.26
X 76.81 50.98 70.66 61.29
X X 77.24 54.90 71.92 64.17
X X 77.25 52.88 71.44 62.78
X X X 77.66 55.27 72.33 64.57

Ablation study on the third step. We report in Ta-
ble 6 IoU scores for different losses of our method in
the third step (Eq. (19)). From the first four rows, we
can see that 1) using CE or FL terms alone degrade
the performance. This is because training samples
of a current dataset mainly contain new categories,
causing the class imbalance between previous and
new categories; 2) FL provides better results than CE;
3) The pseudo labeling strategy works favorably for
both CE and FL, mitigating the imbalance. From the
last three rows, we can see that 1) replaying 1K fea-
tures for each previous category lessens the influence
of the class imbalance problem significantly and 2) ALI is also helpful to alleviate the imbalance
problem, further boosting the performance.

Limitation. Our approach to memorizing features for an experience replay reduces memory re-
quirements significantly and avoids data privacy issues. Nonetheless, it requires more memory than
other methods [2, 9, 30] that do not adopt the experience replay. Since our approach to using ALI
without memorizing features shows state-of-the-art results on standard ISS benchmarks [10, 40],
we believe that ALI could give useful insights for developing ISS methods that do not rely on the
replay strategy. It is also worth noting that all existing methods including ours assume that newly
incoming samples are clean and reliable. However, in practice, training samples of a new task might
be biased and unreliable. This raises new concerns: 1) addressing noisy samples during training
and 2) memorizing clean samples only. Handling these potential risks would also be an interesting
future direction for ISS.

5 Conclusion
We have introduced a new ISS method, ALIFE, that alleviates catastrophic forgetting and reduces
memory requirements for an experience replay. First, we have presented a gradient analysis of CCE
and CKD for better understanding the effects on catastrophic forgetting, and have proposed ALI
incorporating the merits of CCE and CKD. Second, we have proposed a feature replay scheme using
the Cayley transform that requires less memory footprint than memorizing raw images. Finally, we
have shown that ALIFE sets a new state of the art on standard ISS benchmarks.
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2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] We describe
in Sec. 3.2 the assumption of CKD. Our ALI does not require any assumptions.

(b) Did you include complete proofs of all theoretical results? [Yes] We provide detailed
derivations in the supplementary material.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] We describe implementation details in Sec. 4.1. For more details,
please refer to the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] For all experiments, we report averaged scores over 3
runs. For example, we report standard deviations in Tables 3 and 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We use 2 NVIDIA TITAN RTX
GPUs for all experiments. Please refer to the supplementary material for details.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We train DeepLab-

V3 [5] on PASCAL VOC [10] and ADE20K [10].
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount
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