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Abstract

Modern pre-trained transformers have rapidly advanced the state-of-the-art in
machine learning, but have also grown in parameters and computational complexity,
making them increasingly difficult to deploy in resource-constrained environments.
Binarization of the weights and activations of the network can significantly alleviate
these issues, however, is technically challenging from an optimization perspective.
In this work, we identify a series of improvements that enables binary transformers
at a much higher accuracy than what was possible previously. These include a
two-set binarization scheme, a novel elastic binary activation function with learned
parameters, and a method to quantize a network to its limit by successively distilling
higher precision models into lower precision students. These approaches allow
for the first time, fully binarized transformer models that are at a practical level
of accuracy, approaching a full-precision BERT baseline on the GLUE language
understanding benchmark within as little as 5.9%. Code and models are available
at: https://github.com/facebookresearch/bit.

1 Introduction

The past few years have witnessed tremendous advances in almost all applied fields of AI. It
would hardly be a simplification to say that the bulk of these advances was achieved by scaling
the transformer architecture (Vaswani et al., 2017) to ever larger sizes with increasing computation
budget (Devlin et al., 2019; Liu et al., 2019; Radford et al., 2018, 2019; Raffel et al., 2020; Brown
et al., 2020). On the other hand, mobile devices and wearables have proliferated and shrunk in size,
with stringent requirements for storage, computation and energy consumption. Consumers demand
more portability, while having access to all that current AI technology has to offer. As a result, the
gap between what is possible in AI, and what is deployable has never been wider.

While there is a variety of methods to increase inference efficiency in neural networks (e.g. knowledge
distillation, pruning), quantization has some attractive properties and has been widely successful
in practice (Gholami et al., 2021). For one, storage and latency gains from quantization are deter-
ministically defined for a given quantization level. For instance, reducing the precision of model
parameters by a given factor immediately translates to an identical reduction in storage cost. Similarly,
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reducing the precision of arithmetic operations results in a corresponding reduction in computational
cost. Uniform quantization is hardware friendly, making it relatively simple to realize theoretical
improvements in practice.

Binarization represents the extreme limit of quantization, promising a 32× reduction in storage over
full-precision (32-bit) models. Moreover, binary arithmetic completely eliminates multiplications
in favor of bit-wise XNOR operations (Courbariaux et al., 2016; Rastegari et al., 2016), enabling
even further improvements when using special purpose hardware. Energy efficiency improvements
between 100-1000x have been claimed to be possible with binary neural networks (BNNs), over their
full-precision counterparts (Nurvitadhi et al., 2016).

The obvious challenge with binarization is the difficulty of optimization. While all quantization is
discontinuous, higher precisions allow approximating the full-precision network to a better extent,
where with BNNs, this becomes much harder. Surprisingly, researchers in computer vision have been
able to demonstrate BNNs with remarkable accuracy (Liu et al., 2018; Qin et al., 2020; Martinez et al.,
2020). Unfortunately, while these works have mostly been developed on convolutional architectures
for image tasks, they have not generalized well to transformer models. For instance, recent work (Qin
et al., 2021) has shown that a BERT (Devlin et al., 2019) model with binary weights and activations
lags its full-precision counterpart by as much as 20 points on average on GLUE dataset. Even for
weights-only binarization, the loss landscape was shown to be too irregular, and recent work resorted
to complex and specialized methods such as weight-splitting from half-width models to achieve a
reasonable accuracy (Bai et al., 2021).

With this background, we tackle the problem of fully binarizing transformer models to a high level
of accuracy. With the expansion trend of transformers towards becoming the standard architecture
choice for all fields of AI, we believe a solution to this problem could be highly impactful.

Our approach follows the same paradigm as previous work, based on knowledge distillation (Hinton
et al., 2015) from higher precision models using the straight-through estimator (STE) of Bengio et al.
(2013). In view of the optimization difficulties, we take the following steps to ensure that the student
and teacher models are well-matched:

• In Section 3 we describe a robust binarization framework, which allows the binary student
network to better match the output distribution of the teacher. This allows us to achieve
SoTA results for extreme activation quantization with BERT, producing models with little
loss in accuracy down to a quantization level of binary weights and 2-bit activations and
improves over previous setups by large margins in the fully binary (1-bit) setting. It also
leads to competitive results for weight binarization with 4-bit activations using a single
knowledge distillation step.

• To further improve binary models, we propose a multi-distillation approach, described
in Section 4. Instead of distilling directly into a fully binary model, we first distill an
intermediate model of medium precision and acceptable accuracy. This model then becomes
the teacher in the next round of distillation into increasingly quantized models. Such a
method ensures that the student model doesn’t drift too far from the teacher, while also
ensuring as good an initialization as possible. We call the resulting model BiT 2.

In the vanilla setting without data augmentation, our approach reduces the accuracy gap to a full-
precision BERT-base model by half on the GLUE (Wang et al., 2019) benchmark compared to the
previous SoTA. When using data augmentation, we are able to reduce the absolute accuracy gap to
only 5.9 points (from over 15 points previously). In addition to the fully binary setting, we also report
SoTA results with binary weights and 2-bit activations, where our models trail the full-precision
baseline by only 3.5 points.

2 Background

2.1 Transformer architecture

The transformer model of Vaswani et al. (2017) is composed of an embedding layer, followed by
N transformer blocks and a linear output layer. Each transformer block consists of a multi-head
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attention layer followed by a feed-forward network, as shown in Figure 1. The multi-head attention
layer is a concatenation of K scaled dot-product attention heads, defined by:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

where dk is the dimension of each key, Q,K, V are weight matrices for the query, key and value
respectively. As such, the computation in a transformer model is limited to linear matrix mul-
tiplications and additions, pointwise non-linearities (most commonly Sigmoid (Han & Moraga,
1995), GeLU (Hendrycks & Gimpel, 2016) or ReLU (Nair & Hinton, 2010) ) and the Softmax
operation (Bridle, 1989).

2.2 Quantization

A vector w is uniformly quantized to b-bit precision, if its entries are restricted to the set {0, 1, . . . , 2b−
1} for asymmetric case or {−2b,−2b + 1, . . . , 2b − 1} for symmetric case, up to a real-valued scale
α. This allows vector operations to utilize lower precision arithmetic, making them more efficient by
a factor of B

b compared to full-precision calculation using B bits. The scaling operation is still in
higher precision, but if the dimensionality of w ≫ B

b , then the extra computation is negligible.

A neural network with parameters quantized to bw bits takes up B
bw

times less space. However, to take
advantage of lower-precision arithmetic, the input vectors (activations) to each vector/matrix operation
also need to be quantized. A network which has weights quantized to bw bits and activations quantized
to ba bits is denoted as WbwAba. In this work, we’re specifically interested in W1A1 transformers.
Binary arithmetic is especially attractive, since multiplications reduce to XNOR operations, and can
be implemented orders of magnitude more efficiently using specialized hardware (Nurvitadhi et al.,
2016).

2.3 Knowledge distillation

Knowledge distillation (KD) (Hinton et al., 2015) is a technique whereby a student network can
be trained to mimic the behavior of a teacher network. This is especially useful when the student
network is more efficient and easier to deploy than the more complex and cumbersome teacher. The
basic way of performing KD is by using the output distribution of the teacher model (p) as soft targets
for training the student model. If q is the student model’s output, then we have the loss term:

Llogits = KL(p,q) (1)

The advantage of KD over simple supervised training of a more efficient model is that the teacher
model provides a richer training signal including model confidence for each output class.

For computer vision tasks, distilling the final logits solely works well for binary neural networks (Liu
et al., 2020). If the student and teacher architectures are compatible, one can also distill intermediate
activations for faster convergence and better transfer and generalization (Aguilar et al., 2020):

Lreps =
∑
i

||rsi − rti ||2, (2)

where rsi and rti are the corresponding transformer block output activations from student and teacher.

3 Robust binarization setup

In this section we first bring together some best practices and minor improvements which we have
found helpful in simplifying previous work and building a strong baseline. Then we present a novel
activation binarization scheme, which we will show to be critical to achieve good performance.

3.1 Two-set binarization scheme

In contrast to convolutional neural networks on images where activations exhibit comparable distribu-
tions, different activations in transformer blocks are performing different functionalities, and thus vary
in their output distributions. In particular, these activations can be divided into two categories: the
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Figure 1: Overview of BiT. A transformer block contains the multi-head self-attention and feed-
forward network. We binarize all the weights to {-1, 1} in the Embedding/Fully-Connected layers
and binarize activations to {0, 1} for ReLU/Softmax outputs and to {-1, 1} for other layers.

activations after Softmax/ReLU layer that contains positive values only and the remaining activations
with both positive and negative values (e.g., after matrix multiplication). If we denote by XR the
vector of activation values, then the two cases are Xi

R ∈ R+ and Xi
R ∈ R respectively.

For the former set, mapping to the binary levels {−1, 1} would result in a severe distribution mismatch.
Therefore we instead map non-negative activation layers to X̂B ∈ {0, 1}n and binarize activation
layers with XR ∈ Rn to X̂B ∈ {−1, 1}n, shown in Figure 1. A prior work BiBERT (Qin et al., 2021)
also suggests binarizing attention to {0, 1}, but with bool function replacing SoftMax, while we
empirically find that simply binarizing attentions after SoftMax to {0, 1} works better and binarizing
ReLU output to {0, 1} instead of {−1, 1} brings further improvements. (See Section A.3 for details).

Optimal scaling factor in two sets Additionally, we apply a layer-wise scaling factor to binarized
activations to reduce the binarization error, i.e., XB = αX̂B. The optimal values of α are different
for the X̂B ∈ {0, 1}n and X̂B ∈ {−1, 1}n cases and can be calculated by minimizing the l2 error:

J (α) = ||XR − αX̂B||2

α∗ = argmin
α∈R+

J (α) (3)

Following XNOR-Net (Rastegari et al., 2016), by expanding Eq. 3, we have

J (α) = α2X̂B
T
X̂B − 2αXR

T X̂B +XR
TXR (4)

For the layers with XR ∈ Rn we follow the traditional methods of binarizing activations (Rastegari
et al., 2016; Liu et al., 2018) by taking the sign of real-valued activations:

X̂i
B = Sign(Xi

R) =

{ −1, if Xi
R < 0

+1, if Xi
R ⩾ 0

(5)

In that case, X̂B
T
X̂B = nXR

, where nXR
is number of elements in XR, and α∗ can be solved as:

α∗ =
XR

T X̂B

nXR

=
||XR||l1
nXR

(6)

For the activations in attention layers or after the ReLU non-linearity layers with XR ∈ Rn
+, we

binarize the activations to X̂B ∈ {0, 1}n by rounding the real-valued activations:

X̂i
B = ⌊Clip(Xi

R, 0, 1)⌉ =
{

0, if Xi
R < 0.5

1, if Xi
R ⩾ 0.5

(7)
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In that case, X̂B
T
X̂B = n{XR⩾0.5} where n{XR⩾0.5} denotes the number of elements in XR that

are greater than or equal to 0.5. Then α∗ can be solved as:

α∗ =
||XR · 1{XR⩾0.5}||l1

n{XR⩾0.5}
(8)

3.2 Best practices

We performed thorough experimentation and discovered the following modifications to be useful.

Simplified knowledge distillation Compared to previous BERT model binarization works (Bai et al.,
2021; Qin et al., 2021) which also attempt to distill the attention scores, we provide analysis and
experimental results (Section 5.3) showing that using only Lreps from transformer block outputs and
Llogits is more effective while being simpler. We also forego the two-step distillation scheme of Bai
et al. (2021) in favor of a single step, joint distillation, where our training loss is simply Llogits +Lreps.

Mean subtraction in weight binarization For weight binarization, centeralizing the real-valued
weights to be zero-mean before binarization can increase the information carrying capacity of the
binary weights. Thus, for weight binarization, we have: Wi

B = ||WR||l1
nWR

Sign(Wi
R −WR).

Gradient clipping Clipping gradients to 0 when Xi
R /∈ [−1, 1] (or Xi

R /∈ [0, 1] if X̂B ∈ {0, 1}n) is
a common technique for training binarized neural networks. However, we find that clipping weight
gradients is harmful for optimization. Once a weight is outside of the clip range, the gradient is fixed
to 0, preventing further learning. This is not so for activations, since the activation value changes for
each input. As a result, we apply gradient clipping only to activations but not to weights.

Non-linearity We prefer ReLU activations whenever the output range is non-negative.

Combining these, we are able to build a strong baseline, which improves the accuracy by 9.6% over
naively binarized transformers. Additionally, these techniques allow us to train a weight binarized
transformer network in a single training step using knowledge distillation (i.e., without resorting to
weight splitting as in BinaryBert (Bai et al., 2021)) (See Section 5.3 for details).

3.3 Elastic binarization function

The fixed scaling and threshold derived previously works reasonably well, but might not be optimal
since it ignores the distribution of the variable which is being binarized. Ideally, these parameters can
be learned during training to minimize the target loss.

When using classical binarization methods, i.e., X̂i
B = Sign(Xi

R), the binary output is independent
of the scale of the real-valued input. However, in our case where X̂i

B = ⌊Clip(Xi
R, 0, 1)⌉, this

independence no longer holds. Learning the scaling and threshold parameters, and how to approximate
the gradients precisely in the process becomes crucial for the final accuracy.

To handle this, inspired by the learnable threshold in ReActNet (Liu et al., 2020), we propose the
elastic binarization function to learn both the scale α ∈ R+ and the threshold β ∈ R:

Xi
B = αX̂i

B = α⌊Clip(X
i
R − β

α
, 0, 1)⌉ (9)

In the function, we initialize α with α∗ in Sec. 3.1 and β to be 0, and train it with gradients from the
final loss. To back-propagate the gradients to α through the discretized binarization function, we
follow the practice in Choi et al. (2018); Zhou et al. (2016); Esser et al. (2019) to use straight-through
estimator (STE) (Bengio et al., 2013) to bypass the incoming gradients to the round function to be
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Algorithm 1 BiT: Multi-distillation algorithm
Require: Dtrain,Ddev ▷ Training Data
Require: h0 ▷ Full-precision Model
Require: Q = {(b1w, b1a), . . . , (bkw, bka)} ▷ Quantization Schedule
1: hteacher ← h0

2: for biw, b
i
a in Q do

3: hstudent ← Quantize(hteacher, b
i
w, b

i
a)

4: KnowledgeDistill(hstudent, hteacher,Dtrain,Ddev)
5: hteacher ← hstudent
6: end for
7: return hstudent

the outgoing gradients:

∂Xi
B

∂α
= X̂i

B + α
∂X̂i

B

∂α

STE
≈ X̂i

B + α
∂Clip(

Xi
R−β
α , 0, 1)

∂α

=


0, if Xi

R < β
β−Xi

R

α , if β ⩽ Xi
R < α/2 + β

1− Xi
R−β
α , if α/2 + β ⩽ Xi

R < α+ β
1, if Xi

R ⩾ α+ β

(10)

Then the gradients w.r.t. β can be similarly calculates as:

∂Xi
B

∂β

STE
≈ α

∂Clip(
Xi

R−β
α , 0, 1)

∂β
=

{
−1, if β ⩽ Xi

R < α+ β

0, otherwise
(11)

For the layers that contain both positive and negative real-valued activations i.e., XR ∈ Rn, the
binarized values X̂B ∈ {−1, 1}n are indifferent to the scale inside the Sign function:

Xi
B = α · Sign(X

i
R − β

α
) = α · Sign(Xi

R − β) (12)

In that case, since the effect of scaling factor α inside the Sign function can be ignored, the gradient
w.r.t. α can be simply calculated as:

∂Xi
B

∂α
= Sign(Xi

R − β) (13)

In our ablations (Section 5.3 and A.2) we show that using this simple elastic binarization function
can bring a 15.7% accuracy boost over our strong baseline on the GLUE benchmark.

4 Multi-distilled binary transformer

Classical knowledge distillation (KD) (Hinton et al., 2015) trains the outputs (i.e., logits) of a
student network to be close to those of a teacher, which is typically larger and more complex. This
approach is quite general, and can work with any student-teacher pair which conforms to the same
output space. However, in practice, knowledge transfer happens faster and more effectively if the
intermediate representations are also distilled (Aguilar et al., 2020). This approach has been found
useful when distilling to student models with similar architecture (Sanh et al., 2019), and in particular
for quantization (Bai et al., 2021; Kim et al., 2019).

Note that having a similar student-teacher pair is a requirement for distilling representations. While
how similar they need to be is an open question, intuitively a teacher which is architecturally closer
to the student should make transfer of internal representations easier. In the context of quantization, it
is easy to see that lower precision students are progressively less similar to the full-precision teacher,
which is one reason why binarization is difficult.
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Table 1: Comparison of BERT quantization methods on the GLUE dev set. The E-W-A notation refers
to the quantization level of embeddings, weights and activations. ‡ denotes distilling binary models
using full-precision teacher without using multi-distill technique in Section 4. *Data augmentation is
not needed for MNLI, QNLI, therefore results in the data augmentation section are identical to that
without data augmentation for these datasets.

Quant #Bits Size (MB) FLOPs (G) MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.
BERT 32-32-32 418 22.5 84.9/85.5 91.4 92.1 93.2 59.7 90.1 86.3 72.2 83.9
Without data augmentation
Q-BERT 2-8-8 43.0 6.5 76.6/77.0 – – 84.6 – – 68.3 52.7 –
Q2BERT 2-8-8 43.0 6.5 47.2/47.3 67.0 61.3 80.6 0 4.4 68.4 52.7 47.7
TernaryBERT 2-2-8 28.0 6.4 83.3/83.3 90.1 – – 50.7 – 87.5 68.2 –
BinaryBERT 1-1-8 16.5 3.1 84.2/84.7 91.2 91.5 92.6 53.4 88.6 85.5 72.2 82.7
BinaryBERT 1-1-4 16.5 1.5 83.9/84.2 91.2 90.9 92.3 44.4 87.2 83.3 65.3 79.9
BinaryBERT 1-1-2 16.5 0.8 62.7/63.9 79.9 52.6 82.5 14.6 6.5 68.3 52.7 53.7
BinaryBERT 1-1-1 16.5 0.4 35.6/35.3 66.2 51.5 53.2 0 6.1 68.3 52.7 41.0
BiBERT 1-1-1 13.4 0.4 66.1/67.5 84.8 72.6 88.7 25.4 33.6 72.5 57.4 63.2
BiT ‡ 1-1-4 13.4 1.5 83.6/84.4 87.8 91.3 91.5 42.0 86.3 86.8 66.4 79.5
BiT ‡ 1-1-2 13.4 0.8 82.1/82.5 87.1 89.3 90.8 32.1 82.2 78.4 58.1 75.0
BiT ‡ 1-1-1 13.4 0.4 77.1/77.5 82.9 85.7 87.7 25.1 71.1 79.7 58.8 71.0
BiT 1-1-1 13.4 0.4 79.5/79.4 85.4 86.4 89.9 32.9 72.0 79.9 62.1 73.5
With data augmentation
TernaryBERT 2-2-8 28.0 6.4 83.3/83.3* 90.1* 90.0 92.9 47.8 84.3 82.6 68.4 80.3
BinaryBERT 1-1-8 16.5 3.1 84.2/84.7* 91.2* 91.6 93.2 55.5 89.2 86.0 74.0 83.3
BinaryBERT 1-1-4 16.5 1.5 83.9/84.2* 91.2* 91.4 93.7 53.3 88.6 86.0 71.5 82.6
BinaryBERT 1-1-2 16.5 0.8 62.7/63.9* 79.9* 51.0 89.6 33.0 11.4 71.0 55.9 57.6
BinaryBERT 1-1-1 16.5 0.4 35.6/35.3* 66.2* 66.1 78.3 7.3 22.1 69.3 57.7 48.7
BiBERT 1-1-1 13.4 0.4 66.1/67.5* 84.8* 76.0 90.9 37.8 56.7 78.8 61.0 68.8
BiT ‡ 1-1-2 13.4 0.8 82.1/82.5* 87.1* 88.8 92.5 43.2 86.3 90.4 72.9 80.4
BiT ‡ 1-1-1 13.4 0.4 77.1/77.5* 82.9* 85.0 91.5 32.0 84.1 88.0 67.5 76.0
BiT 1-1-1 13.4 0.4 79.5/79.4* 85.4* 86.5 92.3 38.2 84.2 88.0 69.7 78.0

This suggests a multi-step approach, where instead of directly distilling from a full-precision teacher
to the desired quantization level, we first distill into a model with sufficient precision in order to
preserve quality. This model can then be used as a teacher to distill into a further quantized student.
This process can be repeated multiple times, while at each step ensuring that the teacher and student
models are sufficiently similar, and the performance loss is limited. This multi-distillation approach
is sketched in Algorithm 1.

The multi-step distillation follows a quantization schedule, Q = {(b 1
w , b

1
a ), (b

2
w , b

2
a ), . . . , (b

k
w , b k

a )}
with (b 1

w , b
1
a ) > (b 2

w , b
2
a ) > . . . > (b k

w , b k
a )3. (b k

w , b k
a ) is the target quantization level, which is in

our case binary for both weights and activations. In practice, we find that down to a quantization level
of W1A2, we can distill models of reasonable accuracy in single shot, following the best practices
outlined in Section 3.2 (See our 1-1-2 baseline results in Table 1). As a result, we follow a fixed
quantization schedule, W32A32 → W1A2 → W1A1. This is not necessarily optimal, and how to
efficiently find the best quantization schedule is an interesting open problem. We present our initial
explorations towards this direction in Section 5.5.

Combining the elastic binary activations with multi-distillation we obtain BiT, the robustly binarized
multi-distilled transformer. Note that BiT simultaneously ensures good initialization for the eventual
(in our case binary) student model. Since the binary loss landscape is highly irregular, good initial-
ization is critical to aid optimization. Previous work has proposed progressive distillation (Zhuang
et al., 2018; Yang et al., 2019) to tackle this problem, wherein the student network is quantized at
increasing severity as the training progresses. However, this method does not prevent the student
network from drifting away from the teacher, which is always the full-precision model. We compare
to progressive distillation in Section A.1.

5 Main results

We follow recent work (Bai et al., 2021; Qin et al., 2021) in adopting the experimental setting of
Devlin et al. (2019), and use the pre-trained BERT-base as our full-precision baseline. We evaluate
on GLUE (Wang et al., 2019), a varied set of language understanding tasks (see Section A.5 for a full
list), as well as SQuAD (v1.1) (Rajpurkar et al., 2016), a popular machine reading comprehension
dataset.

3(a, b) > (c, d) if a > c and b ≥ d or a ≥ c and b > d.
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Table 2: Ablation study on the effects of each component on GLUE dataset without data augmentation.
Quant MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

1 BERTbase 84.9/85.5 91.4 92.1 93.2 59.7 90.1 86.3 72.2 83.9
2 BiBERT Baseline 45.8/47.0 73.2 66.4 77.6 11.7 7.6 70.2 54.1 50.4
3 BiBERT 66.1/67.5 84.8 72.6 88.7 25.4 33.6 72.5 57.4 63.2
4 BinaryBERT (Our implementation) 36.2/35.9 59.6 52.4 65.6 9.3 19.8 69.9 52.7 45.7
5 + Our simplied KD 37.7/37.3 59.5 56.8 73.4 4.1 24.8 70.8 57.0 48.0
6 + Our two-set binarization (Strong Baseline) 57.4/59.1 68.3 64.7 81.0 18.2 24.7 71.8 56.7 55.3
7 + Elastic binarization (BiT ‡) 77.1/77.5 82.9 85.7 87.7 25.1 71.1 79.7 58.8 71.0
8 + Multi-distillation (BiT) 79.5/79.4 85.4 86.4 89.9 32.9 72.0 79.9 62.1 73.5

5.1 GLUE results

Our main results on the GLUE benchmarks are presented in Table 1. In the setting without data
augmentation, where we only use the original training samples for knowledge distillation, we are
able to reduce the gap to the full precision baseline by 49.8%, i.e., from 20.7 in (Qin et al., 2021) to
10.4 points. We also see that our baseline models with elastic activation binarization already improve
previous SoTA by large margins.

In the binary weight setting (4-bit activations), we can match or outperform Bai et al. (2021) without
the need for pre-training half-width models and subsequently splitting weights. This result should
make binary weight models much easier to implement and deploy.

We also set a new state of the art for binary weight 2-bit activation (W1A2) models, with only a 3.5
point degradation compared to the full-precision baseline (using data augmentation). While not as
efficient as binary, 2-bit arithmetic can also be performed without multiplications, making it a good
efficient alternative in applications where the performance cost of going to fully binary is significant.

5.1.1 Data augmentation

From Table 1, it can be observed that the datasets with small training sets still have a large gap from
the full-precision baseline. As a result, we employ data augmentation heuristics (following the exact
setup in Zhang et al. (2020)) on the datasets with small training sets (all except MNLI, QNLI) to
take better advantage of our model’s strong representational capability. This further reduces the
quantization gap, with our models eventually trailing the full-precision model by only 5.9 points on
average on the GLUE benchmark.

5.2 SQuAD results

Table 3: Comparison of BERT quantization meth-
ods on SQuADv1.1 dev set. Metrics are exact
match and F1 score.

Quant #Bits SQuADv1.1EM/F1
BERTbase 32-32-32 82.6/89.7
BinaryBERT 1-1-4 77.9/85.8
BinaryBERT 1-1-2 72.3/81.8
BinaryBERT 1-1-1 1.5/8.2
BiBERT 1-1-1 8.5/18.9
BiT 1-1-1 63.1/74.9

We also evaluate on the popular machine reading
comprehension (MRC) dataset from Rajpurkar
et al. (2016). We compare to our own implemen-
tation of the MRC task on top of the BiBERT
codebase, since SQuAD results are not reported
in that work. We also show results using the
BinaryBERT codebase, without using weight
splitting. The results (Table 3) show that this
task is significantly harder than most document
classification benchmarks in GLUE, and previ-
ous binarization methods fail to achieve any meaningful level of performance. BiT does much better,
but still trails the 32-bit baseline by 14.8 points in F1. We conclude that despite the improvements we
have demonstrated on the GLUE benchmark, binarizing transformer models accurately is far from a
solved problem in general.

5.3 Ablations

We start from the basic binarization implementation from Bai et al. (2021), and add each of our
contributions in sequence to get a better idea how each contributes to the performance. The results
are shown in Table 2.

We start by removing attention distillation (Section 3.2), which results in a 2.3% improvement (row 5
vs. 4). Then switching to our two-set binarization (Section 3.1), which binarizes the attention scores
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Figure 2: The optimized scaling factor in BiT

differently than the feed-forward activations, which gives an additional 7.3% boost (row 6). This
results in a much stronger baseline than what was used in prior works (row 2).

Moving from fixed to elastic binarization (Section 3.3) proves hugely important, pushing the average
accuracy to 71.0% (row 7) from only 55.3% (row 6). Note that this model already outperforms the
current state-of-the-art (row 3) by 7.8% points. Finally, we add multi-step distillation (Section 4),
which adds another 2.5 points, reaching the final accuracy of 73.5% on the GLUE benchmark.

5.4 Learned parameter visualization

We visualize the optimized α in the final BiT model. As we can see from Figure 2, the values of the
α parameters vary significantly from layer to layer, and have apparent patterns according to layer
characteristics. For example, the attention layers need to distribute the attention to different entries,
thus the scaling factor for the attentions are learned to be small, while the scaling factors for the
query and key outputs are usually larger. Note that the biggest α value is 200× of the smallest α,
suggesting the importance of learning α dynamically.

5.5 Exploring multi-distillation paths

So far we have only considered the fixed quantization schedule, W32A32 → W1A2 → W1A1. This
is motivated by early experiments showing that one-step distillation to W1A2 works reasonably well.
We explored other optimal schedules, such as distilling to W1A8 resulted in a higher accuracy model,
thus a better teacher to distill down to the eventual W1A1 student. This suggests a trade-off between
the quality of the intermediate model, vs. the closeness to the target quantization level.
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Figure 3: MNLI-m accuracy on various distillation
paths. Each curve represents the sequence of mod-
els on a particular quantization schedule.

Figure 3, illustrates this trade-off. We can see
that two-step distillation improves over one-step
in every case. While higher precision interme-
diate models are better as expected, it is better
to use a lower precision teacher in the last step
since it makes the learning task for the binary
student model easier. The closeness to the target
quantization is favored despite the lower accu-
racy of teacher model.

It is of course possible, though more cumber-
some, to perform more than two distillation
steps. We also experiment with a three-step
schedule, W32A32 → W1A4 → W1A2 →
W1A1, which is plotted in the same figure
(dashed line). We find that this particular 3-
step schedule does not improve over the 2-step
schedule W32A32 → W1A2 → W1A1. While this result does not preclude existence of other more
optimal schedules, we hypothesize that this is unlikely.

6 Related work

Convolutional neural network quantization Neural network quantization is a practical tool for
compressing model size and reduce storage (Hubara et al., 2017). Quantization for convolutional
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neural networks has been studied both in the uniform quantization (Choi et al., 2018; Zhou et al.,
2016; Gong et al., 2019) and non-uniform quantization (Zhang et al., 2018; Miyashita et al., 2016; Li
et al., 2020) settings. The quantization level has been progressively increased, from 8-bit (Wang et al.,
2018; Zhu et al., 2020) to 4-bit (Jung et al., 2019; Esser et al., 2019; Liu et al., 2022) and finally to
the extreme 1-bit case (Courbariaux et al., 2016; Rastegari et al., 2016; Liu et al., 2018; Martinez
et al., 2020).

Transformer quantization Compared to the CNNs, transformers with attention layers are naturally
more challenging to quantize (Bondarenko et al., 2021). Previous research mainly focused on 8-bit
quantization (Zafrir et al., 2019; Fan et al., 2020) or 4-bit quantization (Shen et al., 2020; Zadeh
et al., 2020). Extremely low-bit quantization for transformers has only been attempted very recently.
TernaryBERT (Zhang et al., 2020) proposed to ternarize the full-precision weights of a fine-tuned
BERT model. As a follow-up to TernaryBERT, weight binarization was proposed in Bai et al. (2021).
Here, the network is trained by first training a ternary half-sized model, which is used as initialization.
Then a weight-splitting step results in a full-sized binarized model, which is further fine-tuned in a
subsequent distillation step. Binarizing both weight and activations in a transformer has proved to be
challenging. BiBERT (Qin et al., 2021) made the first attempt in this direction with limited success.
Their model performed 20% worse than a real-valued baseline on the GLUE benchmark (Wang et al.,
2019), which even underperforms the original LSTM baselines.

7 Conclusion

Large pre-trained transformers have transformed NLP and are positioned to serve as the backbone
for all AI models. In this work, we presented the first successful demonstration of a fully binary
pre-trained transformer model. While our approach is general and can be applied to any transformer,
we have limited our evaluation to BERT-based models on the GLUE and SQuAD benchmarks. It
remains to be seen how our conclusions will hold when applied to the wide variety of pre-trained
transformer models which have gained popularity in recent years, from small mobile models, to
gigantic ones with hundreds of billions of parameters. It will also be interesting to see the performance
of the approach on different domains (such as image and speech processing) and tasks (such as text
and image generation). Demonstrating the generality of this approach in a wider setting should
significantly widen its impact, therefore we identify this as an important future direction.
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