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A The Model Set Representation

In Section 4, we described the Model Set representation for the Rashomon Set. Figures 6 and 7
illustrate these data structures in more detail. Figure 6 introduces major components of our Model
Set Instance (MSI) representation. Figure 7 provides an example of the representation on a toy
dataset.

The Model Set representation’s memory efficiency stems from two key properties: grouping models
for the same subproblem together and then referencing these subproblems rather than duplicating
them. Figure 7 illustrates this for a tiny, 10-sample dataset. Let’s say that our Rashomon threshold is
0.40 and that we can split the entire problem on some feature to produce left and right children, each
containing exactly half the data set – the first five samples for the left subproblem and the last five
samples for the right subproblem.

Figure 6: Model Set Instance (MSI) Representation. Each MSI represents a subproblem (yel-
low)/objective (green) pair (a). The subproblem is described by a bitvector identifying the samples in
the subproblem. Figure (b) represents a leaf subproblem with objective 0.12. Figure (c) represents a
subproblem that can be split to produce an objective of 0.32. There are three features (age, gender,
and priors) for which a split produces this objective. If we split on age<25, then there are two
different pairs of identifiers that both produce objectives of 0.32 (represented by the two pairs of MSI
identifiers). Each pair of identifiers would further split on different features and have different tree
structures. The splits on gender and priors happen to produce the same pair of model set instances, as
shown by the matching MSI identifiers in the bottom two lines of the table. Referencing these sets of
trees by MSIs avoids massive data duplication.

extract (see Algorithm 2, 3) looks up the left subproblem and finds that there are three MSIs for
it, L1 represents a leaf and L2 and L3 each represent internal nodes with different objectives, each
of which produce that objective in two ways. Thus, on the left, there are five possible trees. On
the right, we have only two MSIs, one leaf (R1) and one internal node (R2). These represent three
trees. Although the cross-product of the left and right children produce fifteen trees, we need only
consider the 6 possible objectives values produced by combining each pair of model sets (i.e., L1+R1,
L1+R2, L2+R1, etc.). All but one of these satisfy the Rashomon threshold of 0.40 (L1+R1 produces
an objective of 0.50, which is greater than the threshold), and they produce only three new model
sets: one with objective 0.40 containing the two trees produced by combining L1 and R2 and the two
trees produced by combining L2 and R1; one with objective 0.30 containing the four trees produced
by combining L2 and R2 and the two trees produced by combining L3 and R1; and one with the
objective 0.20 containing the four trees represented by combining L3 and R2.
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Figure 7: An example model set representation of the left and right children of a root split on a
10-sample dataset with Rashomon threshold of 0.40. In the left child, L1 represents a leaf, and L2
and L3 represent internal nodes with different objectives. In the right child, R1 represents a leaf, and
R2 represents an internal node. Each of the internal nodes (L2, L3, R2) produce their objective in two
ways. All children Model Set Instances of internal nodes (L2, L3, R2) contain only one tree. Thus,
on the left, there are five possible trees, and the right represents three trees.

Our implementation augments the Model Set with two indexes: the Subproblem Index (SI) and the
Subproblem-Objective Index (SOI). The Subproblem Index (SI) is an index from a subproblem to
the set of all MSI identifiers for that subproblem, with objectives under a certain value named scope.
This value helps ensure that we do not extract MSI that are provably not in the Rashomon set using
Theorem E.1. The Subproblem-Objective Index (SOI) maps from a subproblem/objective pair to
an MSI. For example, in Figure 7, SI maps subproblem 1111100000 to identifiers of L1, L2, L3, and
SOI maps the identifier of L1 to its metadata.

B The TreeFARMS Algorithm

In Section 4.2, we presented a condensed version of the extraction algorithm (Algorithm 2); Algorithm
3 presents the full detail.

We maintain global data structures, MS, the collection of all Model Set Instances in the hierarchical
Model Set, SI the Subproblem Index, and SOI , the Subproblem-Objective Index as described in
Section 4 and Appendix A. They are all initialized to be empty before calling the recursive procedure
extract, shown below, on the full data set.

Let MSs,o be the MSI with objective o for subproblem s. We implement MSs,o using the
Subproblem-Objective Index, SOI .

Let MSs return a pair consisting of a scope and set of MSI identifiers, (scope, msiSet). The scope
returned is the objective such that all trees with objective under that value are represented by msiSet
for subproblem s. The set of MSI identifiers contains all MSI for subproblem s with objective less
than or equal to scope. We implement MSs using the Subproblem Index, SI .

More formally:

if scope, {msiSet} ∈ MSs then

scope, {msiSet} ∈ SI[s] and ∀m in msiSet, obj(m) ≤ scope

When extract returns, the Rashomon Set is represented by MSp where p is the complete data set.
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Algorithm 3 extract(G, sub, scope)

// Given a dependency graph, G, a subproblem, sub, and a scope, scope, populate MS with the
// Rashomon set for sub.
scope’, msi_set’ ← SI[sub]
// When we have solved a problem for a given scope value, we guarantee to have found all possible
// objectives less than or equal to that scope. This line implements SOLVED in Algorithm 2.
if scope’ is not None and scope ≤ scope’ then

// This subproblem is already solved.
return

msi_set ← {}
p ← G[sub] // Find problem sub in the dependency graph.
base_bound ← p.ub // Objective if this node is a leaf.
if base_bound ≤ scope then // It is possible for this subproblem to be a leaf

// Select prediction that minimizes loss for this node. This line and the following implement
// newLeaf in Algorithm 2.
prediction ← CALCULATE_PREDICTION(p)
// Create single leaf tree represented in an MSI. newMSI constructs an MSI using data
// provided in its arguments.
msi ← newMSI(leaf, sub, base_bound, prediction)
msi_set ← msi_set ∪ {msi.identifier}
SOI[sub, base_bound] ← msi

// Check all possible features on which we might split.
for each feature j ∈ [1,M ] do

// Create subproblems by splitting problem by feature j.
subl, subr ← split(sub, j)
// If either subproblem is not in dependency graph, we need not consider this split.
if subl not in G or subr not in G then

continue
pl ← G[subl] // pl is a node in the dependency graph.
pr ← G[subr] // pr is a node in the dependency graph.
if pl.lb+ pr.lb > scope then

continue
// Populate Model Sets for the left and right subproblems. Recursively call extract and
// decrement scope using the lower bound of the other side.
extract(G, subl, scope− pr.lb)
extract(G, subr, scope− pl.lb)
// MS now contains all Model Sets for the children; find all left and right model set
// instances.
left_scope, left_msi_set ← SI[subl]
// Remove all MSI whose objectives are too big.
left_msi_set ← {msi |msi ∈ left_msi_set and obj(msi) ≤ scope}
right_scope, right_msi_set ← SI[subr]
right_msi_set ← {msi |msi ∈ right_msi_set and obj(msi) ≤ scope}
// For each pair of model set instances in the cross product of left and right, if the sum of
// their objectives is less than or equal to scope, either create a new Model Set for this
// problem/objective, or add this pair to an existing Model Set for this problem/objective pair.
for each pair of model set instances (ml,mr) ∈ (left_msi_set× right_msi_set) do

// Skip leaf trivial extensions from the output.
if is_leaf(ml) and is_leaf(mr) and ml.predicts == mr.predicts then

continue
new_obj ← ml.obj +mr.obj
if new_obj > scope then // Skip combinations that exceed current scope.

continue
msi ← SOI[sub, new_obj]
if not exists msi then

msi ← newMSI(internal, sub, new_obj)
// Now, add this left/right pair to the model set for feature j.
msi[j].append(< ml,mr >)
msi_set ← msi_set ∪ {msi.identifier}
SOI[sub, new_obj] ← msi

// We store solved instance should we need it later.
SI[sub] ← scope, msi_set
return
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Algorithm 4 CALCULATE_PREDICTION(p)→ prediction
// Compute the prediction of the given node.

// Prediction if we end this node as a leaf. Changes to 1 if there are more positives than negatives.
prediction← 0
// Calculate the total positive and negative weights of each equivalence class.
// s ∈ {0, 1}n is a bitvector indicating datapoints we are considering for this subproblem.
s← p.keys
// Compute negatives using samples from only those points captured in this subproblem.
negatives←

∑n
i=1 1[yi = 0 ∧ si = 1]

positives←
∑n

i=1 1[yi = 1 ∧ si = 1]
// Set the leaf prediction based on class with the higher selected total weight.
if negatives < positives then

// Leaf predicts the majority class as 1 since positive weights are higher.
// Ties are predicted negative w.l.o.g. since the error rate is the same either way.
prediction← 1

return prediction

C Sampling from the Rashomon Set

To facilitate sampling from Rashomon sets too large to materialize in memory, we add a small
amount of metadata to our Model Set Representation. Each MSI for a splittable problem retains
a count of the total number of trees (unique trees, not MSIs) as well as counts for each entry in
the map for the MSI (that is, a count of the number of unique trees attributable to each possible
split). Assume that count(msi) returns the total number of trees represented by an entire Model Set
Instance and count(msi[j]) returns the number of trees represented by a particular entry in the map
of msi. Algorithms 5 and 6 present a brute-force algorithm for translating an index value between
[0, |Rset|) into a unique tree. To sample a tree, we randomly draw an index from the count of all trees
(or the sum of count of all MSIs at the problem set level), and then call Algorithm 5.

Algorithm 5 ndx_to_tree(MS,ndx) → t

// Find the ndxth tree in the Rashomon set represented by MS

// Get all MSI representing the full data set
msi_set, scope ← MSp

for msi in msi_set do
if count(msi) < ndx then

break
// Align indices to the start of the next MSI
ndx ← ndx− count(msi)

// Either ndx is larger than the size of the Rashomon set or msi is the Model Set Instance
// in which we will find the tree corresponding to ndx.
if ndx ≥ count(msi) then

// No tree with this ndx exists.
return NULL

return ndx_to_tree_in_msi(msi, ndx)

D Model Class Reliance of Decision Trees

In this appendix, we present the model class reliance calculation in detail. Given a dataset {x,y}, the
error of a decision tree t is defined by a nonnegative loss function ℓ:

eorig(t) :=
1

n

n∑
i=1

ℓ(t,y[i]x[i,k],x[i,\k]), (2)
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Algorithm 6 ndx_to_tree_in_msi(msi, ndx) → t

// Recursive procedure to construct the ndxth tree in Model Set Instance msi

if has_terminal(msi) then
// this is a leaf; see if we want to return it, or a more complicated tree (with the same
// objective).
if ndx = 0 then

return make_leaf_node(msi(prediction))
// Continue on to a more complicated model, but account for the leaf model.
ndx ← ndx− 1

// Iterate over features to determine in which feature this index appears.
for f in msi.keys() do

if count(msi[f ]) < ndx then
break

ndx ← ndx− count(msi[f ])

// At this point, f is the feature upon which we will split; next we need to find the pair in which ndx
// appears.
for each pair (left_msi, right_msi) in msi[f ] do

left_count ← count(left_msi)
right_count ← count(right_msi)
if ndx < left_count× right_count then

break
ndx ← ndx− (left_count× right_count)

// We now have the precise pair in which we’ll find ndx.
node ← make_internal_node(f)
node[′true′] ← ndx_to_tree_in_msi(left_msi, ndx // left_count)
node[′false′] ← ndx_to_tree_in_msi(left_msi, ndx% left_count)
return node

where x[i,k] is the kth feature of sample i and x[i,\k] is the set of remaining features. To show how
much the accuracy of a fixed tree t relies on variable k, we define the permutation loss:

edivide(t) :=
1

2⌊n/2⌋

⌊n/2⌋∑
i=1

[ℓ{t, (y[i],x[i,\k],x[i+⌊n/2⌋,k])}+ ℓ{t, (y[i+⌊n/2⌋],x[i+⌊n/2⌋,\k],x[i,k])}].

(3)

We define the model reliance (MR) by division, i.e., MR(t) := (edivide(t) + λHt)/(eorig(t) + λHt).
This definition is slightly different from [51] as we include the leaf penalty term in both numerator
and denominator to take tree complexity into consideration. If MR(t) is large, it means the error went
up substantially when feature k was altered, thus it is important.

MR evaluates how important a feature is for a specific tree t. However, such an estimation may
overestimate or underestimate the feature’s general importance. For example, a feature with high
model reliance with respect to a tree t might have low model reliance for another tree t′. Therefore,
we are more interested in how much any well-performing model from a decision tree class T relies
on a feature. Given an ϵ-Rashomon set (see Eq (1)), the model class reliance is defined by:

[MCR−,MCR+] := [ min
t∈Rset(ϵ,tref,T )

MR(t), max
t∈Rset(ϵ,tref,T )

MR(t)]. (4)

According to [51], MCR− is usually easy to calculate as long as the loss function ℓ is convex and there
is no leaf penalty term, but MCR+ is hard to calculate since even if ℓ is convex, the maximization
problem is usually non-convex. In the case of trees (or of any discrete functional class with interaction
terms), this problem is discrete and certainly nonconvex, and it is hard to compute either MCR− or
MCR+ without access to the type of algorithm presented in this work for enumerating the Rashomon
set.
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E Theorems and Proofs

We first recall some notation. A leaf set t = (l1, l2, ..., lHt) contains Ht distinct leaves, where
li is the classification rule of leaf i. If a leaf is labeled, then ŷi is the label prediction for all
data in leaf i. A partially grown tree t with the leaf set t = (l1, l2, ..., lHt

) could be rewritten as
t = (tfix, δfix, tsplit, δsplit, Ht), where tfix is a set of fixed leaves that are not permitted to be further split
(those leaves will be split in another instance of this tree separately) and δfix is a set of predicted labels
of leaves in tfix. Similarly, tsplit is the set of leaves that can be further split and δsplit are the predicted
labels of leaves tsplit. We denote σ(t) as the set of all t’s child trees whose fixed leaves contain tfix.

Theorem 3.1 (Basic Rashomon Lower Bound) Let θϵ be the threshold of the Rashomon set. Given a
tree t = (tfix, δfix, tsplit, δsplit, Ht), we denote b(tfix,x,y) := ℓ(tfix,x,y) + λHt as the lower bound
of the objective for tree t. If b(tfix,x,y) > θϵ, then the tree t and all of its children are not in the
ϵ-Rashomon set.

Proof. According to the definition of the lower bound for tree t, we know

Obj(t,x,y) = ℓ(t,x,y) + λHt ≥ ℓ(tfix,x,y) + λHt = b(tfix,x,y).

By the same logic, for any child tree t′ = (t′fix, δ
′
fix, t

′
split, δ

′
split, Ht′) ∈ σ(t), we will also have

Obj(t′,x,y) ≥ b(t′,x,y). Since the child trees all have the fixed leaves of the parent, tfix ⊆ t′fix, and
they have more leaves, Ht′ ≥ Ht, we have:

b(t′fix,x,y) = ℓ(t′fix,x,y) + λHt′ ≥ ℓ(tfix,x,y) + λHt = b(tfix,x,y).

Thus, if b(tfix,x,y) > θϵ, then Obj(t′,x,y) ≥ b(t′fix,x,y) > θϵ, i.e., t′ is not in the ϵ-Rashomon
set.

Therefore, if b(tfix,x,y) > θϵ, we can eliminate the tree t and its all of children from the search
space.

We use notation defined in the main text for equivalent points. As a reminder, a set of points is
equivalent if they have the same feature values; thus, those points will always receive identical
predictions, and hence, some will be misclassified if they have opposite labels.

Theorem 3.2 (Rashomon Equivalent Points Bound) Let θϵ be the threshold of the Rashomon
set. Let t be a tree with leaves tfix, tsplit and lower bound b(tfix,x,y). Let bequiv(tsplit,x,y) :=
1
n

∑n
i=1

∑U
u=1 cap(xi, tsplit) ∧ 1[xi ∈ eu] ∧ 1[yi = qu] be the lower bound on the misclassification

loss of leaves that can be further split. Let B(t,x,y) := b(tfix,x,y) + bequiv(tsplit,x,y) be the
Rashomon lower bound of t. If B(t,x,y) > θϵ, tree t and all its children are not in the ϵ-Rashomon
set.

Proof. According to the definition of b(tfix,x,y) and bequiv(tsplit,x,y), we know

Obj(t,x,y) = ℓ(tfix,x,y) + ℓ(tsplit,x,y) + λHt ≥ b(tfix,x,y) + bequiv(tsplit,x,y) = B(t,x,y).

For t′ ∈ σ(t), Obj(t′,x,y) ≥ b(tfix,x,y) + bequiv(tsplit,x,y) = B(t,x,y). When B(t,x,y) > θϵ,
Obj(t,x,y) > θϵ and thus Obj(t′,x,y) > θϵ.

Theorem E.1. (Rashomon Equivalent Points Bound for Subtrees) Let t be a tree such that the root
node is split by a feature, where two subtrees tleft and tright are generated with Htleft and Htright leaves
for tleft and tright respectively. Let B(tleft,x,y) and B(tright,x,y) be the Rashomon equivalent points
bound for the left and right subtrees respectively. (Note that B(tleft,x,y) ≤ ℓ(tleft,x,y) + λHtleft

and B(tright,x,y) ≤ ℓ(tright,x,y) + λHtright ). If B(tleft,x,y) + B(tright,x,y) > θϵ, then the tree t
is not a member of the ϵ-Rashomon set.

Proof.

Obj(t,x,y) = ℓ(tleft,x,y) + ℓ(tright,x,y) + λ(Htleft +Htright) ≥ B(tleft,x,y) +B(tright,x,y).

If B(tleft,x,y) + B(tright,x,y) > θϵ, then Obj(t,x,y) > θϵ. Therefore, tree t is not in the
ϵ-Rashomon set.
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Figure 8: Two cases that can bound the accuracy of tree t. Note that for a tree t, its FNRt and
FPRt are in range [0, 1]. Left: when 2(δ − λHt) < 1, the blue area identifies the feasible region.
The point that maximize the accuracy is either (0, 2(δ − λHt)) or (2(δ − λHt), 0). Right: when
2(δ − λHt) ≥ 1, the blue area identifies the feasible region. The point that maximize the accuracy is
either (2(δ − λHt)− 1, 1) or (1, 2(δ − λHt)− 1).

We recall some notations used for Theorem 5.1 and 5.2. Let q+ be the proportion of positive samples
and q− be the proportion of negative samples, i.e., q+ + q− = 1. We denote qmin := min(q+, q−)
and qmax := max(q+, q−). Let FPR and FNR be the false positive and false negative rates. We
notate the Accuracy Rashomon set as Aθ := {t ∈ T : q−FPRt + q+FNRt + λHt ≤ θ}, where θ
is the objective threshold of the Accuracy Rashomon set, similar to θϵ in Section 3. We denote δ in
these theorems as the objective threshold of Balanced Accuracy or F1-Score Rashomon sets.

Theorem 5.1 (Accuracy Rashomon set covers Balanced Accuracy Rashomon set) Let Bδ := {t ∈ T :
FPRt+FNRt

2 + λHt ≤ δ} be the Balanced Accuracy Rashomon set. If

θ ≥ min
(
2qmaxδ, qmax + (2δ − 1)qmin + (1− 2qmin)λ2

d
)
,

where d is the depth limit, then ∀t ∈ Bδ, t ∈ Aθ.

Proof. To prove this theorem, we first get the bound values through geometric intuition, and then
prove the inequalities formally. Consider the plane with FPR and FNR being two axes, shown
in Figure 8, ∀t ∈ Bδ, inequalities FPRt+FNRt

2 + λHt ≤ δ and 0 ≤ FPRt, FNRt ≤ 1 bound the
feasible region. Our goal is to find the upper bound of the accuracy objective in this feasible region,
so that when θ is greater than this upper bound, we have ∀t ∈ Bδ, t ∈ Aθ. As shown in Figure 8
there are two different cases that can bound the accuracy of tree t.

Case 1:

When 2(δ − λHt) < 1 (see Figure 8 left), the accuracy loss is a line in the plane and thus maximized
at (0, 2(δ − λHt)) or (2(δ − λHt), 0). The corresponding maximum value is max(q+ × 2(δ −
λHt), q

− × 2(δ− λHt)) = qmax2(δ− λHt). Inspired by this geometric intuition, formally we want
to show,

q−FPRt + q+FNRt ≤ qmax2(δ − λHt). (5)

Eq (5) can be shown as follows,

q−FPRt + q+FNRt ≤ qmax(FPRt + FNRt) (qmax ≥ q+, qmax ≥ q−)

≤ qmax2(δ − λHt) (see definition of Bδ)
(6)
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Therefore,
q−FPRt + q+FNRt + λHt ≤ qmax2(δ − λHt) + λHt

= 2qmaxδ − 2qmaxλHt + λHt

= 2qmaxδ − (2qmax − 1)λHt

≤ 2qmaxδ (since qmax ≥ 0.5).

(7)

Case 2: Inspired by Figure 8 right. When 2(δ−λHt) ≥ 1, the the accuracy loss is maximized at either
(1, 2(δ−λHt)−1) or (2(δ−λHt)−1, 1) on the FPR-FNR plane, and the corresponding maximum
value is max(q+×(2(δ−λHt)−1)+q−, q−×(2(δ−λHt)−1)+q+) = qmax+(2(δ−λHt)−1)qmin.
First, we want to show,

q−FPRt + q+FNRt ≤ qmax + (FPRt + FNRt − 1)qmin. (8)

Eq (8) right – Eq (8) left = qmax + (FPRt + FNRt − 1)qmin − q−FPRt − q+FNRt

= qmax − qmin + qmin(FPRt + FNRt)− q−FPRt − q+FNRt

= qmax − qmin + (qmin − q−)FPRt + (qmin − q+)FNRt.

(9)

If q− ≥ q+, then Eq (9) = q− − q+ + (q+ − q−)FPRt = (q− − q+) − (q− − q+)FPRt ≥ 0
since q− − q+ ≥ 0 and 1 − FPRt ≥ 0. Similarly, if q+ ≥ q−, then Eq (9) = (q+ − q−) −
(q+ − q−)FNRt ≥ 0. Therefore, Eq (9) is always greater than or equal to 0. Hence, Eq (8) holds.
Therefore,

q−FPRt + q+FNRt ≤ qmax + (FPRt + FNRt − 1)qmin

≤ qmax + (2(δ − λHt)− 1)qmin (see definition of Bδ),
(10)

which is the same as the maximum value we got intuitively from Figure 8 right. Adding λHt to both
sides, we have

q−FPRt + q+FNRt + λHt ≤ qmax + (2(δ − λHt)− 1)qmin + λHt

= qmax + (2δ − 1)qmin − 2qminλHt + λHt

= qmax + (2δ − 1)qmin + (1− 2qmin)λHt

≤ qmax + (2δ − 1)qmin + (1− 2qmin)λ2
d (if depth is at most d).

(11)
Combining these two cases,

q−FPRt + q+FNRt + λHt ≤ min

(
2qmaxδ, qmax + (2δ − 1)qmin + (1− 2qmin)λ2

d

)
. (12)

Therefore, if θ ≥ min

(
2qmaxδ, qmax+(2δ−1)qmin+(1−2qmin)λ2

d

)
, then ∀t ∈ Bδ , q−FPRt+

q+FNRt + λHt ≤ θ. In other words, ∀t ∈ Bδ , t ∈ Aθ.

Theorem 5.2 (Accuracy Rashomon set covers F1-score Rashomon set) Let

Fδ :=

{
t ∈ T :

q−FPRt + q+FNRt

2q+ + q−FPRt − q+FNRt
+ λHt ≤ δ

}
be the F1-score Rashomon set. Suppose q+ ∈ (0, 1), q− ∈ (0, 1), and δ − λHt ∈ (0, 1). If

θ ≥ min
(
max

(
2q+δ
1−δ ,

2q+(δ−λ2d)
1−(δ−λ2d)

+ λ2d
)
,1[δ <

√
2 − 1] 2δ

1+δ + 1[δ ≥
√
2 − 1](δ + 3 − 2

√
2)
)

,
then ∀t ∈ Fδ , t ∈ Aθ.

Proof. Similar to Theorem 5.1, we first get the bound values through geometric intuitions, and then
prove the inequalities formally. First, we want to represent the F1 loss with FPR and FNR so that
we can put it in the FPR-FNR plane. The F1-score is harmonic mean of precision and recall and is
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Figure 9: Two cases that can bound the accuracy of tree t. Note that for a tree t, its FNRt and FPRt

are in range [0, 1]. Left: when FPRt < 1, the blue area identifies the feasible region. The point that
maximize the accuracy is when FNRt = 0. Right: when FPRt = 1, the blue area identifies the
feasible region. The point that maximize the accuracy is when the line intersects the right boundary.

usually written in terms of FP and FN as 1− FP+FN
2N++FP−FN , where N+ is the number of positive

samples. With some operations we can rewrite this formula in terms of FPR and FPN ,

FP + FN

2N+ + FP − FN
=

(FP + FN)/n

(2q+ × n+ FP − FN)/n

=

FP
n ×

q−

q− + FN
n ×

q+

q+

2q+ + FP
n ×

q−

q− −
FN
n ×

q+

q+

=
q−FPR+ q+FNR

2q+ + q−FPR− q+FNR

Here, for simplicity, we use f1t :=
q−FPRt+q+FNRt

2q++q−FPRt−q+FNRt
to denote the F1 loss, which is 1 minus

the F1-score of tree t. Based on the definition of Fδ , ∀t ∈ Fδ , we have

q−FPRt + q+FNRt

2q+ + q−FPRt − q+FNRt
+ λHt ≤ δ

⇒ q−FPRt + q+FNRt ≤ (δ − λHt)× (2q+ + q−FPRt − q+FNRt)

⇒ q+FNRt(1 + δ − λHt) ≤ 2q+(δ − λHt) + q−(δ − λHt − 1)FPRt

⇒ FNRt ≤
2(δ − λHt)

1 + δ − λHt
+

q−(δ − λHt − 1)

q+(1 + δ − λHt)
FPRt (1 + δ − λHt > 1)

(13)

This is a line. The slope of the F1-score boundary line is q−(δ−λHt−1)
q+(1+δ−λHt)

and the slope of the accuracy

boundary is −q−

q+ . Since δ − λHt ∈ (0, 1), δ−λHt−1
1+δ−λHt

< 0 and | δ−λHt−1
1+δ−λHt

| < 1. Therefore, both
slopes are negative and the slope of F1-score boundary is always larger than the slope of the accuracy
boundary (see Figure 9). In addition, we can also show the intercept, which is also the upper bound of
FNR in Eq (13), 2(δ−λHt)

1+δ+λHt
< 1, since δ − λHt ∈ (0, 1) and 2(δ−λHt)

1+δ+λHt
is monotonically increasing

with δ − λHt. Therefore,
FNR < 1. (14)

Since 0 ≤ FPR,FNR ≤ 1, ∀t ∈ Fδ , there are also two different cases that can bound the accuracy
of tree t (see Figure 9).
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Case 1: Based on Figure 9 left, when FPRt < 1, the point that maximizes the accuracy is when
FNRt = 0. Using Eq (13), we know the point is (−2q+(δ−λHt)

q−(δ−λHt−1) , 0), and the corresponding loss is
2q+(δ−λHt)
1+λHt−δ . Formally, we want to show

q−FPRt + q+FNRt ≤
2q+(δ − λHt)

1− (δ − λHt)
(15)

Eq (15) is shown as follows,

q−FPRt + q+FNRt ≤
q−FPRt + q+FNRt

1− FNRt
(Eq (14), and denominator ≤ 1) (16)

=
2q+(q−FPRt + q+FNRt)

2q+(1− FNRt)
(17)

=
2q+(q−FPRt + q+FNRt)/(2q

+ + q−FPRt − q+FNRt)

(2q+ − 2q+FNRt)/(2q+ + q−FPRt − q+FNRt)
(18)

=
2q+(q−FPRt + q+FNRt)/(2q

+ + q−FPRt − q+FNRt)
2q++q−FPRt−q+FNRt−q−FPRt−q+FNRt

2q++q−FPRt−q+FNRt

(19)

=
2q+(q−FPRt + q+FNRt)/(2q

+ + q−FPRt − q+FNRt)

1− f1t
(20)

=
2q+f1t
1− f1t

. (21)

Note that the denominator cannot be 0, because FNR < 1 as shown in Eq (14). Eq (21) is
monotonically increasing in f1t, since its first derivative is 2q+(1−f1t)−2q+f1t(−1)

(1−f1t)2
= 2q+

(1−f1t)2
> 0.

Since t ∈ Fδ , the maximum F1-score is δ − λHt. Therefore,

q−FPRt + q+FNRt ≤
2q+f1t
1− f1t

≤ 2q+(δ − λHt)

1− (δ − λHt)
. (22)

Adding the leaf penalty on both sides, we get

q−FPRt + q+FNRt + λHt ≤
2q+(δ − λHt)

1− (δ − λHt)
+ λHt. (23)

Since Ht is a variable, for simplicity, we let a := λHt. Then we can define g(a) := 2q+(δ−a)
1−(δ−a) + a.

Solving g′(a) = −2q+

(1−δ+a)2 + 1 = 0, we get a = δ − 1±
√

2q+. Since a is the leaf penalty, a ≥ 0,

we have only one solution for a. That is, a = δ− 1+
√
2q+. Now we consider g′′(a) = 4q+(1−δ+a)

(1−δ+a)4 ,
and, plugging in our solution for a, we see g′′(a) ≥ 0. Therefore, g(a) achieves the minimum value
when a = δ − 1 +

√
2q+.

If 0 ≤ δ−1+
√
2q+ ≤ λ2d, then for a ∈ [0, δ−1+

√
2q+], g′(a) ≤ 0, indicating g(a) monotonically

decreases in this range, while for a ∈ [δ−1+
√
2q+, λ2d], g′(a) ≥ 0, indicating g(a) monotonically

increases. Therefore, for a ∈ [0, λ2d], g(a) first increases and then decreases, and thus maximized at
the two ends, i.e.,

max g(a) = max(g(a = 0), g(a = λ2d)) = max

(
2q+δ

1− δ
,
2q+(δ − λ2d)

1− (δ − λ2d)
+ λ2d

)
.

In summary,

q−FPRt + q+FNRt + λHt ≤ max

(
2q+δ

1− δ
,
2q+(δ − λ2d)

1− (δ − λ2d)
+ λ2d

)
. (24)

Case 2: Inspired by Figure 9 right, we can find that the maximizer when FPRt = 1 at
(1, (q++1)(δ−λHt)−q−

q+(1+δ−λHt)
) using Eq (13). And the corresponding loss is 2(δ−λHt)

1+δ−λHt
. Formally, we want to

show
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q−FPRt + q+FNRt ≤
2(δ − λHt)

1 + δ − λHt
. (25)

To show Eq (25),

q−FPRt + q+FNRt ≤ q−FPRt + q+FNRt

q+ + q−FPRt
(FPRt≤1, denominator∈(0,1]) (26)

=
(q−FPRt + q+FNRt)/(2q

+ + q−FPRt − q+FNRt)

(q+ + q−FPRt)/(2q+ + q−FPRt − q+FNRt)
(27)

=
f1t

(1 + f1t)/2
(28)

=
2f1t

1 + f1t
. (29)

Eq (29) is monotonically increasing with f1, since its derivative = 2(1+f1t)−2f1t
(1+f1t)2

= 2
(1+f1t)2

≥ 0.
Moreover, since t ∈ Fδ , the maximum f1-score loss is δ − λHt. Therefore,

q−FPRt + q+FNRt ≤
2f1t

1 + f1t
≤ 2(δ − λHt)

1 + δ − λHt
. (30)

Adding leaf penelty to two sides, we can get

q−FPRt + q+FNRt + λHt ≤
2(δ − λHt)

1 + δ − λHt
+ λHt. (31)

Let’s change the variable. Let a = λHt. Then the right-hand side of Eq (31) is a function of a. Let
g(a) := 2(δ−a)

1+δ−a + a.

dg

da
=
−2(1 + δ − a)− 2(δ − a)(−1)

(1 + δ − a)2
+ 1 =

−2
(1 + δ − a)2

+ 1 (32)

Solving dg
da = 0, we get

a = 1 + δ ±
√
2. (33)

Since a is the leaf penalty term, δ − a > 0 according to our assumption. If a = 1 + δ +
√
2,

δ − a = −2.414 < 0 which contradicts the assumption. Therefore, only a = 1 + δ −
√
2 could be

the valid stationary point. We then calculate g′′(a) = −4(1+δ−a)
(1+δ−a)4 ≤ 0. Therefore, a = 1 + δ −

√
2 is

the maximizer of g(a).

(i) when δ+1−
√
2 < 0, we still have that a cannot be smaller than 0. Therefore, the maximum

value of g(a) happens when a = 0, which is equal to 2δ
1+δ .

(ii) when δ+1−
√
2 ≥ 0, the maximum value of g(a) is when a = δ+1−

√
2, which is equal

to δ + 3− 2
√
2.

In summary,

q−FPRt + q+FNRt + λHt ≤ 1[δ <
√
2− 1]

2δ

1 + δ
+ 1[δ ≥

√
2− 1](δ + 3− 2

√
2). (34)

Combining the two cases together,

q−FPRt + q+FNRt + λHt ≤ min

(
max

(
2q+δ

1− δ
,
2q+(δ − λ2d)

1− (δ − λ2d)
+ λ2d

)
,

1[δ <
√
2− 1]

2δ

1 + δ
+ 1[δ ≥

√
2− 1](δ + 3− 2

√
2)

)
.

(35)

26



Therefore, If θ ≥ min
(
max

(
2q+δ
1−δ ,

2q+(δ−λ2d)
1−(δ−λ2d)

+ λ2d
)
,1[δ <

√
2− 1] 2δ

1+δ + 1[δ ≥
√
2− 1](δ +

3− 2
√
2)
)

, then ∀t ∈ Fδ , q−FPRt + q+FNRt + λHt ≤ θ. In other words, ∀t ∈ Fδ , t ∈ Aθ.

Recall notation for Theorem 5.3 and 5.4. Let t̃∗ be the optimal tree trained on {x[\K,·],y[\K]} where
K is a set of indices of instances that we wish to analyze. We denote |K| as the cardinality of the set
K. Overloading notation to include the dataset, let Rset(ϵ, t

∗, T ,x,y) = Rset(ϵ, t
∗, T ) (see Eq (1))

be the Rashomon set of the original dataset, where tref = t∗ is the optimal tree trained on the original
dataset, and we define the ϵ′-Rashomon set on the reduced dataset as

Rset(ϵ
′, t̃∗, T ,x[\K,·],y[\K]):=

{
t ∈ T : Obj(t,x[\K,·],y[\K])≤(1 + ϵ′)×Obj(t̃∗,x[\K,·],y[\K])

}
.

Theorem 5.3 (Optimal tree after removing a group of instances is still in full-dataset Rashomon set)
If ϵ ≥ 2|K|

n×Obj(t∗,x,y) , t̃
∗ ∈ Rset(ϵ, t

∗, T ,x,y).

Proof. The objective of t∗ on the original dataset and the reduced dataset are

Obj(t∗,x,y) =
1

n

n∑
i=1

1[yi ̸= ŷt
∗

i ]+λHt∗ and Obj(t∗,x[\K,·],y[\K]) =
1

n− |K|
∑
i/∈K

1[yi ̸= ŷt
∗

i ]+λHt∗ .

Similarly, the objective of t̃∗ on the original dataset and the reduced dataset are

Obj(t̃∗,x,y) =
1

n

n∑
i=1

1[yi ̸= ŷt̃
∗

i ]+λHt̃∗ and Obj(t̃∗,x[\K,·],y[\K]) =
1

n− |K|
∑
i/∈K

1[yi ̸= ŷt̃
∗

i ]+λHt̃∗ .

Since t̃∗ is the optimal tree trained on {x[\K,·],y[\K]},

Obj(t̃∗,x[\K,·],y[\K]) ≤ Obj(t∗,x[\K,·],y[\K]). (36)

Step 1: bound the difference between Obj(t∗,x,y) and Obj(t∗,x[\K,·],y[\K])

Since
∑n

i=1 1[yi ̸= ŷt
∗

i ] =
∑

i/∈K 1[yi ̸= ŷt
∗

i ] +
∑

i∈K 1[yi ̸= ŷt
∗

i ], we can get

Obj(t∗,x,y)−Obj(t∗,x[\K,·],y[\K]) =
1

n

n∑
i=1

1[yi ̸= ŷt
∗

i ]− 1

n− |K|
∑
i/∈K

1[yi ̸= ŷt
∗

i ]

=
1

n
(
∑
i/∈K

1[yi ̸= ŷt
∗

i ] +
∑
i∈K

1[yi ̸= ŷt
∗

i ])− 1

n− |K|
∑
i/∈K

1[yi ̸= ŷt
∗

i ]

=
(n− |K|)

∑
i/∈K 1[yi ̸= ŷt

∗

i ] + (n− |K|)
∑

i∈K 1[yi ̸= ŷt
∗

i ]

n(n− |K|)

−
n
∑

i/∈K 1[yi ̸= ŷt
∗

i ]

n(n− |K|)

=
(n− |K|)

∑
i∈K 1[yi ̸= ŷt

∗

i ]− |K| ×
∑

i/∈K 1[yi ̸= ŷt
∗

i ]

n(n− |K|)
.

(37)
Since

∑
i∈K 1[yi ̸= ŷt

∗

i ] ∈ {0, 1, · · · , |K|},

(n− |K|)
∑
i∈K

1[yi ̸= ŷt
∗

i ] ∈ {0, n− |K|, · · · , (n− |K|)|K|}.

Similarly,
∑

i/∈K 1[yi ̸= ŷt
∗

i ] ∈ {0, 1, · · · , n− |K|}, therefore,

|K|
∑
i/∈K

1[yi ̸= ŷt
∗

i ] ∈ {0, |K|, · · · , |K|(n− |K|)}.
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Combining the extreme values of these two terms together, we know Eq (37) is

Obj(t∗,x,y)−Obj(t∗,x[\K,·],y[\K]) ≥
−|K|
n

. (38)

Step 2: bound the difference between Obj(t̃∗,x[\K,·],y[\K]) and Obj(t̃∗,x,y).

Obj(t̃∗,x[\K,·],y[\K])−Obj(t̃∗,x,y) =
1

n− |K|
∑
i/∈K

1[yi ̸= ŷt̃
∗

i ]− 1

n

n∑
i=1

1[yi ̸= ŷt̃
∗

i ]

=
1

n− |K|
∑
i/∈K

1[yi ̸= ŷt̃
∗

i ]− 1

n

[∑
i∈K

1[yi ̸= ŷt̃
∗

i ] +
∑
i/∈K

1[yi ̸= ŷt̃
∗

i ]

]

=
n
∑

i/∈K 1[yi ̸= ŷt̃
∗

i ]

(n− |K|)n

−
(n− |K|)(

∑
i∈K 1[yi ̸= ŷt̃

∗

i ] +
∑

i/∈K 1[yi ̸= ŷt̃
∗

i ])

n(n− |K|)

=
|K|

∑
i/∈K 1[yi ̸= ŷt̃

∗

i ]− (n− |K|)
∑

i∈K 1[yi ̸= ŷt̃
∗

i ]

n(n− |K|)
.

(39)
Since

∑
i/∈K 1[yi ̸= ŷt̃

∗

i ]) ∈ {0, 1, · · · , n− |K|},

|K|
∑
i/∈K

1[yi ̸= ŷt̃
∗

i ]) ∈ {0, |K|, · · · , |K|(n− |K|)}.

Similarly,
∑

i∈K 1[yi ̸= ŷt̃
∗

i ]) ∈ {0, 1, · · · , |K|},

(n− |K|)
∑
i∈K

1[yi ̸= ŷt̃
∗

i ]) ∈ {0, n− |K|, · · · , |K|(n− |K|)}.

Combining the extreme values of these two terms, we know Eq (39) obeys

Obj(t̃∗,x[\K,·],y[\K])−Obj(t̃∗,x,y) ≥ −|K|
n

. (40)

Given Eq (36), (38), (40), we can get

Obj(t∗,x,y) ≥ Obj(t∗,x[\K,·],y[\K]) +
−|K|
n

(see Eq (38))

≥ Obj(t̃∗,x[\K,·],y[\K]) +
−|K|
n

(see Eq (36))

≥ Obj(t̃∗,x,y) +
−2|K|

n
(see Eq (40)).

(41)

In other words, Obj(t̃∗,x,y) ≤ Obj(t∗,x,y) + 2|K|
n . To guarantee that Rset(ϵ, t∗, T ,x,y) covers

t̃∗, i.e., Obj(t∗,x,y) + 2|K|
n ≤ (1 + ϵ)×Obj(t∗,x,y), we impose that ϵ ≥ 2|K|

n×Obj(t∗,x,y) .

Theorem 5.4 (Rashomon set after removing a group of instances is within full-dataset Rashomon set)
If ϵ ≥ ϵ′ + (2+ϵ′)|K|

n×Obj(t∗,x,y) , then ∀t ∈ Rset(ϵ
′, t̃∗, T ,x[\K,·],y[\K]), we have t ∈ Rset(ϵ, t

∗, T ,x,y).

Proof. Given a decision tree t ∈ Rset(ϵ
′, t̃∗, T ,x[\K,·],y[\K]), we know

Obj(t,x[\K,·],y[\K]) ≤ (1 + ϵ′)×Obj(t̃∗,x[\K,·],y[\K])

≤ (1 + ϵ′)×Obj(t∗,x[\K,·],y[\K]) (t̃∗is the optimal tree on {x[\K,·],y[\K]})

≤ (1 + ϵ′)×
[
Obj(t∗,x,y) +

|K|
n

]
(see Eq (38)).

(42)
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Then we bound the difference between Obj(t,x[\K,·],y[\K]) and Obj(t,x,y).

Obj(t,x[\K,·],y[\K])−Obj(t,x,y) =
1

n− |K|
∑
i/∈K

1[yi ̸= ŷti ]−
1

n

n∑
i=1

1[yi ̸= ŷti ]

=
1

n− |K|
∑
i/∈K

1[yi ̸= ŷti ]−
1

n

[∑
i∈K

1[yi ̸= ŷti ] +
∑
i/∈K

1[yi ̸= ŷti ]

]

=
n
∑

i/∈K 1[yi ̸= ŷti ]− (n− |K|)
∑

i/∈K 1[yi ̸= ŷti ]

(n− |K|)n

−
(n− |K|)(

∑
i∈K 1[yi ̸= ŷti ])

n(n− |K|)

=
|K|

∑
i/∈K 1[yi ̸= ŷti ]− (n− |K|)

∑
i∈K 1[yi ̸= ŷti ]

n(n− |K|)
.

(43)

Since
∑

i/∈K 1[yi ̸= ŷti ] ∈ {0, 1, · · · , n− |K|},

|K|
∑
i/∈K

1[yi ̸= ŷti ] ∈ {0, |K|, · · · , |K|(n− |K|)}.

Similarly,
∑

i∈K 1[yi ̸= ŷti ]) ∈ {0, 1, · · · , |K|},

(n− |K|)
∑
i∈K

1[yi ̸= ŷti ]) ∈ {0, n− |K|, · · · , |K|(n− |K|)}.

Combining the extreme values of these two terms we know Eq (43) obeys

Obj(t,x[\K,·],y[\K])−Obj(t,x,y) ≥ −|K|
n

. (44)

Combining Eq (42) and (44), we get

Obj(t,x,y) ≤ Obj(t,x[\K,·],y[\K]) +
|K|
n

(see Eq 44)

≤ (1 + ϵ′)×
[
Obj(t∗,x,y) +

|K|
n

]
+
|K|
n

(see Eq (42))

= (1 + ϵ′)×Obj(t∗,x,y) +
(2 + ϵ′)|K|

n
.

(45)

Thus, when ϵ ≥ ϵ′ + (2+ϵ′)|K|
n×Obj(t∗,x,y) , Eq (45) extends to

Obj(t,x,y) ≤ (1 + ϵ′)×Obj(t∗,x,y) +
(2 + ϵ′)|K|

n
≤ (1 + ϵ′)×Obj(t∗,x,y) + (ϵ− ϵ′)×Obj(t∗,x,y)

= (1 + ϵ)×Obj(t∗,x,y).

(46)

In other words, when ϵ ≥ ϵ′ + (2+ϵ′)|K|
n×Obj(t∗,x,y) , ∀t ∈ Rset(ϵ

′, t̃∗, T ,x[\K,·],y[\K]), t ∈
Rset(ϵ, t

∗, T ,x,y).

F Experimental Datasets

We present results for 14 datasets: four from the UCI Machine Learning Repository [52] (Car
Evaluation, Congressional Voting Records, Monk2, Iris, and Breast Cancer), a penguin dataset [53],
a recidivism dataset (COMPAS) [54], the Fair Isaac (FICO) credit risk dataset [55] used for the
Explainable ML Challenge, and four coupon datasets (Bar, Coffee House, Takeaway Food, Cheap
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Restaurant, and Expensive Restaurant), which were collected on Amazon Mechanical Turk via a
survey [56]. We predict which individuals are arrested within two years of release on the COMPAS
dataset, whether an individual will default on a loan for the FICO dataset, and whether a customer
will accept a coupon for takeaway food or a cheap restaurant depending on their coupon usage history,
current conditions while driving, and coupon expiration time on two coupon datasets. All the datasets
are publicly available.

F.1 Preprocessing

Table 1 summarizes all the datasets after preprocessing.

Dataset Samples Binary Features
Car Evaluation 1728 15

Congressional Voting Records 435 32
Monk2 169 11
Penguin 333 13

Iris 151 15
Breast Cancer 699 10

COMPAS 6907 12
FICO 10459 17
Bar-7 1913 14
Bar 1913 15

Coffee House 3816 15
Takeaway Food 2280 15

Cheap Restaurant 2653 15
Expensive Restaurant 1417 15

Table 1: Preprocessed datasets

Car Evaluation, Congressional Voting Records, Monk2, Penguin: We preprocess these datasets,
which contain only categorical features, using one-hot encoding.

Iris: We select thresholds produced by splitting each numerical feature into three equal parts. We
used an implementation of qcut in Pandas [57] to split features. This yields 15 features.

Breast Cancer: We select features and thresholds that are used by a gradient boosted tree
with 40 decision stumps, which are “Clump_Thickness = 10”, “Uniformity_Cell_Size=1”,
“Uniformity_Cell_Size=10”, “Uniformity_Cell_Shape=1”, “Marginal_Adhesion=1”,
“Single_Epithelial_Cell_Size=2”, “Bare_Nuclei=1”, “Bare_Nuclei=10”, “Normal_Nucleoli=1”,
“Normal_Nucleoli=10”.

COMPAS: We use the same discretized binary features of COMPAS produced in [58], which are the
following: “sex = Female”, “age < 21”, “age < 23”, age < 26, “age < 46”, “juvenile felonies = 0”,
“juvenile misdemeanors = 0”, “juvenile crimes = 0”, “priors = 0”, “priors = 1”, “priors = 2 to 3”,
“priors > 3”.

FICO: We use the same discretized binary features of FICO produced in [58], which are the following:
“External Risk Estimate < 0.49” , “External Risk Estimate < 0.65”, “External Risk Estimate < 0.80”,
“Number of Satisfactory Trades < 0.5”, “Trade Open Time < 0.6”, “Trade Open Time < 0.85”,
“Trade Frequency < 0.45”, “Trade Frequency < 0.6”, “Delinquency < 0.55”, “Delinquency < 0.75”,
“Installment < 0.5”, “Installment < 0.7”, “Inquiry < 0.75”, “Revolving Balance < 0.4”, “Revolving
Balance < 0.6”, “Utilization < 0.6”, “Trade W. Balance < 0.33”.

Bar, Coffee House, Takeaway Food, Cheap Restaurant, Expensive Restaurant: We selected
features “destination”, “passanger”, “weather”, “temperature”, “time”, “expiration”, “gender”,
“age”, “maritalStatus”, “childrenNumber”, “education”, “occupation”, “income”, “Bar”, “Coffee-
House”, “CarryAway”, “RestaurantLessThan20”, “Restaurant20To50”, “toCouponGEQ15min”,
“toCouponGEQ25min”, “directionSame” and the label Y, and removed observations with missing
values. We used one-hot encoding to transform these categorical features into binary features. We
then selected 15 binary features with the highest variable importance value trained using gradient
boosted trees with 100 max-depth 3 weak classifiers.
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• Bar: The selected binary features are “Bar = 1 to 3”, “Bar = 4 to 8”, “Bar = less1”,
“maritalStatus = Single”, “childrenNumber = 0”, “Bar = gt8”, “passanger = Friend(s)”,
“time = 6PM”, “passanger = Kid(s)”, “CarryAway = 4 to 8”, “gender = Female”, “education
= Graduate degree (Masters Doctorate etc.)”, “Restaurant20To50 = 4 to 8”, “expiration =
1d”, “temperature = 55”.

• Coffee House: The selected binary features are “CoffeeHouse = 1 to 3”, “CoffeeHouse = 4
to 8”, “CoffeeHouse = gt8”, “CoffeeHouse = less1”, “expiration = 1d”, “destination = No
Urgent Place”, “time = 10AM”, “direction = same”, “destination = Home”, “toCoupon =
GEQ15min”, “Restaurant20To50 = gt8”, “education = Bachelors degree”, “time = 10PM”,
“income = $75000 - $87499”, “passanger = Friend(s)”.

• Takeaway Food: The selected binary features are “expiration = 1d”, “time = 6PM”, “Cof-
feeHouse = gt8”, “education= Graduate degree”, “weather = Rainy”, “maritalStatus =
Single”, “time = 2PM”, “occupation = Student”, “income =$62500-$74999”, “occupa-
tion = Legal”, “occupation = Installation Maintenance & Repair”, “direction = same”,
“destination = No Urgent Place”, “income = $100000 or more”, “Bar = less1”.

• Cheap Restaurant: The selected binary features are “toCoupon = GEQ25min”, “expiration
= 1d”, “time = 6PM”, “destination = No Urgent Place”, “time = 10PM”, “CarryAway
= less1”, “passanger = Kid(s)”, “weather = Snowy”, “passanger = Alone”, “income =
$87500 - $99999”, “occupation = Retired”, “CoffeeHouse = gt8”, “age = 36”, “weather =
Rainy”, “direction = same”.

• Expensive Restaurant: The selected binary features are “expiration = 1d”, “CoffeeHouse
= 1 to 3”, “Restaurant20To50 = 4 to 8”, “Restaurant20To50 = 1 to 3”, “occupation = Office
& Administrative Support”, “age = 31”, “Restaurant20To50 = gt8”, “income =$12500 -
$24999”, “toCoupon = GEQ15min”, “occupation = Computer & Mathematical”, “time
= 10PM”, “CoffeeHouse = 4 to 8”, “income=$50000 - $62499”, “passanger = Alone”,
“destination = No Urgent Place”.

Bar-7: We use the same discretized binary features of Bar-7 produced in [59], which are the following:
“passanger = Kids”, “age = 21”, “age = 26”,“age = 31”,“age = 36”, “age = 41”,“age = 46”, “age =
26”, “age = 50plus”, “Bar = 1 to 3”, “Bar = 4 to 8”, “Bar = gt8”, “Bar = less1”, “Restaurant20to50
≥4, “direction = same”.

G More Experimental Results

G.1 Scalability and Efficiency of Calculating Rashomon set with TreeFARMS versus
Baselines

Collection and Setup: We ran this experiment on 10 datasets: Monk2, COMPAS, Car Evaluation,
FICO, Congressional Voting Records, Bar, Bar7, Coffee House, Cheap Restaurant, Expensive
Restaurant. To run TreeFARMS, we set λ to 0.01 for Monk2, COMPAS, FICO, Congressional
Voting Records, Bar, Bar7, Coffee House and Expensive Restaurant and to 0.005 for Car Evaluation
and Cheap Restaurant. These choices yielded sufficiently larger Rashomon sets. We set ϵ to 0.15 for
Congressional Voting Records and 0.10 for all other datasets. This means we store all models within
10% of the optimal solution.

We used the R package BART [60] and set the number of trees in each iteration to 1. We sampled
models from the posterior with 10-iteration intervals between draws. To get sparser models, we used
a sparse Dirichlet prior. To get a set of trees from Random Forest and CART, we used RandomForest-
Classifier from scikit-learn [61] and set min_samples_split to max(⌈2nλ⌉, 2), min_samples_leaf to
⌈nλ⌉, and max_leaf_nodes=⌊1/(2λ)⌋. We set max_features to “auto” for Random Forest and “None”
for CART. For GOSDT, we sampled 75% of the dataset size, with replacement to improve diversity,
and fit an optimal tree on the sampled data. To improve performance for BART, Random Forest, and
CART with sampling, we collapsed trivial splits (nodes that have two leaves with the same predicted
label) into a single node. We record the time used to construct the Rashomon set and ran the baselines
for a similar time to sample trees. Thus, all methods were given the same amount of time to produce
good trees. For each dataset and baseline method, we used 5 different random seeds to compute the
average and standard deviation of number of trees found in Rashomon set and run time. We did not
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report errors on TreeFARMS as it is deterministic. We used results obtained from the first random
seed to generate Figure 10.

We ran this experiment on a 2.7Ghz (768GB RAM 48 cores) Intel Xeon Gold 6226 processor. We set
a 200-GB memory limit.

Results: Figure 10 compares the Rashomon set with the four baselines on the Car Evaluation, Coffee
House, Cheap and Expensive Restaurant datasets. Similar to the patterns shown in Figure 1, the
four subfigures on the top show that TreeFARMS (in purple) found many more distinct trees in the
Rashomon set than any of the four baselines on all of the datasets. The baseline methods tend to
find many duplicated trees, and most trees found by the baselines have objective values higher than
the threshold of the Rashomon set, and thus, are not in the Rashomon set. The four subfigures on
the bottom show the distribution of objective values of trees from each method. We note that in the
method GOSDT with sampling the optimal tree for a given subsample of the dataset might not be
identical to the optimal tree to the original dataset. Thus, GOSDT, which finds provably optimal trees
for a given dataset, does not obtain many distinct trees that are in the Rashomon set: instead, many
subsamples produce either the same optimal solutions or trees that are outside of the full dataset’s
Rashomon set, which is why its curve is not visible. TreeFARMS is the only method guaranteed to
find all trees in the Rashomon set.

Table 2 shows that TreeFARMS finds more trees in the Rashomon set per second than all other
baselines on all the datasets.

Figure 10: Comparison of trees in the Rashomon set and trees generated by baselines. (A/B) in the
legend indicates that A trees of the B trees produced by the baseline method are in the Rashomon set.
For example, GOSDT+sampling (9/10) means that 9 trees of 10 distinct trees found by GOSDT with
sampling are in the Rashomon set.

G.2 Landscape of the Rashomon set

Collection and Setup: We ran this experiment on Monk2. We used dimension reduction techniques
to visualize the Rashomon set.

We first generated the Rashomon set with λ = 0.025 and ϵ = 0.2. We then selected the best tree
for each unique set of features in the Rashmon set; that is, if two trees used the same features, we
kept the tree with the better objective. Next, we reduced the Rashomon set to R2 using the PaCMAP
dimension reduction technique [which handles global structure better than techniques such as t-SNE
and UMAP, see 62].

Results: Figure 11 shows the embedding using three different distance metrics: tree edit distance
(a), prediction set distance (b), and feature set distance (c). The tree edit distance is the edit distance
between two trees using the operations add-node, delete-node, or swap-nodes, all with equal weight.
The prediction set distance is the Hamming distance between the set of predictions each tree creates
for the dataset (up to n). The feature set distance between two trees is the Hamming distance between
the feature sets they used (up to p).
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TreeFARMS BART RF CART +
sampling

GOSDT +
sampling

time (s)
# trees

in
Rset/s

norm.
time

#
trees

in
Rset/s

norm.
time

#
trees

in
Rset/s

norm.
time

#
trees

in
Rset/s

norm.
time

#
trees

in
Rset/s

Monk2 46.46 2.28
×106

0.99
± 0.02

0.03
± 0.02

1.01
± 0.00

0.00
± 0.00

0.99
± 0.02

0.20
± 0.11

0.95
± 0.00

0.31
± 0.04

COMPAS 3.03 8.75
×104

0.98
± 0.03

0.14
± 0.17

0.99
± 0.01

68.67
± 2.34

1.00
± 0.00

44.83
± 2.17

0.96
± 0.01

2.20
± 0.34

Car Evalua-
tion 207.76 101.27 0.95

± 0.00
0.00
± 0.00

1.01
± 0.01

0.03
± 0.02

1.00
± 0.01

0.71
± 0.04

0.97
± 0.02

0.03
± 0.01

Bar 266.79 1.91
×104

0.96
± 0.00

0.15
± 0.29

1.00
± 0.02

4.78
± 0.14

1.00
± 0.01

3.88
± 0.11

0.96
± 0.01

0.06
± 0.01

Coffee
House 81.77 1.45

×105
0.99
± 0.01

0.00
± 0.00

1.00
± 0.00

2.60
± 0.17

1.00
± 0.00

0.67
± 0.03

0.99
± 0.03

0.06
± 0.01

Expensive
Restaurant 316.40 1.39

×106
0.96
± 0.01

3.72
± 1.31

1.01
± 0.00

24.44
± 0.76

1.01
± 0.01

4.51
± 0.15

0.96
± 0.01

0.06
± 0.01

Cheap
Restaurant 74.91 3.89

×105
0.99
± 0.00

0.98
± 0.39

1.00
± 0.00

59.63
± 0.43

1.01
± 0.01

17.75
± 0.55

0.96
± 0.01

0.15
± 0.03

Bar-7 13.11 1.13
×104

1.01
± 0.01

0.67
± 0.83

1.00
± 0.00

22.78
± 1.35

1.00
± 0.00

8.06
± 0.35

1.03
± 0.08

0.33
± 0.07

FICO 3841.94 21.08 0.98
± 0.03

0.00
± 0.00

1.02
± 0.01

3.17
± 0.03

1.00
± 0.02

0.05
± 0.00

0.94
± 0.00

0.00
± 0.00

Congres-
sional Voting
Records

16.67 0.06 1.00
± 0.01

0.00
± 0.00

1.00
± 0.00

0.06
± 0.00

1.00
± 0.00

0.06
± 0.00

0.96
± 0.02

0.06
± 0.00

Table 2: Runtime and number of trees found for TreeFARMS and the four baselines. We show the
runtime (in seconds) for TreeFARMS to find the Rashomon set. For the baselines, we show their
average runtime and standard deviation normalized to that of TreeFARMS. For instance, a normalized
time of 1.1 means more time than TreeFARMS by 10%. We also show the average number of trees in
the Rashomon set produced per second and its standard deviation. The Congressional Voting Record
dataset has only one tree in the Rashomon set. The only method guaranteed to find the full Rashomon
set is TreeFARMS.

The images for the Monk2 dataset, shown in Figure 11, yield interesting results. When designing
decision trees, we usually expect that the root split contains most of the information, and thus we
might expect that much of the Rashomon set shares the same root split. All three embeddings in
Figure 11, in which color identifies the feature that splits the root node, show that this is not the case.
Interestingly, Figure 11a exhibits clustering, where each cluster includes models with different root
splits, which is not what one might expect. Figure 11c suggests the importance of two prominent
features that often appear at the root split, holding_sword and is_smiling, while still highlighting the
diversity in the root node.

Querying the Rashomon set is now extremely easy. Here are some examples.

– Find the 10 best trees. The circles in Figure 11a identify the ten models with the best objective
values. Interestingly, these trees appear in different parts of the space and have diverse structure.

– Find the five sparsest trees with accuracy above 0.7. Figure 11b shows the result. These trees are
(again) diverse.

– Find trees with feature head_shape=square but neither head_shape=round nor jacket_color=red.

The red circles in Figure 11c identify these trees. Constraining models in this way produces trees that
use features quite different from all the trees on the left, even when they use the same root.

G.3 Variable Importance: Model Class Reliance

Collection and Set: We ran this experiments on COMPAS, Bar, Coffee House, Expensive Restau-
rant. We find the whole Rashomon set of each dataset given λ = 0.01 and ϵ = 0.05, and calculate
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Figure 11: Dimension-reduced images of the Rashomon set for Monk2. Colors represent the feature
on which we split at the root. Subfigures (a), (b), and (c) show the embedding using tree edit distance,
prediction distance, and feature set distance, respectively. In (a), red and blue circles identify the 10
trees with the lowest objective; the blue circles correspond to the trees on the side. The circles in (b)
identify the 5 sparsest trees with accuracy above 0.7. The circles in (c) correspond to trees that use
feature head_shape=square but not head_shape=round and not jacket_color=red.

MCR− and MCR+ of each feature as described in Appendix D. We then study the how sampling
can help us estimate the true model class reliance by sampling 1%, 5%, and 25% trees from the
Rashomon set and calculating the MCR based on these subsets of the Rashomon set. Figure 12 shows
sampled MCR converges to true MCR. For each sampling proportion, we use 5 different random
seeds to compute the average and standard deviation of MCR− and MCR+. We ran this particular
experiment on a 2.7Ghz (768GB RAM 48 cores) Intel Xeon Gold 6226 processor. We set a 200-GB
memory limit.

Results: Figure 12 shows the model class reliance on four different datasets. For the COMPAS
dataset (top-left subfigure), features related to prior counts generally have high MCR+, which means
these features are very important for some of trees in the Rashomon set. For the Bar dataset (top-right
subfigure), features “Bar_1-3” and “Bar_4-8” have dominant MCR+ and MCR− compared with
other features, indicating that for all well-performing trees, these features are the most important.
Similarly, features "CoffeeHouse_1 3" and "CoffeeHouse_4 8" have dominant MCR+ and MCR−.
This makes sense, since people who go to bar or coffee house regularly would be likely to accept a
coupon for a bar or a coffee house.

Sampling can help us calculate MCR more efficiently by considering only part of the whole Rashomon
set. Figure 12 shows that sampled MCR, in general, converges to true MCR even if only 1% or 5% of
trees are sampled.

G.4 Balanced Accuracy and F1-score Rashomon set from Accuracy Rashomon set

Collection and Set: We ran this experiments on three imbalanced datasets Breast Cancer, Cheap
Restaurant, Takeaway Food. We ran this particular experiment on a 2.7Ghz (768GB RAM 48
cores) Intel Xeon Gold 6226 processor. We set a 200-GB memory limit.

Results: Figure 13, 14 show trees in the Accuracy Rashomon set which covers the Balanced
Accuracy Rashomon set and F1-score Rashomon set respectively. The black dashed line indicates
the corresponding objective thresholds and blue dots below the dashed line are trees within these
Rashomon sets. In some cases, the tree with the minimum misclassification objective is also the
tree with the minimum other metric objective (see Figure 13 left and Figure 14 right). But this is
not always guaranteed. For example, in the right subfigure of Figure 13, a single split node has the
optimal accuracy objective (in yellow), while another three-leaf tree minimizes the balanced accuracy
objective (in green). Actually, many trees have better balanced accuracy objective than the tree that
minimizes the accuracy objective. A similar pattern holds for the F1-score Rashomon set (see left
subfigure Figure 14).
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Figure 12: Variable Importance: Model class reliance on the COMPAS, Bar, Coffee House, and
Expensive Restaurant (λ = 0.01, ϵ = 0.05). Four different line segments colored in different gray levels
are model class reliance calculated by sampling different proportions from the whole Rashomon
set. Yellow/blue dots with bars indicate MCR−/MCR+ within one standard deviation of the mean.
“Sample 100%” means using the whole Rashomon set and there is no variation. Red dots indicate the
model reliance (variable importance) calculated by the optimal tree.
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Figure 13: Example of Balanced Accuracy Rashomon sets. # trees indicates the number of trees
within the Balanced Accuracy Rashomon set. Trees in the yellow region have optimal accuracy
objective and trees in the green region have optimal balanced accuracy. (Breast Cancer: λ = 0.005,
Cheap Restaurant: λ = 0.01)
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Figure 14: Example of F1-Score Rashomon set. # trees indicates the number of trees within the F1-
score Rashomon set. Trees in the yellow region have optimal accuracy objective and trees in the green
region have optimal F1-score objective.(Breast Cancer: λ = 0.005, Takeaway Food: λ = 0.005)

G.5 Rashomon set after removing a group of samples

Collection and Set: We ran this experiments on Monk2, COMPAS, Bar, Expensive Restaurant.
We ran this particular experiment on a 2.7Ghz (768GB RAM 48 cores) Intel Xeon Gold 6226
processor. We set a 200-GB memory limit.

Results: Figure 15 show accuracy objective on the full dataset versus objective on the reduced
dataset after 1% of different samples are removed on the Bar and Monk2 datasets. The black dashed
line indicates the objective threshold of the reduced Rashomon set and blue dots below the dashed
line are trees within the reduced Rashomon set. Similar to Figure 5 all scatter plots show a high
correlation between the accuracy objective on the full dataset and the reduced dataset, indicating
sparse near-optimal trees are robust to the shift in sample distribution. Optimal trees on the reduced
dataset might be different, as we see by comparing the trees in the orange region and blue region.
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(a) Example Rashomon sets and optimal trees after we remove the 1% of samples with “number of times to
bar ≥ 4” (left) and “expiration of coupon in 1 day” (right) on the Bar dataset.
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(b) Example Rashomon sets and optimal trees after we remove the 1% of samples with “round head” (left) and
“red jacket" (right) on the Monk2 dataset.

Figure 15: Example Rashomon sets and optimal trees after 1% of samples are removed. The optimal
tree on the full dataset is shown in the blue region and optimal trees on the corresponding reduced
datasets are in the orange region.
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