
The appendix is organized as follows: We first provide some insights on extended value iterations
useful in our construction of the regret.Then, the detailed proof of theorem 4.1 is given with bounds
on the five terms in our decomposition of the regret. A final appendix provides technical lemmas
about MDPs in M.

A Proof of Theorem 4.1

A.1 Extended value iteration

For each episode k, we use the extended value iteration algorithm described in [11] to compute
π̃k and M̃ ∈ Mk, an optimistic policy and MDP. The values we iteratively get are defined in the
following way:

u
(k)
0 (s) = 0

u
(k)
i+1(s) = max

a∈A

{
r̃(s, a) + max

p(·)∈P(s,a)

{∑
s∈S

p(s′)u
(k)
i (s′)

}}
, (16)

where r̃ is the maximal reward from (4) and P(s, a) is the set of probabilities from (5).

Now, from [11, Theorem 7], we obtain the following lemma on the iterations of extended value
iteration.
Lemma A.1. For episode k, denote by i the last step of extended value iteration, stopped when:

max
s

{u(k)
i+1(s)− u

(k)
i (s)} −min

s
{u(k)

i+1(s)− u
(k)
i (s)} <

rmax√
tk

. (17)

The optimistic MDP M̃k and the optimistic policy π̃k that we choose are so that the gain is 1√
tk
−

close to the optimal gain:

ρ̃k := min
s

ρ(M̃k, π̃k, s) ≥ max
M ′∈Mk,π,s′

ρ(M ′, π, s′)− rmax√
tk

. (18)

Moreover from [16, Theorem 8.5.6]:∣∣∣u(k)
i+1(s)− u

(k)
i (s)− ρ̃k

∣∣∣ ≤ rmax√
tk

, (19)

and when the optimal policy yields an irreducible and aperiodic Markov chain, we have that ρ̃k =
ρ(M̃k, π̃k, s) for any s, so that we can define the bias:

h̃k(s0) = Es0

[ ∞∑
t=0

(r̃(st, at)− ρ̃k)

]
. (20)

By choosing iteration i large enough, from [16, Equation 8.2.5], we can also ensure that:∣∣∣u(k)
i (s)− (i− 1)ρ̃k − h̃k(s)

∣∣∣ < rmax

2
√
tk
, (21)

so that we can define the following difference

dk(s) :=
∣∣∣u(k)

i (s)−min
s

u
(k)
i (s)−

(
h̃k(s)−min

s
h̃k(s)

)∣∣∣ < rmax√
tk

. (22)

A.2 Regret when M is out of the confidence bound

Let us compute E[Reg], the expected regret. We will mainly follow the approach in [11, Section 4],
with a few tweaks. We start by splitting the regret into a sum over episodes and states.

We remind that r(s, a) is the overall mean reward and NT (s, a) the total count of visits. We also
define Rk(s) :=

∑
a νk(s, a)(ρ

∗ − r(s, a)) the regret at episode k induced by state s, with νk(s, a)
the number of visit of (s, a) during episode k.
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Let Rin :=
∑

s

∑m
k=1 Rk(s)1M∈Mk

and Rout :=
∑

s

∑m
k=1 Rk(s)1M/∈Mk

. We therefore have the
split:

E [Reg] ≤ E [Rin] + E [Rout] . (23)
Now, let νk(s) =

∑
a νk(s, a) and denote by M(t) the set of MDPs Mk such that tk ≤ t < tk+1.

For the terms out of the confidence sets, we have:

Rout ≤
∑
s

m∑
k=1

νk(s)1M/∈Mk

≤
∑
s

m∑
k=1

Ntk(s)1M/∈Mk
using the stopping criterion

=

T∑
t=1

∑
s

m∑
k=1

1tk=tNt(s)1M/∈M(t) ≤
T∑

t=1

∑
s

Nt(s)1M/∈M(t)

=

T∑
t=1

1M/∈M(t)

∑
s

Nt(s) ≤
T∑

t=1

t1M/∈M(t).

Taking the expectations:

E [Rout] ≤ rmax

T∑
t=1

tP {M /∈ M(t)}

≤ rmax

T∑
t=1

tS

2t3
≤ rmax

T∑
t=1

S

2t2
by Lemma B.1

≤ rmaxS. (24)

Thus, we have dealt with the cases where the MDP M did not belong to any confidence set, for some
episodes. We now need to deal with the rest.

A.3 Regret terms when M is in the confidence bound

We now assume that M ∈ Mk and deal with the terms in the confidence bound, so that we can omit
the repetitions of the indicator functions. For each episode k, let Rin,k :=

∑
s Rk.

We defined π̃k the optimistic policy computed at episode k, now define P̃k := (p̃k(s
′|s, π̃k(s))) the

transition matrix of that policy on the optimistic MDP M̃k. Define also vk := (νk(s, π̃k) the row
vector of visit counts during episode k. Following the same steps as in [11], we get the inequality on
the regret of episode k, assuming M ∈ Mk, using Lemma A.1:

Rin,k =
∑
s,a

νk(s, a)(ρ
∗ − r(s, a))

≤
∑
s,a

νk(s, a)(ρ̃k − r(s, a)) + rmax

∑
s,a

νk(s, a)√
tk

=
∑
s,a

νk(s, a)(ρ̃k − r̃k(s, a)) +
∑
s,a

νk(s, a)(r̃k − r(s, a)) + rmax

∑
s,a

νk(s, a)√
tk

.

Then with (19) and using the definition of the iterated values from EVI, we have for a given state s
and as := π̃k(s):∣∣∣∣∣(ρ̃k − r̃k(s, as))−

(∑
s′

p̃k(s
′|s, as)u(k)

i (s′)− u
(k)
i (s)

)∣∣∣∣∣ ≤ rmax√
tk

,

so that:

Rin,k ≤ vk

(
P̃k − I

)
ui +

∑
s,a

νk(s, a)(r̃k − r(s, a)) + 2rmax

∑
s,a

νk(s, a)√
tk

.
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Remember that for any state s: |dk(s)| ≤ rmax√
tk
, where h̃k is the bias of the average optimal policy

for the optimist MDP, and:

dk(s) :=
(
u
(k)
i (s)−min

x
u
(k)
i (x)

)
−
(
h̃k(s)−min

x
h̃k(x)

)
.

Notice that the unit vector is in the kernel of
(
P̃k − I

)
. Therefore, in the first term, we can replace

ui by any translation of it. We get:

vk

(
P̃k − I

)
ui = vk

(
P̃k − I

)
h̃k + vk

(
P̃k − I

)
dk.

so that:

Rin ≤
∑
k

∑
s,a

νk(s, a)(r̃k − r(s, a))︸ ︷︷ ︸
Rrewards

+
∑
k

vk

(
P̃k − I

)
h̃k︸ ︷︷ ︸

Rbias

+
∑
k

vk

(
P̃k − I

)
dk + 2rmax

∑
k

∑
s,a

νk(s, a)√
tk︸ ︷︷ ︸

REVI

.

Then, using the assumption on empirical rewards (4), as M ∈ Mk, and noticing that Ntk ≤ tk:

Rrewards ≤ rmax2
√
2 log(2AT )

∑
k

∑
s,a

νk(s, a)√
max {1, Ntk(s, a)}

. (25)

For the term vk

(
P̃k − I

)
dk, which does not appear in the analysis of [11], we obtain

vk

(
P̃k − I

)
dk ≤

∑
s

νk (s, π̃k(s)) · ∥p̃k (·|s, π̃k(s))− 1s∥1 · sup
s′

|dk(s′)|

≤ 2rmax

∑
s

νk (s, π̃k(s))√
tk

≤ 2rmax

∑
s,a

νk (s, a)√
tk

≤ 2rmax

∑
s,a

νk(s, a)√
max {1, Ntk(s, a)}

,

where in the last inequality we used that max{1, Ntk(s, a)} ≤ tk ≤ T . Thus, for T ≥ e2

2AT the
regret term coming from the consequences and approximations of EVI satisfies

REVI ≤ rmax2
√
2 log(2AT )

∑
k

∑
s,a

νk(s, a)√
max {1, Ntk(s, a)}

. (26)

Now, by defining Pk the transition matrix of the optimistic policy π̃k in the true MDP M , we have
the following decomposition of the middle term:∑

k

vk

(
P̃k −Pk

)
h∗

︸ ︷︷ ︸
Rtrans

+
∑
k

vk

(
P̃k −Pk

)(
h̃k − h∗

)
︸ ︷︷ ︸

Rdiff

+
∑
k

vk (Pk − I) h̃k︸ ︷︷ ︸
Rep

Overall:

Rin ≤
∑
k

vk

(
P̃k −Pk

)
h∗

︸ ︷︷ ︸
Rtrans

+
∑
k

vk

(
P̃k −Pk

)(
h̃k − h∗

)
︸ ︷︷ ︸

Rdiff

+
∑
k

vk (Pk − I) h̃k︸ ︷︷ ︸
Rep

+ rmax4
√
2 log(2AT )

∑
k

∑
s,a

νk(s, a)√
max {1, Ntk(s, a)}︸ ︷︷ ︸

REVI+Rrewards

.
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A.3.1 Bound on Rtrans

Let us deal with the first term Rtrans. To bound this term, we will use our knowledge of the optimal
bias h∗ and the control of the difference of the transition matrices, and for the second term we will
control the difference of the biases.

Notice that for a fixed state 1 ≤ s ≤ S − 1:∑
s′

p (s′|s, π̃k(s))h
∗(s′) =

∑
s′

p (s′|s, π̃k(s)) (h
∗(s′)− h∗(s)) + h∗(s).

The same is true for p̃k, and knowing the MDP is a birth and death process:

Rtrans =
∑
k

∑
s

∑
s′

νk (s, π̃k(s)) · (p̃k (s′|s, π̃k(s))− p (s′|s, π̃k(s))) · h∗(s′)

=
∑
k

∑
s

∑
s′

νk (s, π̃k(s)) · (p̃k (s′|s, π̃k(s))− p (s′|s, π̃k(s))) · (h∗(s′)− h∗(s))

≤
∑
k

∑
s

νk (s, π̃k(s)) · ∥p̃k (·|s, π̃k(s))− p (·|s, π̃k(s))∥1 sup
s′

∂h∗(s)

≤ 4
√
2 log (2AT )

∑
k

∑
s,a

∆(s)νk(s, a)√
max{1, Ntk(s, a)}

,

where in the last inequality, we used the knowledge on the bounded variations of the optimal bias
from Lemma 3.2, and that the optimistic MDP has transitions close to the true transitions.

A.3.2 Bound on Rdiff

We now deal with the term involving the difference of bias, Rdiff . For each episode k with policy πk,
denote by xk the state such that the confidence bounds are at their worst and denote by ak := πk(xk)
the corresponding action used at this state, so that Ntk(xk, ak) is minimal. We therefore have that√

log(2Atk)
max{1,Ntk

(xk,ak)} is maximal for episode k. The true MDP being within the confidence bounds,
with a triangle inequality:

∥Pk − P ∗∥∞ ≤ 4

√
2 log (2Atk)

max{1, Ntk(xk, ak)}
,

and

∥rk − r∗∥∞ ≤ 2rmax

√
2 log (2Atk)

max{1, Ntk(xk, ak)}
.

Then using Lemma C.4, and noticing that to bound the biases h̃k, h∗ and the quantity ∥
∑T

t=1 P̃
t
kr̃k∥

is bounded by the same diameter D, using the same argument as in [11] (Equation (11)), and noticing
that D ≥ 1:

∥h̃k − h∗∥∞ ≤ 12ThitrmaxD

√
2 log (2Atk)

max{1, Ntk
(xk, ak)}

. (27)

Hence,

Rdiff ≤
∑
s

∑
s′

νk (s, π̃k(s)) · (p̃k (s′|s, π̃k(s))− p (s′|s, π̃k(s))) · (h̃k(s
′)− h∗(s′))

≤
∑
s

νk (s, π̃k(s)) · ∥p̃k (·|s, π̃k(s))− p (·|s, π̃k(s))∥1 ∥h̃k − h∗∥∞

≤ 48D2rmax log (2AT ) Σ,

where in the last inequality we have used (27) and that by definition of D

Thit := inf
s′∈S

sup
s∈S

Es τ
π∗
s′ ≤ ES−1 τ

π0

0 ≤ D,
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and we called

Σ :=
∑
s,a

∑
k

tk+1−1∑
t=tk

1{st,at=s,a}√
max{1, Ntk(s, a)}

√
max{1, Ntk(xk, ak)}

.

By the choice of xk, Ntk(xk, ak) ≤ Ntk(s, a) for any state-action pair (s, a), so that we can rewrite,
with Ik := tk+1 − tk the length of episode k:

Σ ≤
∑
s,a

∑
k

tk+1−1∑
t=tk

1{st,at=s,a}

max{1, Ntk(xk, ak)}
≤
∑
k

Ik
max{1, Ntk(xk, ak)}

.

Now define Qmax :=
(

10D
mmax(S−1)

)2
log

((
10D

mmax(S−1)

)4)
, and I(T ) := max

{
Qmax, T

1/4
}

. We

split the sum depending on whether the episodes are shorter than I(T ) or not, and call K≤I the
number of such episodes. This yields:

Σ ≤ K≤II(T ) +
∑

k,Ik>I(T )

Ik
max{1, Ntk(xk, ak)}

.

Using the stopping criterion for episodes:

Σ ≤ K≤II(T ) +
∑

k,Ik>I(T )

Ik
max{1, νk(xk, ak)}

.

Now denote by E the event:

E =

{
∀k s.t Ik > I(T ),

1

max{1, ν(xk, ak)}
≤ 2

mmax(S − 1)Ik

}
.

By splitting the sum, using the above event, we get:

Σ ≤ K≤II(T ) + 1E
∑

k,Ik>I(T )

2

mmax(S − 1)
+ 1Ē

∑
k,Ik>I(T )

Ik

≤ K≤II(T ) + 1E (KT −K≤I)
2

mmax(S − 1)
+ 1ĒT.

We use Corollary C.6 to get P
(
Ē
)
≤ 1

4T , so that when taking the expectation:

E [Σ] ≤ E [K≤I ] I(T ) + E [(KT −K≤I)]
2

mmax(S − 1)
+

1

4

Now using Lemma B.3, SA ≥ 4, I(T ) ≥ 2
mmax(S−1) and that 1

log 2 + 1
4 ≤ 2:

E [Σ] ≤ E [KT ] I(T ) +
1

4
≤ 2SA log(2AT )I(T ).

We therefore have that:

E [Rdiff ] ≤ 96rmaxSAD2I(T ) log2 (2AT ) . (28)

A.3.3 Bound on the main terms: Exploiting the stochastic ordering

In Section 4.3 we have shown that:

Rtrans ≤ 4
√

2 log (2AT )
∑
s,a

∆(s)νk(s, a)√
max{1, Ntk(s, a)}

. (29)

To control this term as well as REVI (26) and Rrewards (25), we need to control the terms in the sum
in a way that does not make the parameters D or S appear, as this will be one of the main contributing
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terms. To do so, we need to sum over the episodes and take the expectation, so that with Lemma B.4,
we get:

E

[∑
s,a

∑
k

νk(s, a)√
max{1, Ntk(s, a)}

]
≤ 3E

[∑
s,a

√
NT (s, a)

]
≤ 3

∑
s

√
E [NT (s)]A by Jensen’s inequality.

We will use the following lemma to carry on the computations:

Lemma A.2. Let mπ0

be the stationary measure of the Markov chain under policy π0, such that for
every state s: π0(s) = 0. Let f : S → R+ be a non-negative non-decreasing function on the state
space. Then for any state s ∈ S,

E

∑
s′≥s

f(s′)Nt(s
′)

 ≤ t
∑
s′≥s

f(s′)mπ0

(s′) (30)

Proof. Let s ∈ S. For any state s′, define Nmπ0
,π0

t (s′) the number of visits when the starting state
follows the initial distribution mπ0

, and the MDP always executes the policy π0 at every timestep
instead of the policy determined by the algorithm UCRL2. Notice already that for any state s′:

E
[
Nmπ0

,π0

t (s′)

]
= tmπ0

(s′)

On the other hand, for x ∈ S, we have the stochastic ordering:∑
s′≥x

Nt(s
′) ≤st

∑
s′≥x

Nmπ0
,π0

t (s′),

so that for any non-negative non-decreasing function f , with the convention f(−1) = 0:(f(x)− f(x− 1))
∑

s′≥x Nt(s
′) ≤st (f(x)− f(x− 1))

∑
s′≥x N

mπ0
,π0

t (s′)

f(s− 1)
∑

s′≥s Nt(s
′) ≤st f(s− 1)

∑
s′≥s N

mπ0
,π0

t (s′),
(31)

and then summing the equation above for s ≤ x ≤ S − 1 and switching the sums yields:

∑
s′≥s

Nt(s
′)

s′∑
x=s

[f(x)− f(x− 1)] ≤st

∑
s′≥s

Nmπ0
,π0

t (s′)

s′∑
x=s

[f(x)− f(x− 1)],

which simplifies to:∑
s′≥s

Nt(s
′)[f(s′)− f(s− 1)] ≤st

∑
s′≥s

Nmπ0
,π0

t (s′)[f(s′)− f(s− 1)].

Now summing with the second equation in (31), we get the following equation:∑
s′≥s

Nt(s
′)f(s′) ≤st

∑
s′≥s

Nmπ0
,π0

t (s′)f(s′).

Taking the expectation in this last inequality finishes the proof.

Now, we can conclude our bound on Rtrans. Since

E

[∑
s,a

∑
k

(∆(s) + rmax)
νk(s, a)√

max{1, Ntk(s, a)}

]
≤ 3

√
A
∑
s≥0

(∆(s) + rmax)
√
E [NT (s)], (32)
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let f be a non-negative non-decreasing function over the state space, such that F :=
∑

s≥0 f(s)
−1

exists. Then by concavity:

∑
s≥0

(∆(s) + rmax)
√

E [NT (s)] = F
∑
s≥0

1

Ff(s)

√
f(s)2(∆(s) + rmax)2E [NT (s)]

≤ F

√√√√∑
s≥0

f(s)2(∆(s) + rmax)2E [NT (s)]

Ff(s)
by concavity

=

√
F
∑
s≥0

f(s)(∆(s) + rmax)2E [NT (s)]

≤
√
TF

∑
s≥0

f(s)(∆(s) + rmax)2mπ0(s) using Lemma A.2,

so that overall, (32) becomes:

E

[∑
s,a

∑
k

(∆(s) + rmax)νk(s, a)√
max{1, Ntk(s, a)}

]
≤ 3

√
ATF

√∑
s≥0

f(s)(∆(s) + rmax)2mπ0(s). (33)

This is the term mainly contributing to the regret.

A.3.4 Bound on the main terms: Introducing E2

Now, using Lemma B.5 which gives the stationary distribution of m0, we can compute the expectation
under m0 of a well-chosen function f :

Lemma A.3. Let us choose the increasing function f : s 7→ max{1,s(s−1)}
(∆(s)+rmax)2

. Then F ≤ 3(C+ rmax)
2

and
∑

s≥0(∆(s) + rmax)
2f(s)mπ0

(s) = Emπ0

[
(∆ + rmax)

2 · f
]
≤
(
1 + λ2

µ2

)
, so that:

E2 := FEmπ0

[
(∆ + rmax)

2 · f
]
≤ 3(C + rmax)

2

(
1 +

λ2

µ2

)
.

Proof. For F , we obtain:

F ≤ (C+rmax)
2

(
2 +

S−1∑
s=2

1

s(s− 1)

)
= (C+rmax)

2

(
2 +

S−1∑
s=2

(
1

s− 1
− 1

s

))
≤ 3(C+rmax)

2

Using the following computations:
S−1∑
s=2

s(s− 1)

(
S − 1

s

)(
λ

(S − 1)µ

)s

= (S − 2)(S − 1)

S∑
s=2

(
S − 3

s− 2

)(
λ

(S − 1)µ

)s

= (S − 2)(S − 1)

(
λ

(S − 1)µ

)2 S−3∑
s=0

(
S − 3

s

)(
λ

(S − 1)µ

)s

= (S − 2)(S − 1)

(
λ

(S − 1)µ

)2(
1 +

λ

(S − 1)µ

)S−3

≤
(
λ

µ

)2(
1 +

λ

(S − 1)µ

)S−3

,

and using that 1 + λ
µ ≤

(
1 + λ

(S−1)µ

)S−1

, we get:(
1 +

λ

(S − 1)µ

)S−1

Emπ0

[
(∆ + rmax)

2 · f
]
≤
(
1 +

λ2

µ2

)(
1 +

λ

(S − 1)µ

)S−1

,
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so that finally

Emπ0

[
(∆ + rmax)

2 · f
]
≤
(
1 +

λ2

µ2

)
,

which concludes the proof.

Finally (33) becomes:

E

[∑
s,a

∑
k

(∆(s) + rmax)νk(s, a)√
max{1, Ntk(s, a)}

]
≤ 3
√

E2AT, (34)

and thus:
E [Rtrans +Rrewards +REVI] ≤ 12

√
2E2AT log (2AT ). (35)

In particular:

E [Rtrans +Rrewards +REVI] ≤ 30(C + rmax)

√(
1 +

λ2

µ2

)
AT log (2AT ). (36)

A.3.5 Bound on Rep

It remains to deal with the following regret term:

Rep =
∑
k

vk (Pk − I) h̃k.

We will follow the core of the proof from [11]. Define Xt := (p(·|st, at)− est) h̃k(t)1M∈Mk(t)
,

where k(t) is the episode containing step t and ei the vector with i-th coordinate 1 and 0 for the other
coordinates.

vk (Pk − I) h̃k =

tk+1−1∑
t=tk

Xt + h̃k(stk+1
)− h̃k(stk)

≤
tk+1−1∑
t=tk

Xt +Drmax.

By summing over the episodes we get:

Rep ≤
T∑

t=1

Xt +KTDrmax.

Notice that E [Xt|s1, a1, . . . , st, at] = 0, so that when taking the expectations, only the term in the
number of episodes remains.

On the other side, using Lemma B.3, we get when taking the expectation:

E [Rep] ≤ SA log2

(
8T

SA

)
·Drmax.

Assuming SA ≥ 4, and using log(2) ≥ 1
2 :

E [Rep] ≤ 2rmaxSAD log(2AT ). (37)

We can now gather the expected regret terms when the true MDP is within the confidence bounds.
Using (28), (35) and (37):

E [Rin] ≤ 96rmaxSAD2I(T ) log2 (2AT ) + 12
√

2E2AT log (2AT ) + 2rmaxSAD log(2AT ),
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which gives with (23) and (24), assuming that T ≥ S2:

E [Reg] ≤ 97rmaxSAD2I(T ) log2 (2AT ) + 12
√

2E2AT log (2AT ).

which finally gives:

E [Reg] ≤ 97rmaxSAD2I(T ) log2 (2AT ) + 19
√
E2AT log (2AT ).

B Technical Lemmas

B.1 Probability of the confidence bounds

This first lemma is from [11, Lemma 17] and adapted to our confidence bounds.

Lemma B.1. For t > 1, the probability that the MDP M is not within the set of plausible MDPs Mt

is bounded by:

P {M /∈ M(t)} <
S

2t3
.

Proof. Fix a state action pair (s, a), and n the number of visits of this pair before time t. Recall that
p̂ and r̂ are the empirical transition probabilities and rewards from the n observations. Knowing that
from each pair, there are at most 3 transitions, a Weissman’s inequality gives for any εp > 0:

P {∥p̂(·|s, a)− p(·|s, a)∥1 ≥ εp} ≤ 6 exp

(
−
nε2p
2

)
.

So that for the choice of εp =
√

2
n log (16At4) ≤

√
8
n log (2At), we get:

P

{
∥p̂(·|s, a)− p(·|s, a)∥1 ≥

√
8

n
log (2At)

}
≤ 3

8At4
.

We can do similar computations for the confidence on rewards, with a Hoeffding inequality:

P {|r̂(s, a)− r(s, a)| ≥ εr} ≤ 2 exp

(
−2nε2r
r2max

)
,

and choosing εr = rmax

√
1
2n log (16At4) ≤ rmax

√
2
n log (2At), so that:

P

{
|r̂(s, a)− r(s, a)| ≥ rmax

√
2

n
log (2At)

}
≤ 1

8At4
.

Now with a union bound for all values of n ∈ {0, 1, · · · , t− 1}, we get:

P

{
∥p̂(·|s, a)− p(·|s, a)∥1 ≥

√
8 log (2At)

max{1, Nt(s, a)}

}
≤ 3

8At3
,

and

P

{
|r̂(s, a)− r(s, a)| ≥ rmax

√
2 log (2At)

max{1, Nt(s, a)}

}
≤ 1

8At3
,

and finally, when summing over all state-action pairs, P {M /∈ M(t)} < S
2t3 .
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B.2 Number of visits for an MDP in M

This lemma is needed in the proof of Lemma C.5.
Lemma B.2 (Azuma-Hoeffding inequality). Let X1, X2, . . . be a martingale difference sequence
with |Xi| ≤ RD for all i and some R > 0. Then for all ε > 0 and n ∈ N:

P

{
n∑

i=1

Xi ≥ ε

}
≤ exp

(
− ε2

2nDR

)
.

The two following lemmas are proved in [11, Appendix C.2 and Appendix C.3] respectively. Bound-
ing the number of episodes is notably useful to obtain equation (28).
Lemma B.3. Denote by Kt the number of episodes up to time t, and let t > SA. It is bounded by:

Kt ≤ SA log2

(
8t

SA

)
.

The following lemma is used to simplify regret terms, notably (29).
Lemma B.4. For any fixed state action pair (s, a) and time T , we have:∑

k=1

νk(s, a)√
max{1, Ntk(s, a)}

≤ 3
√

NT+1(s, a),

B.3 Diameter and Span of MDPs in M

For completeness, and to support the discussion in Section 4.2, the section details the behavior of the
diameter and the span of MDPs in M, as functions of S.

Under policy π0, it is possible to get en explicit expression for the stationary distribution of the states.

Lemma B.5. Under the stationary policy π0, the stationary measure mπ0

(s) of the MDP is given by:

mπ0

(s) =

(
S−1
s

) (
λ

(S−1)µ

)s
(
1 + λ

(S−1)µ

)(S−1)
.

This lemma is shown in the proof of [1, Lemma 3.3].

First, it should be clear that under any policy π, the diameter of the MDP under π is extremely large
because the probability to move from state s to state s+1 is smaller and smaller as s grows. Actually,
this is also true for the local diameter, more precisely the expected time to go from s to s+ 1 grows
extremely fast with s.

This discussion is formalized in the following result.
Lemma B.6. For any M ∈ M and any policy π, the diameter Dπ as well as the local diameter
Dπ(s− 1, s) grow as SS−2.

Proof. Under policy π, the following sequence of inequalities follows from the stochastic comparison
with π0 and monotonicity under π0.

Dπ ≥ τπ(0, S − 1) ≥ τπ
0

(0, S − 1) ≥ τπ
0

(S − 2, S − 1),

where τπ(x, y) is the expected time to go from x to y under policy π.

Now, starting from S− 2, the Markov chain moves to S− 1 with probability p := λ/(U(S− 1)) and
the time to reach S − 1 is equal to 1 or moves to S − 2 or S − 3 with probability 1− p. Therefore,
τπ

0

(S − 2, S − 1) is bounded by 1− p times the return time to S − 2 in the chain truncated at S − 2,
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bounded in turn by the inverse of the stationary measure of state S − 2 in this chain . Using Lemma
B.5,

τπ
0

(S − 2, S − 1) ≥ (1− p)

(
(S − 2)µ

λ

)(S−2)(
1 +

λ

(S − 2)µ

)(S−2)

(38)

= exp

(
λ

µ
− 2

)(µ
λ

)S−2

SS−2(1 + o(1/S)). (39)

As for the maximal local diameter, maxs D
π(s− 1, s) ≥ maxs τ

π0

(s− 1, s) ≥ τπ
0

(S − 2, S − 1)
and the same argument as before applies.

Let us now consider the bias of the optimal policy in M . Using Lemma 3.2, the bias h∗(s) is
decreasing and concave in s, with bounded increments. Therefore, its span, defined as span (h∗) :=
maxs h

∗(s)−mins h
∗(s), satisfies

(h∗(0)− h∗(1))S ≤ span (h∗) ≤ (h∗(S − 2)− h∗(S − 1))S ≤ C(S − 1).

This implies that the span of the bias behaves as a linear function of S for all M .

C Generic lemmas on ergodic MDPs

C.1 From bias variations to probability transition variations

The three first lemmas of this subsection are used in the proof of Lemma C.4. This lemma is needed
to obtain equation (27).
Lemma C.1. For a MDP with rewards r ∈ [0, rmax] and transition matrix P , denote by Js(π, T ) :=

E
[∑T

t=0 r(st, π(st))
]

the expected cumulative rewards until time T starting from state s, under

policy π. Let Dπ be the diameter under policy π. The following inequality holds: span (J(π, T )) ≤
rmaxDπ .

Proof. Let s, s′ ∈ S. Call τs→s′ the random time needed to reach state s′ from state s under policy
π. Then:

Js(π, T ) = E

[
T∑

t=0

r(st)

]

= E

[
τs→s′−1∑

t=0

r(st)

]
+ E

 T∑
t=τs→s′

r(st)


≤ rmaxE [τs→s′ ] + Js′(π, T )

≤ rmaxDπ + Js′(π, T ),

which proves the lemma.

Lemma C.2. Consider two ergodic MDPs M and M ′. For i ∈ 1, 2, let ri ∈ [0, rmax] and Pi be the
rewards and transition matrix of MDP Mi under policy πi, where both MDPs have the same state
and action spaces. Denote by gi the average reward obtained under policy πi in the MDP Mi. Then
the difference of the gains is upper bounded.

|g − g′| ≤ ∥r − r′∥∞ + rmaxDπ∥P − P ′∥∞.

Proof. Define for any state s the following correction term b(s) := rmaxDπ∥p(·|s)− p′(·|s)∥. Let
us show by induction that for T ≥ 0,

T−1∑
t=0

P tr ≤
T−1∑
t=0

P ′t(r + b).
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This is true for T = 0. Assume that the inequality is true for some T ≥ 0, then
T∑

t=0

P tr −
T∑

t=0

P ′t(r + b) = −b+ P

T−1∑
t=0

P tr − P ′
T−1∑
t=0

P ′t(r + b)

= −b+ P ′

(
T−1∑
t=0

P tr −
T−1∑
t=0

P ′t(r + b)

)
+ (P − P ′)

T∑
t=0

P tr

≤ −b+ (P − P ′)

T∑
t=0

P tr by induction hypothesis

Notice that, for any state s:(
(P − P ′)

T∑
t=0

P tr

)
(s) ≤ ∥p(·|s)− p′(·|s)∥ · span (J(T ))

≤ rmaxDπ∥p(·|s)− p′(·|s)∥ by Lemma C.1
= b(s)

In the same manner we show that:
T∑

t=0

P tr ≥
T∑

t=0

P ′t(r − b).

Hence, as P ′ has non-negative coefficients, denoting by e the unit vector:∥∥∥∥∥
T∑

t=0

P tr −
T∑

t=0

P ′tr

∥∥∥∥∥
∞

≤ ∥b∥∞

∥∥∥∥∥
T∑

t=0

P ′t · e

∥∥∥∥∥
∞

= ∥b∥∞(T + 1).

We can also show that:∥∥∥∥∥
T∑

t=0

P ′tr −
T∑

t=0

P ′tr′

∥∥∥∥∥
∞

=

∥∥∥∥∥
T∑

t=0

P ′t(r − r′)

∥∥∥∥∥
∞

≤ ∥r − r′∥∞(T + 1)

And therefore with a multiplication by 1
T+1 and by taking the Cesáro limit in∥∥∥∑T

t=0 P
tr −

∑T
t=0 P

′tr′
∥∥∥
∞

, and with a triangle inequality:

|g − g′| ≤ ∥r − r′∥∞ + ∥b∥∞,

where ∥b∥∞ = rmaxDπ∥P − P ′∥∞.

Lemma C.3. Let P be the stochastic matrix of an ergodic Markov chain with state space 1, . . . , S.
The matrix A := I − P has a block decomposition

A =

(
AS b
c d

)
;

then AS , of size (S − 1) × (S − 1) is invertible and ∥A−1
S ∥∞ = supi∈S Ei τS , where Ei τS is the

expected time to reach state S from state i.

Remark that this lemma is true for any state in S.

Proof. (Ei τS)i is the unique vector solution to the system:{
v(S) = 0

∀i ̸= S, v(i) = 1 +
∑

j∈S P (i, j)v(j)

We can rewrite this system of equations as: Ãv = e− eS , where Ã is the matrix

Ã :=

(
AS b
0 1

)
,
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e the unit vector and eS the vector with value 1 for the last state and 0 otherwise. Then Ã and AS are
invertible and we write:

Ã−1 =

(
A−1

S −A−1
S b

0 1

)
.

Thus, by computing Ã−1(e− eS), for i ̸= S, (Ei τS)i = A−1
S e. By definition of the infinite norm

and using that AS is an M-matrix and that its inverse has non-negative components, ∥A−1
S ∥∞ =

supi∈S Ei τS .

In the following lemma, we use the same notations as in Lemma C.2 with a common state space
{1, . . . S}.

Lemma C.4. Let the biases h, h′ be the biases of the two MDPs verify their respective Bellman
equations with the renormalization choice h(S) = h′(S) = 0. Let sups∈S Es τ

π
s′ be the worst

expected hitting time to reach the state s′ with policy π, and call Thit := infs′∈S sups∈S Es τs′ . We
have the following control of the difference:

∥h− h′∥∞ ≤ 2Thit(D
′rmax∥P − P ′∥∞ + ∥r − r′∥∞)

Notice that although the biases are unique up to a constant additive term, the renormalization choice
does not matter as the unit vector is in the kernel of (P − P ′).

Proof. The computations in this proof follow the same idea as in the proof of [10, Theorem 4.2].
The biases verify the following Bellman equations r − ge = (I − P )h, and also the arbitrary
renormalization equations, thanks to the previous remark: h(S) = 0. Using the same notations as in
the proof of Lemma C.3, we can write the system of equations Ãh = r̃− g̃, with r̃ and g̃ respectively
equal to r and g everywhere but on the last state, where their value is replaced by 0.

We therefore have that h = Ã−1(r̃ − g̃), and with identical computations, h′ = Ã′−1
(r̃′ − g̃′). By

denoting dX := X −X ′ for any vector or matrix X , we get:

dh = −Ã−1(dr̃ − dg̃ + dÃh′).

The previously defined block decompositions are:

Ã−1 =

(
A−1

S −A−1
S b

0 1

)
and dÃ =

(
AS −A′

S b− b′

0 0

)
.

For s < S, dh(s) = −eTs A
−1
S (dASh

′ + dr̃ − dg̃) and dh(S) = 0. Now by taking the norm and
using C.1:

∥dh∥∞ ≤ ∥A−1
S ∥∞(rmaxD

′∥dAS∥∞ + ∥dr̃∥+ |dg̃|).
Notice that ∥dAS∥∞ ≤ ∥dP∥∞, ∥dr̃∥ ≤ ∥dr∥ and ∥dg̃∥ = |dg|. Using Lemma C.2 and Lemma C.3,
and taking the infimum for the choice of the state of renormalization implies the claimed inequality
for the biases.

C.2 A McDiarmid’s inequality

Lemma C.5. Recall that mmax is the stationary measure of the Markov chain under policy πmax,
such that for every state s: πmax(s) = Amax.

Let k be an episode, and assume that the length of this episode Ik is at least I(T ) = 1 +

max
{
Qmax, T

1/4
}

, with Qmax :=
(

10D
mmax(S−1)

)2
log

((
10D

mmax(S−1)

)4)
. Then, with probability at

least 1− 1
4T :

νk(xk, ak) ≥ mmax(S − 1)Ik − 5D
√

Ik log Ik.

We will now prove Lemma C.5:
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Proof. Let k be an episode such that Ik ≥ I(T ), and first consider it is of fixed length I . Denote
by r̊ the vector of reward equal to 1 if the current state is xk and 0 otherwise. Denote by g̊πk

the
gain associated to the policy πk for the transitions p and rewards r̊, and similarly define h̊πk

the
bias, translated so that h̊πk

(S − 1) = 0. Notice in that case, that if we denote by mk the stationary
distribution under policy πk, that mmax(S − 1) ≤ mk(s) for any state s, assuming that S ≥ λ

µ + 1.
Then:

νk(xk, ak) =

tk+1−1∑
u=tk

r̊(su)

=

tk+1−1∑
u=tk

g̊πk
+ h̊πk

(su)−
〈
p (·|su, πk(su)) , h̊πk

〉
using a Bellman’s equation

=

tk+1−1∑
u=tk

g̊πk
+ h̊πk

(su)− h̊πk
(su+1) + h̊πk

(su+1)−
〈
p (·|su, πk(su)) , h̊πk

〉
.

By Azuma-Hoeffding inequality B.2, following the same proof as in section 4.3.2 of [11], notice that
Xu = h̊πk

(su+1)−
〈
p (·|su, πk(su)) , h̊πk

〉
form a martingale difference sequence with |Xu| ≤ D:

P

{
tk+1−1∑
u=tk

Xu ≥ D
√
10I log I

}
≤ 1

I5
.

Using that
∣∣∣̊hπk

(stk)− h̊πk
(stk+1

)
∣∣∣ ≤ D, with probability at least 1− 1

I2 :

νk(xk, ak) ≥
tk+1−1∑
u=tk

g̊πk
− 5D

√
I log I.

On the other hand:
tk+1−1∑
u=tk

g̊πk
= νk(sk, ak)mk(xk),

so that, using that mk(xk) ≥ mmax(S − 1), with probability at least 1− 1
I5 :

νk(xk, ak) ≥ mmax(S − 1)I − 5D
√
I log I.

We now use a union bound over the possible values of the episode lengths Ik, between I(T ) + 1 and
T :

P
{
νk(xk, ak) < mmax(S − 1)Ik − 5D

√
Ik log Ik

}
≤

T∑
I=I(T )+1

1

I5
≤

T∑
I=T 1/4+1

1

I5

≤ 1

4T
,

so that we now have that with probability at least 1− 1
4T :

νk(xk, ak) ≥ mmax(S − 1)Ik − 5D
√

Ik log Ik.

We can show a corollary of Lemma C.5 that we will use for the regret computations:
Corollary C.6. For an episode k such that its length Ik is greater than I(T ),with probability at least
1− 1

4T :

νk(xk, ak) ≥
mmax(S − 1)

2
Ik.
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Proof. With Lemma C.5, it is enough to show that 5D
√
Ik log Ik ≤ mmax(S−1)

2 Ik, i.e. that√
Ik

log Ik
≥ 10D

mmax(S−1) =: B. By monotonicity, as Ik ≥ Qmax = B2 logB4 we can show in-

stead that B2 logB4 ≥ B2 log
(
B2 logB4

)
.

This last inequality is true, using that log x ≥ log(2 log x) for x > 1. This proves the corollary.
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