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Abstract

This paper considers stochastic first-order algorithms for minimax optimization
under Polyak-Łojasiewicz (PL) conditions. We propose SPIDER-GDA for solv-
ing the finite-sum problem of the form minx maxy f(x, y) ≜ 1

n

∑n
i=1 fi(x, y),

where the objective function f(x, y) is µx-PL in x and µy-PL in y; and each
fi(x, y) is L-smooth. We prove SPIDER-GDA could find an ϵ-approximate solu-
tion within O

(
(n+

√
nκxκ

2
y) log(1/ϵ)

)
stochastic first-order oracle (SFO) com-

plexity, which is better than the state-of-the-art method whose SFO upper bound
is O

(
(n + n2/3κxκ

2
y) log(1/ϵ)

)
, where κx ≜ L/µx and κy ≜ L/µy. For the

ill-conditioned case, we provide an accelerated algorithm to reduce the computa-
tional cost further. It achieves Õ

(
(n +

√
nκxκy) log

2(1/ϵ)
)

SFO upper bound
when κy ≳

√
n. Our ideas also can be applied to the more general setting that

the objective function only satisfies PL condition for one variable. Numerical
experiments validate the superiority of proposed methods.

1 Introduction

This paper focuses on smooth minimax optimization problem of the form

min
x∈Rdx

max
y∈Rdy

f(x, y) ≜
1

n

n∑
i=1

fi(x, y), (1)

which covers a lot of important applications in machine learning such as reinforcement learning [10,
42], AUC maximization [13, 24, 48], imitation learning [5, 32], robust optimization [11], causal
inference [28], game theory [6, 29] and so on.

We are interested in the minimax problems under PL conditions [9, 32, 45]. The PL condition [35]
was originally proposed to relax the strong convexity in minimization problem that is sufficient for
achieving the global linear convergence rate for first-order methods. In machine learning community,
it has been successfully used to analyze the convergence behavior for overparameterized neural
networks [23], robust phase retrieval [40] and a plenty of fundamental models [18]. There are many
popular minimax formulations only satisfy PL condition, but lack strong convexity (or strong concav-
ity). The examples include PL-game [32], robust least square [45], deep AUC maximization [24] and
generative adversarial imitation learning of LQR [5, 32].

Yang et al. [45] showed that the alternating gradient descent ascent (AGDA) algorithm linearly
converges to the saddle point when the objective function satisfies two-sided PL condition. They also
proposed the SVRG-AGDA method for the finite-sum problem (1), which could find ϵ-approximate
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Table 1: We present the comparison of SFO complexities under two-sided PL condition. Note that
Yang et al. [45] named their stochastic algorithm as variance-reduced-AGDA (VR-AGDA). Here we
call it SVRG-AGDA to distinguish with other variance reduced algorithms.

Algorithm Complexity Reference

GDA/AGDA O
(
nκxκ

2
y log (1/ϵ)

)
Theorem B.1, [45]

SVRG-AGDA O
(
(n+ n2/3κxκ

2
y) log (1/ϵ)

)
[45]

SVRG-GDA O
(
(n+ n2/3κxκ

2
y) log (1/ϵ)

)
Theorem C.1

SPIDER-GDA O
(
(n+

√
nκxκ

2
y) log (1/ϵ)

)
Theorem 4.1

AccSPIDER-GDA


Õ
(√

nκxκy log
2 (1/ϵ)

)
,

√
n ≲ κy;

Õ
(
nκx log

2 (1/ϵ)
)
, κy ≲

√
n ≲ κxκy;

O
(
(n+

√
nκxκ

2
y) log (1/ϵ)

)
, κxκy ≲

√
n.

Theorem 5.1

solution within O
(
(n + n2/3κxκ

2
y) log(1/ϵ)

)
stochastic first-order oracle (SFO) calls,2 where κx

and κy are the condition numbers with respect to PL condition for x and y respectively. The variance
reduced technique in the SVRG-AGDA leads to better a convergence rate than full batch AGDA
whose SFO complexity is O

(
nκxκ

2
y log(1/ϵ)

)
. However, there are still some open questions left.

Firstly, Yang et al. [45]’s theoretical analysis heavily relies on the alternating update rules. It remains
interesting whether a simultaneous version of GDA (or its stochastic variants) also has similar
convergence results. Secondly, it is unclear whether the SFO upper bound obtain by SVRG-AGDA
can be improved by designing more efficient algorithms.

For one-sided PL condition, we desire to find the stationary point of g(x) ≜ maxy∈Rdy f(x, y),
since the saddle point may not exist. Nouiehed et al. [32] proposed the multi-step GDA method that
achieves the ϵ-stationary point within O(κ2

yLϵ
−2 log(κy/ϵ)) numbers of full gradient iterations. The

similar complexity also can be obtained by AGDA [45]. Recently, Yang et al. [47] proposed the
smoothed-AGDA that improves the upper bound into O(κyLϵ

−2). Both multi-step GDA Nouiehed
et al. [32] and smoothed-AGDA [46] can be extended to online setting [14], but the formulation (1)
with finite-sum structure has not been explored.

In this paper, we introduce a variance reduced first-order method, called SPIDER-GDA, which
constructs the gradient estimator by stochastic recursive gradient and the iterations are based on
simultaneous gradient descent ascent. We prove that SPIDER-GDA could achieve ϵ-approximate
solution of the two-sided PL problem of the form (1) within O

(
(n +

√
nκxκ

2
y) log(1/ϵ)

)
SFO

calls, which has better dependency on n than SVRG-AGDA [45]. We also provide an acceleration
framework to improve first-order methods for solving ill-conditioned minimax problems under PL
conditions. The accelerated SPIDER-GDA (AccSPIDER-GDA) could achieve ϵ-approximate solution
within Õ

(
(n +

√
nκxκy) log

2(1/ϵ)
)

SFO calls3 when κy ≳
√
n, which is the best known SFO

upper bound for this problem. We summarize our main results and compare them with related work
in Table 1. Without loss of generality, we always suppose κx ≳ κy. Furthermore, the proposed
algorithms also work for minimax problem with one-sided PL condition. We present the results for
this case in Table 2.

2 Related Work

The minimax optimization problem (1) can be viewed as the following minimization problem

min
x∈Rdx

{
g(x) ≜ max

y∈Rdy
f(x, y)

}
.

A natural way to solve such problem is the multi-step GDA algorithm [21, 25, 32, 36] that contains
double-loop iterations in which the outer loop can be regarded as running inexact gradient descent on

2The original analysis [45] provided an SFO upper bound O
(
(n+ n2/3 max{κ3

x, κ
3
y}) log(1/ϵ)

)
, which

can be refined to O
(
(n+ n2/3κxκ

2
y) log(1/ϵ)

)
by some little modification in the proof.

3In this paper, we ues the notation Õ(·) to hide the logarithmic factors of κx, κy but not 1/ϵ.
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Table 2: We present the comparison of SFO complexities under one-sided PL condition.

Algorithm Complexity Reference

Multi-Step GDA O(nκ2
yLϵ

−2 log(κy/ϵ)) [32]

GDA/AGDA O
(
nκ2

yLϵ
−2
)

Theorem B.2, [45]

Smooothed-AGDA O
(
nκyLϵ

−2
)

[47]

SVRG-GDA O
(
n+ n2/3κ2

yLϵ
−2
)

Theorem F.1

SPIDER-GDA O
(
n+

√
nκ2

yLϵ
−2
)

Theorem 6.1

AccSPIDER-GDA


O
(√

nκyLϵ
−2 log(κy/ϵ)

)
,

√
n ≲ κy;

O
(
nLϵ−2 log(κy/ϵ)

)
, κy ≲

√
n ≲ κ2

y;

O
(
n+

√
nκ2

yLϵ
−2
)
, κ2

y ≲
√
n.

Theorem 6.2

g(x) and the inner loop finds the approximate solution to maxy∈Rdy f(x, y) for a given x. Another
class of methods is the two-timescale (alternating) GDA algorithm [9, 21, 44, 45] that only has single-
loop iterations which update two variables with different stepsizes. The two-timescale GDA method
can be implemented more easily and typically performs better than multi-step GDA empirically.
Its convergence rate also can be established by analyzing function g(x) but the analysis is more
challenging than the multi-step GDA.

The variance reduction is a popular technique to improve the efficiency of stochastic optimization
algorithms [2–4, 7, 8, 12, 16, 17, 19, 27, 31, 33, 34, 37–39, 43, 49, 50]. It is shown that solving
nonconvex minimization problems with stochastic recursive gradient estimator [12, 16, 34, 43, 51]
has the optimal SFO complexity. In the context of minimax optimization, the variance reduced
algorithms also obtain the best-known SFO complexities in several settings [1, 15, 25, 26, 41, 45].
Specifically, the (near) optimal SFO algorithm for several convex-concave minimax problem has
been proposed [15, 26], but the optimality for the more general case is still unclear [25, 45].

The Catalyst acceleration [20] is a useful approach to reduce the computational cost of ill-conditioned
optimization problems, which is based on a sequence of inexact proximal point iterations. Lin
et al. [22] first introduced Catalyst into minimax optimization. Later, Luo et al. [26], Tominin
et al. [41], Yang et al. [46] designed the accelerated stochastic algorithms for convex-concave and
nonconvex-concave problem. Recently, Yang et al. [47] also applied this technique to one-sided PL
setting.

3 Notation and Preliminaries

First of all, we present the definition of saddle point.
Definition 3.1. We say (x∗, y∗) ∈ Rdx × Rdy is a saddle point of function f : Rdx × Rdy → R if it
holds that f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗) for any x ∈ Rdx and y ∈ Rdy .

Then we formally define the Polyak-Łojasiewicz (PL) condition [35] as follows.
Definition 3.2. We say a differentiable function h : Rd → R satisfies µ-PL for some µ > 0 if
∥∇h(z)∥2 ≥ 2µ

(
h(z)−minz′∈Rd h(z′)

)
holds for any z ∈ Rd.

Note that the PL condition does not require the strongly convexity and it can be satisfied even if the
function is nonconvex [18].

We are interested in the finite-sum minimax optimization problem (1) under following assumptions.
Assumption 3.1. We suppose each component fi : Rdx × Rdy → R is L-smooth, i.e., there exists a
constant L > 0 such that ∥∇fi(x, y)−∇fi(x

′, y′)∥2 ≤ L2
(
∥x− x′∥2 + ∥y − y′∥2

)
holds for any

x, x′ ∈ Rdx and y, y′ ∈ Rdy .
Assumption 3.2. We suppose the differentiable function f : Rdx × Rdy → R satisfies two-sided PL
condition, i.e., there exist constants µx > 0 and µy > 0 such that f(·, y) is µx-PL for any y ∈ Rdy

and −f(x, ·) is µy-PL for any x ∈ Rdx .
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Under Assumption 3.1 and 3.2, we define the condition numbers of problem (1) with respect to PL
conditions for x and y as κx ≜ L/µx and κy ≜ L/µy respectively.

We also introduce the following assumption for the existence of saddle point.
Assumption 3.3 (Yang et al. [45]). We suppose the function f : Rdx × Rdy → R has at least one
saddle point (x∗, y∗). We also suppose that for any fixed y ∈ Rdy , the problem minx∈Rdx f(x, y)
has a nonempty solution set and a finite optimal value; and for any fixed x ∈ Rdx , the problem
maxy∈Rdy f(x, y) has a nonempty solution set and a finite optimal value.

The goal of solving minimax problem under two-sided PL condition is finding an ϵ-approximate
solution or ϵ-saddle point that is defined as follows.
Definition 3.3. We say x is an ϵ-approximate solution of problem (1) if it holds that g(x)−g(x∗) ≤ ϵ,
where g(x) = maxy∈Rdy f(x, y).

Definition 3.4. Under Assumption 3.3, we say (x, y) is an ϵ-saddle point of problem (1) if it holds
that ∥x− x∗∥2 + ∥y − y∗∥2 ≤ ϵ for some saddle point (x∗, y∗).

We allow the saddle point does not exist for the problem with one-sided PL condition. In such case, it
is guaranteed that g(x) ≜ maxy∈Rdy f(x, y) is differentiable [32, Lemma A.5] and we target to find
an ϵ-stationary point of g(x).
Definition 3.5. If the function g : Rdx → R is differentiable, we say x is an ϵ-stationary point of g if
it holds that ∥∇g(x)∥ ≤ ϵ.

4 A Faster Algorithm for the Two-Sided PL Condition

We first consider the two-sided PL conditioned minimax problem of the finite-sum form (1) under
Assumption 3.1, 3.2 and 3.3. We propose a novel stochastic algorithm, which we refer to as SPIDER-
GDA. The detailed procedure of our method is presented in Algorithm 1. SPIDER-GDA constructs
the stochastic recursive gradient estimators [12, 31] as follows:

Gx(xt,k, yt,k) =
1

B

∑
i∈Sx

(
∇xfi(xt,k, yt,k)−∇xfi(xt,k−1, yt,k−1) +Gx(xt,k−1, yt,k−1)

)
,

Gy(xt,k, yt,k) =
1

B

∑
i∈Sy

(
∇yfi(xt,k, yt,k)−∇yfi(xt,k−1, yt,k−1) +Gy(xt,k−1, yt,k−1)

)
.

It simultaneously updates two variables x and y by estimators Gx and Gy with different stepsizes
τx = Θ(1/(κ2

yL)) and τy = Θ(1/L) respectively. Huang et al. [16], Luo et al. [25], Xian et al. [44]
have studied the SPIDER-type algorithm for nonconvex-strongly-concave problem and showed it
converges to the stationary point of g(x) ≜ maxy∈Rdy f(x, y) sublinearly. However, solving the
problem minimax problems with two-sided PL condition desires stronger linear convergence rate,
which leads to our theoretical analysis be different from previous work.

We measure the convergence of SPIDER-GDA by the following Lyapunov function

Vt,k ≜ g(xt,k)− g(x∗) +
λτx
τy

(
g(xt,k)− f(xt,k, yt,k)

)
,

where x∗ ∈ argminx∈Rdx g(x) and λ = Θ(κ2
y). We can establish recursion for Vt,k as follows

E[Vt,K ] ≤ E

[
Vt,0 −

τx
16

(
2− M

B

)K−1∑
k=0

∥Gx(xt,k, yt,k)∥2 −
λτx
16

(
2− M

B

)K−1∑
k=0

∥Gy(xt,k, yt,k)∥2
]
.

Using the above inequality by setting M = B =
√
n leads to the estimators Gx(x̃t, ỹt) and

Gy(x̃t, ỹt) be sufficiently close to the exact gradient and converge to zero linearly, which indicates
g(x̃t) also converges to g(x∗) linearly. We formally provide the convergence result for SPIDER-GDA
in the following theorem and its detailed proof is shown in appendix.
Theorem 4.1. Under Assumption 3.1, 3.2 and 3.3, we run Algorithm 1 with M = B =

√
n ,

τy = 1/(5L), λ = 32L2/µ2
y, τx = τy/(24λ), K = ⌈4224/(µxτx)⌉ and T = ⌈log(1/ϵ)⌉. Then the

output (x̃T , ỹT ) satisfies g(x̃T ) − g(x∗) ≤ ϵ and g(x̃T ) − f(x̃T , ỹT ) ≤ 24ϵ in expectation; and it
takes no more than O

(
(n+

√
nκxκ

2
y) log(1/ϵ)

)
SFO calls.
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Algorithm 1 SPIDER-GDA (f, (x0, y0), T,K,M,B, τx, τy)

1: x̃0 = x0, ỹt = y0

2: for t = 0, 1, . . . , T − 1 do
3: xt,0 = x̃t, yt,0 = ỹt

4: for k = 0, 1, . . . ,K − 1 do
5: if mod (k,M) = 0 then
6: Gx(xt,k, yt,k) = ∇xf(xt,k, yt,k)

7: Gy(xt,k, yt,k) = ∇yf(xt,k, yt,k)

8: else
9: draw mini-batches Sx and Sy independently with both sizes of B.

10: Gx(xt,k, yt,k) =
1
B

∑
i∈Sx

[∇xfi(xt,k, yt,k)−∇xfi(xt,k−1, yt,k−1) +Gx(xt,k−1, yt,k−1)]

11: Gy(xt,k, yt,k) =
1
B

∑
i∈Sy

[∇yfi(xt,k, yt,k)−∇yfi(xt,k−1, yt,k−1) +Gy(xt,k−1, yt,k−1)]

12: end if
13: xt,k+1 = xt,k − τxGx(xt,k, yt,k)

14: yt,k+1 = xy,k + τyGy(xt,k, yt,k)

15: end for
16: choose (x̃t+1, ỹt+1) from {(xt,k, yt,k)}K−1

k=0 uniformly at random.

17: end for
18: return (x̃T , ỹT )

Algorithm 2 AccSPIDER-GDA
1: u0 = x0

2: for k = 0, 1, . . . ,K − 1 do

3: (xk+1, yk+1) = SPIDER-GDA
(
f(x, y) + β

2 ∥x− uk∥2, (xk, yk), Tk,K,M,B, τx, τy
)

4: uk+1 = xk+1 + γ(xk+1 − xk)

5: end for
6: option I (two-sided PL): return (xK , yK)

7: option II (one-sided PL): return (x̂, ŷ) chosen uniformly at random from {(xk, yk)}K−1
k=0

Our results provide an SFO upper bound of O((n+
√
nκxκ

2
y) log(1/ϵ)) for finding an ε-approximate

solution that is better than the complexity O((n + n2/3κxκ
2
y) log(1/ϵ)) derived from SVRG-

AGDA [45]. It is possible to use SVRG-type [17, 49] estimators to replace the stochastic recursive
estimators in Algorithm 1, which results the algorithm SVRG-GDA. We can prove that SVRG-
GDA also has O((n+ n2/3κxκ

2
y) log(1/ϵ)) SFO upper bound that matches the theoretical result of

SVRG-AGDA. We provide the details in Appendix C.

5 Further Acceleration with Catalyst

Both the proposed SPIDER-GDA (Algorithm 1) and existing SVRG-AGDA [45] have the com-
plexities more heavily depend on the condition number of y than the condition number of x. It is
natural to ask can we make the dependency of two condition numbers balanced like the results in
the strongly-convex-strongly-concave case [22, 25, 41]. In this section, we show it is possible by
introducing the Catalyst acceleration.

To make acceleration possible, we need to assume the uniqueness of the optimal set for inner problem.

Assumption 5.1. We assume the inner problem maxy∈Rdy f(x, y) has an unique solution.
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We proposed the accelerated SPIDER-GDA (AccSPIDER-GDA) in Algorithm 2 for reducing the
computational cost further. Each iteration of the algorithm solve the following sub-problem

min
x∈Rdx

max
y∈Rdy

Fk(x, y) ≜ min
x∈Rdx

{
g(x) +

β

2
∥x− uk∥22

}
. (2)

by SPIDER-GDA (Algorithm 1). AccSPIDER-GDA has the following convergence result if the
sub-problem attain the required accuracy.
Lemma 5.1. Under Assumption 3.1, 3.2 and 3.3, we run Algorithm 2 by β = 2L, γ = 0 and the
appropriate setting for the sub-problem solver such that E[∥xk − x̃k∥2 + ∥yk − ỹk∥2] ≤ δ, where
(x̃k, ỹk) is a saddle point of Fk−1 (k ≥ 1) and we set the precision

δ =
µxϵ

11(µx + 4L)L
(3)

Then it holds that

E[g(xk)− g(x∗)] ≤
(
1− µx

2β + µx

)k (
g(x0)− g(x∗)

)
+

ϵ

2
.

The setting β = Θ(L) in Lemma 5.1 guarantees the sub-problem (2) has condition number of the
order O(1) for x. It is more well-conditioned on x, we prefer to address the following equivalent
problem

max
y∈Rdy

min
x∈Rdx

Fk(x, y) = − min
y∈Rdy

max
x∈Rdx

{−Fk(x, y)} . (4)

Since (4) is a minimax problem satisfying two sided PL condition, we can apply SPIDER-GDA to
solve it. And we can show that under Assumption 5.1, the saddle point (x̃k, ỹk) of each Fk−1(k ≥ 1)
is unique (see Lemma E.2 in appendix) and we are able to obtain a good approximation to it.
Lemma 5.2. Under Assumption 3.1, 3.2 and 3.3, if we use Algorithm 1 to solve each sub-problem
maxy∈Rdy minx∈Rdx Fk(x, y) (2) with β = 2L, M = B =

√
n, τx = 1/(15L), λ = 288, τy =

τx/(24λ), K = ⌈4224/(µyτy)⌉, Tk = ⌈log(1/δk)⌉, then it holds that

E[∥xk+1 − x̃k+1∥2 + ∥yk+1 − ỹk+1∥2] ≤ 7236κ2
yδkE[∥xk − x̃k∥2 + ∥yk − ỹk∥2],

where (x̃k, ỹk) is the unique saddle point of Fk−1(k ≥ 1).

For a short summary, Lemma 5.1 means Algorithm 2 requires O(κx log(1/ϵ)) numbers of inexact
proximal point iterations to find an ϵ-approximate solution of the problem. And Lemma E.1 tells us
that each sub-problem can be solved within a SFO complexity of O (n+

√
nκy) log(1/δk)). Thus,

the total complexity for AccSPIDER-GDA becomes O((nκx +
√
nκxκy) log(1/ϵ) log(1/δk)). Our

next step is to specify δk which would lead to the total SFO complexity of the algorithm.
Theorem 5.1. Under Assumption 3.1, 3.2, 3.3 and 5.1 if we let γ = 0, β = 2L and use Algorithm 1
to solve each sub-problem maxy∈Rdy minx∈Rdx Fk(x, y) (2) with M,B, τx, τy,K defined as Lemma
5.2 and Tk = ⌈log(1/δk)⌉, where

δk =


1

7236κ2
y
min

{
1
4 ,

(β−L)µyδ
16β2∥xk−xk−1∥2

}
, k ≥ 1;

δµy

14472κ2
y(g(x0)−g(x∗)) , k = 0,

(5)

and δ is followed by the definition in (3). Then Algorithm 2 can return xK such that g(xK)−g(x∗) ≤ ϵ
in expectation with no more than O((nκx +

√
nκxκy) log(1/ϵ) log(κxκy/ϵ)) SFO calls.

Lemma 5.1 does not rely on the choice of sub-problem solver, we can apply the acceleration
framework in Algorithm 2 by replacing SPIDER-GDA with other algorithms. We summarize the
SFO complexities for the acceleration of different algorithms in Table 3.

6 Extension to One-Sided PL Condition

In this section, we show the idea that SPIDER-GDA and its Catalyst acceleration also work for
one-sided PL condition. We relax Assumption 3.2 and 3.3 to the following one.
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Table 3: Accelerated results for different methods under two-sided PL condition.

Method Before Acceleration After Acceleration

GDA O(nκxκ
2
y log(1/ϵ)) Õ

(
nκxκy log

2(1/ϵ)
)

SVRG-GDA O((n+ n2/3κxκ
2
y) log(1/ϵ))


Õ
(
n2/3κxκy log

2(1/ϵ)
)
, n1/3 ≲ κy;

Õ
(
nκx log

2(1/ϵ)
)
, κy ≲ n1/3 ≲ κxκy;

no acceleration, κxκy ≲ n1/3.

SPIDER-GDA O
(
(n+

√
nκxκ

2
y) log(1/ϵ)

) 
Õ
(√

nκxκy log
2(1/ϵ)

)
,

√
n ≲ κy;

Õ
(
nκx log

2(1/ϵ)
)
, κy ≲

√
n ≲ κxκy;

no acceleration, κxκy ≲
√
n.

Assumption 6.1. We suppose that −f(x, ·) is µy-PL for any x ∈ Rdx ; the problem maxy∈Rdy f(x, y)

has a nonempty solution set and an optimal value ; g(x) ≜ maxy∈Rdy f(x, y) is lower bounded, i.e.,
we have g∗ = infx∈Rdx g(x) > −∞.

We first show that the SFO complexity of SPIDER-GDA outperforms SVRG-GDA 4 by a factor of
O(n1/6) in Theorem 6.1.

Theorem 6.1. Under Assumption 3.1 and 6.1 , Let T = 1 and M,B, τx, τy, λ as defined in Theo-
rem 4.1 and K = ⌈64/(τxϵ2)⌉, then Algorithm 1 can guarantee the output x̂ to satisfy ∥∇g(x̂)∥ ≤ ϵ
in expectation with no more than O(n+

√
nκ2

yLϵ
−2) SFO calls.

The AccSPIDER-GDA also performs better than SPIDER-GDA in one-sided PL condition for ill
conditioned case. In the following lemma, we show that AccSPIDER-GDA could find an approximate
stationary point if we solve the sub-problem sufficiently accurate.

Lemma 6.1. Under Assumption 3.1 and 6.1, if it holds true that E[∥xk − x̃k∥2 + ∥yk − ỹk∥2] ≤ δ
for some saddle point (x̃k, ỹk) of Fk−1 (k ≥ 1), where

δ =
ϵ2

8Lκy(22µy + 1)
. (6)

Let β = 2L, then for the output (x̂, ŷ) of Algorithm 2, it holds true that

E∥∇g(x̂)∥2 ≤ 8β(g(x0)− g∗)

K
+

ϵ2

2
.

Compared with two-sided PL condition, the analysis of AccSPIDER-GDA is more complicated since
the precision δk at each round are different. By choosing the parameters of the algorithm carefully,
we obtain the following results.

Theorem 6.2. Under Assumption 3.1, 6.1 and 5.1, if we run Algorithm 2 by γ = 0, β = 2L and use
Algorithm 1 to solve each sub-problem maxy∈Rdy minx∈Rdx Fk(x, y) (2) with M,B, τx, τy, λ,K
and Tk (dependent on δ) as in Theorem 5.1 and δ is followed by the definition in Lemma 6.1, then
Algorithm 2 can find x̂ such that ∥∇g(x̂)∥ ≤ ϵ in expectation within O((n+

√
nκy)Lϵ

−2 log(κy/ϵ))
SFO calls.

We can directly set β = 0 for Algorithm 2 in the case of very large n and in this case AccSPIDER-
GDA reduces to SPIDER-GDA. The summary and comparison for the complexities for the one-sided
PL condition is shown in Table 2. Besides, the algorithms of GDA and SVRG-GDA also can be
accelerated with Catalyst framework and we present the corresponding results in Table 4.

4The complexity for finding an ϵ-stationary point of SVRG-GDA in presented in Appendix F.
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Table 4: Acceleration for different methods under one-sided PL condition.

Method Before Acceleration After Acceleration

GDA O
(
nκ2

yLϵ
−2
)

O
(
nκyLϵ

−2 log(κy/ϵ)
)

SVRG-GDA O
(
n+ n2/3κ2

yLϵ
−2
) 

O
(
n2/3κyLϵ

−2 log(κy/ϵ)
)
, n1/3 ≲ κy;

O
(
nLϵ−2 log(κy/ϵ)

)
, κy ≲ n1/3 ≲ κ2

y;

no acceleration, κ2
y ≲ n1/3.

SPIDER-GDA O
(
n+

√
nκ2

yLϵ
−2
) 

O
(√

nκyLϵ
−2 log(κy/ϵ)

)
,

√
n ≲ κy;

O
(
nLϵ−2 log(κy/ϵ)

)
, κy ≲

√
n ≲ κ2

y;

no acceleration, κ2
y ≲

√
n.

7 Experiments

In this section, we conduct the numerical experiments to show the advantage of proposed algorithms
and the source code is available5. We consider the following two player Polyak-Łojasiewicz game:

min
x∈Rd

max
y∈Rd

f(x, y) ≜
1

2
x⊤Px− 1

2
y⊤Qy + x⊤Ry,

where

P =
1

n

n∑
i=1

pip
⊤
i , Q =

1

n

n∑
i=1

qiq
⊤
i and R =

1

n

n∑
i=1

rir
⊤
i .

We independently sample pi, qi and ri from N (0,ΣP ), N (0,ΣQ) and N (0,ΣR) respectively. We
set the covariance matrix ΣP as the form of UDU⊤ such that U ∈ Rd×r is column orthogonal matrix
and D ∈ Rr×r is diagonal with r < d. The diagonal elements of D are distributed uniformly in
the interval [µ,L] with 0 < µ < L. The matrix ΣQ is set by the similar way to ΣP . We also let
ΣR = 0.1V V ⊤, where each element of V ∈ Rd×d is sampled from N (0, 1) independently. Since
the covariance matrices ΣP and ΣQ are rank-deficient, it is guaranteed that both P and Q are singular.
Hence, the objective function is not strongly-convex and not strongly-concave, but it satisfies the
two-sided PL-condition [18]. We set n = 6000, d = 10, r = 5, L = 1 for all experiments; and let µ
be 10−5 and 10−9 for two different settings.

We compare the proposed SPIDER-GDA (Algorithm 1) and AccSPIDER-GDA (Algorithm 2) with
the baseline algorithm SVRG-AGDA [45]. We let B = 1 and M = n for all of these algorithms and
both of the stepsizes for x and y are tuned from {10−1, 10−2, 10−3, 10−4, 10−5}. For AccSPIDER,
we set β = L/(20n) and γ = 0.999. We present the results of the number of SFO calls against the
norm of gradient and the distance to the saddle point in Figure 1 and Figure 2. It is clear that our
algorithms outperform than baselines.

8 Conclusion and Future Work

In this paper, we have investigated stochastic optimization for PL conditioned minimax problem
with the finite-sum objective. We have proposed the SPIDER-GDA algorithm, which reduces the
dependency of the sample numbers in SFO complexity. Moreover, we have introduced a Catalyst
scheme to accelerate our algorithm for solving the ill-conditioned problems. We improve the SFO
upper bound of the state-of-the-art algorithms for both two-sided and one-sided PL conditions.

However, the optimality of SFO algorithms for the PL conditioned minimax problem is still unclear.
It is interesting to construct the lower bound for verifying the tightness of our results. It is also
possible to extend our algorithm to online setting.

5 https://github.com/TrueNobility303/SPIDER-GDA
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Figure 1: The comparison for the case of µ = 10−5

0 2 4 6

#SFO 10
5

10
-4

10
-2

10
0

SVRG

SPIDER

AccSPIDER

0 2 4 6

#SFO 10
5

10
-4

10
-2

10
0

SVRG

SPIDER

AccSPIDER

(a) Distance to saddle point (b) Norm of gradient
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A Some Useful Lemmas

In this section, we provide some lemmas which are useful in the following proofs.

First of all, we define three notations of optimality.

Definition A.1. We say (x∗, y∗) is a saddle point of function f , if for all (x, y), it holds that

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗).

We say (x∗, y∗) is a global minimax point, if for all x ∈ Rdx , y ∈ Rdy , it holds that

f(x∗, y) ≤ f(x∗, y∗) ≤ max
y′∈Rdy

f(x, y′).

And we say (x∗, y∗) is a stationary point, if it holds that

∇xf(x
∗, y∗) = ∇yf(x

∗, y∗) = 0.

For general nonconvex-nonconcave minimax problem, a stationary point or a global minimax point
is weaker than a saddle point, i.e. a stationary point or a global minimax point may not be a saddle
point. However, under two-sided PL condition, the above three notations are equivalent.

Lemma A.1 (Yang et al. [45, Lemma 2.1]). Under Assumption 3.2, it holds that

(saddle point) ⇔ (global minimax point) ⇔ (stationary point).

Further, if (x∗, y∗) is a saddle point of f , then

max
y∈Rdy

f(x∗, y) = f(x∗, y∗) = min
x∈Rdx

f(x, y∗).

and vice versa.

It is well known that weak duality always holds.

Lemma A.2 (Nesterov [30, Theorem 1.3.1]). Given a function f , we have

max
y∈Rdx

min
x∈Rdx

f(x, y) ≤ min
x∈Rdx

max
y∈Rdy

f(x, y).

It is a standard conclusion that the existence of saddle points implies strong duality. Since strong
duality is important for the convergence of Catalyst scheme under PL condition, we present this
lemma as follows.

Lemma A.3. If (x∗, y∗) is a saddle point of function f , then (x∗, y∗) is also a global minimax point
and stationary point of f , and it holds that

max
y∈Rdy

min
x∈Rdx

f(x, y) = f(x∗, y∗) = min
x∈Rdx

max
y∈Rdy

f(x, y).

Lemma A.4 (Yang et al. [45, Lemma A.1]). Under Assumption 3.2, then f(x, y) also satisfies the
following quadratic growth condition, i.e. for all x ∈ Rdx , y ∈ Rdy , it holds that

f(x, y)− min
x∈Rdx

f(x, y) ≥ µx

2
∥x∗(y)− x∥2,

max
y∈Rdy

f(x, y)− f(x, y) ≥ µy

2
∥y∗(x)− y∥2,

where x∗(y) is the projection of y on the set argminx∈Rdx f(x, y) and y∗(x) is the projection of x
on the set of argmaxy∈Rdy f(x, y).

Also, we analyze the properties of function g(x).

Lemma A.5 (Yang et al. [45, Lemma 2.1]). Under Assumption 3.2, then g(x) satisfies µx-PL, i.e.
for all x we have

∥∇g(x)∥2 ≥ 2µx(g(x)− g(x∗)).
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Lemma A.6 (Yang et al. [45, in the proof of Theorem 3.1]). Under Assumption 3.2 and 3.1, then for
all x, y it holds true that

∥∇xf(x, y)−∇g(x)∥2 ≤ 2L2

µy
(g(x)− f(x, y)).

The above lemma is a direct result from quadratic growth property implied by PL condition and
L-smooth property of function f(x, y). Using the definition of µy-PL in y, we can also show the
relationship between ∥∇xf(x, y)−∇g(x)∥2 and ∥∇yf(x, y)∥2 as follows.

Lemma A.7. Under Assumption 3.2 and 3.1, then for all x, y it holds true that

∥∇xf(x, y)−∇g(x)∥2 ≤ L2

µ2
y

∥∇yf(x, y)∥2

Lemma A.8 (Nouiehed et al. [32, Lemma A.5]). Under Assumption 6.1 and 3.1, then g(x) satisfies
(L+ L2/µy)-smooth,that is, it holds for all x, x′ that

∥∇g(x)−∇g(x′)∥2 ≤
(
L+

L2

µy

)
∥x− x′∥2.

Further, noting that L/µy ≥ 1, it implies that g(x) is (2L2/µy)-smooth.

Lemma A.9 (Nouiehed et al. [32, Modified from Lemma A.3]). Under Assumption 3.2 and 3.1,
suppose (x∗, y∗) is a saddle point of f . Denote the operator y∗(·) as the projection onto the optimal
set of argmaxy∈Rdy f(x, y), then it holds true that

∥y∗(x)− y∗∥2 ≤ L2

µ2
y

∥x− x∗∥2.

Proof. The proof is similar to the proof under strongly-convex-strongly-concave setting.

L2∥x− x∗∥2 ≥ ∥∇yf(x, y
∗)−∇yf(x

∗, y∗)∥2

= ∥∇yf(x, y
∗)∥2

≥ 2µy

(
max

y
f(x, y)− f(x, y∗)

)
≥ µ2

y∥y∗(x)− y∗∥2,

where the first inequality is due to L-smooth of f , and the second line relies on ∇yf(x
∗, y∗) = 0.

The second inequality relies on PL condition in y and in the last inequality we use the quadratic
growth property by Lemma A.4.

B Two-timescale GDA matches AGDA

As a warm-up, we study GDA as well as AGDA with full gradient calculation in this section. After
that, it is easy to extend the analysis when we are using a gradient estimator constructed by some
variance reduction framework instead of the full gradient.

Algorithm 3 AGDA (f, (x0, y0),K, τx, τy)

for k = 0, 1, . . . ,K − 1 do
xk+1 = xk − τx∇xf(xk, yk)

yk+1 = yk + τy∇yf(xk+1, yk)

end for
option I (two-sided PL): return (xK , yK)

option II (one-sided PL): return (x̂, ŷ) chosen uniformly at random from {(xk, yk)}K−1
k=0

14



Algorithm 4 GDA (f, (x0, y0),K, τx, τy)

for k = 0, 1, . . . ,K − 1 do
xk+1 = xk − τx∇xf(xk, yk)

yk+1 = yk + τy∇yf(xk, yk)

end for
option I (two-sided PL): return (xK , yK)

option II (one-sided PL): return (x̂, ŷ) chosen uniformly at random from {(xk, yk)}K−1
k=0

B.1 Convergence under Two-Sided PL condition

Under two-sided PL condition, it is known that AGDA [45] can find an ϵ-approximate solution to
a saddle point with a complexity of Õ(nκxκ

2
y log(1/ϵ)) when κx ≳ κy. However, the authors left

us a question that whether GDA can converge under the same setting. We answer this question
affirmatively in this section. We show that the same convergence rate can be achieved by GDA
algorithm with simultaneous updates.

We define the following Lyapunov function as suggested by Doan [9]:

Vk = Ak +
λτx
τy

Bk,

where Ak = g(xk)− g(x∗), Bk = g(xk)− f(xk, yk). Then we can obtain the following statement.

Theorem B.1. Suppose function f(x, y) satisfies L-smooth, µx-PL in x, µy-PL in y. Let τy = 1/L,
λ = 6L2/µ2

y and τx = τy/(22λ), then the sequence {(xk, yk)}Kk=1 generated by Algorithm 4
satisfies:

Vk+1 ≤
(
1− µxτx

2

)k
Vk.

Proof. Since we know that g is (2L2/µy)- smooth by Lemma A.8, let τx ≤ µy/(2L
2), we have

g(xk+1) ≤ g(xk)− g(x∗) +∇g(xk)
⊤(xk+1 − xk) +

L2

µy
∥xk+1 − xk∥2

≤ g(xk)− τx∇g(xk)
⊤∇xf(xk, yk) +

τx
2
∥∇xf(xk, yk)∥2

= g(xk)−
τx
2
∥∇g(xk)∥2 +

τx
2
∥∇g(xk)−∇xf(xk, yk)∥2,

(7)

which implies

Ak+1 ≤ Ak − τx
2
∥∇g(xk)∥2 +

τx
2
∥∇g(xk)−∇xf(xk, yk)∥2. (8)

Using the property of L-smooth, we know that the difference between f(xk, yk) and f(xk+1, yk+1)
can be bounded. Noting that τx ≤ 1/L, we can obtain

f(xk, yk)− f(xk+1, yk) ≤ −∇xf(xk, yk)
⊤(xk+1 − xk) +

L

2
∥xk+1 − xk∥2

= τx∥∇xf(xk, yk)∥2 +
τ2xL

2
∥∇xf(xk, yk)∥2

≤ 3τx
2

∥∇xf(xk, yk)∥2.

(9)
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Let τy < 1/L, then we have

f(xk+1, yk)− f(xk+1, yk+1)

≤−∇yf(xk+1, yk)
⊤(yk+1 − yk) +

L

2
∥yk+1 − yk∥2

≤− τy∇yf(xk+1, yk)
⊤∇yf(xk, yk) +

τy
2
∥∇yf(xk, yk)∥2

=− τy
2
∥∇yf(xk+1, yk)∥2 +

τy
2
∥∇yf(xk, yk)−∇yf(xk+1, yk)∥2

≤− τy
4
∥∇yf(xk, yk)∥2 + τy∥∇yf(xk, yk)−∇yf(xk+1, yk)∥2

≤− τy
4
∥∇yf(xk, yk)∥2 + τyτ

2
xL

2∥∇xf(xk, yk)∥2

≤− τy
4
∥∇yf(xk, yk)∥2 + τx∥∇xf(xk, yk)∥2,

(10)

where in the first inequality we use f is L-smooth, and we use τy ≤ 1/L in the second one and
Young’s inequality of −∥a− b∥2 ≤ 1

2∥a∥
2 + ∥b∥2 in the third one.

Combing (9) and (11), we can see that

f(xk, yk)− f(xk+1, yk+1) ≤ −τy
4
∥∇yf(xk, yk)∥2 +

5τx
2

∥∇xf(xk, yk)∥2. (11)

Now we can describe how Bk+1 declines compared with Bk, using (7) and (11), we have

Bk+1 = g(xk+1)− g(xk) + g(xk)− f(xk, yk) + f(xk, yk)− f(xk+1, yk+1)

≤ Bk − τx
2
∥∇g(xk)∥2 +

τx
2
∥∇g(xk)−∇xf(xk, yk)∥2

− τy
4
∥∇yf(xk, yk)∥2 +

5τx
2

∥∇xf(xk, yk)∥2.

(12)

Using the inequality ∥∇xf(xk, yk)∥2 ≤ 2∥g(xk)∥2 + 2∥∇g(xk)−∇xf(xk, yk)∥2, we have

Bk+1 ≤ Bk +
9τx
2

∥∇g(xk)∥2 +
11τx
2

∥∇g(xk)−∇xf(xk, yk)∥2 −
τy
4
∥∇yf(xk, yk)∥2.

By Lemma A.5, Lemma A.6 and Assumption 3.2, we have

∥∇g(xk)∥2 ≥ 2µx(g(xk)− g(x∗)),

∥∇xf(xk, yk)−∇g(xk)∥2 ≤ 2L2

µy
(g(xk)− f(xk, yk)),

∥∇yf(xk, yk)∥2 ≥ 2µy(g(xk)− f(xk, yk)).

(13)

Since we let τy = 1/L, λ = 6L2/µ2
y and τx = τy/(22λ), we can obtain

Vk+1 = Ak+1 +
λτx
τy

Bk+1

≤ Ak +
λτx
τy

Bk −
(
1− 9λτx

τy

)
τx
2
∥∇g(xk)∥2

+

(
1 +

11λτx
τy

)
τx
2
∥∇xf(xk, yk)−∇g(xk)∥2 −

λτx
4

∥∇yf(xk, yk)∥2

≤ Ak −
(
1− 9λτx

τy

)
τxµxAk +

λτx
τy

Bk +

(
1 +

11λτx
τy

)
τxL

2

µy
Bk − λτxµy

2
Bk

≤
(
1− µxτx

2

)
Ak +

(
1− µyτy

4

) λτx
τy

Bk

≤
(
1− µxτx

2

)
Vk,

(14)

where in the second inequality we use 11λτx/τy ≤ 1/2 by the choices of τx, τy and λ, while we use
the fact that 3τxL2/µy ≤ λτxµy/2 in the third one and µxτx ≤ µyτy/2 in the last one.
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Now we show that the convergence of Vk is sufficient to guarantee the convergence to a saddle point.
Corollary B.1. Suppose function f(x, y) satisfies L-smooth, µx-PL in x, µy-PL in y and κx ≳ κy.
Define τx, τy as in Lemma B.1 ,then then the sequence {(xk, yk)}Kk=1 generated by Algorithm 4
satisfies:

∥xk − x∗∥2 + ∥yk − y∗∥2 ≤ 2ck

(1−
√
c)2

max

{
4

µx
,
88

µy

}
V0. (15)

where c = 1 − µxτx/2. Further, Algorithm 4 can find an ϵ-saddle point with no more than
O(nκxκ

2
y log(κxκy/ϵ)) stochastic first-order oracle calls.

Proof. The proof is similar to the proof of Theorem 3.2 in [45].

By Lemma A.4 and the fact that 2τ2xL
2 ≤ 1, τx ≤ µy/(2L

2) and τy ≤ 1/L by the choices of τx, τy ,
we can see that

∥xk+1 − xk∥2 + ∥yk+1 − yk∥2

= τ2x∥∇xf(xk, yk)∥2 + τ2y ∥∇yf(xk, yk)∥2

= τ2x∥∇xf(xk, yk)∥2 + τ2y ∥∇yf(xk, yk)−∇yf(xk, y
∗(xk)∥2

≤ τ2x∥∇xf(xk, yk)∥2 + ∥yk − y∗(xk)∥2

≤ 2τ2x∥∇g(xk)∥2 + 2τ2x∥∇g(xk)−∇xf(xk, yk)∥2 + ∥yk − y∗(xk)∥2

≤ 2∥xk − x∗∥2 + 2∥yk − y∗(xk)− yk∥2

≤ 4

µx
Ak +

4

µy
Bk

≤ max

{
4

µx
,
88

µy

}
Vk

≤ max

{
4

µx
,
88

µy

}(
1− µxτx

2

)k
V0,

(16)

where in the last inequality we use λτx/τy = 1/22. Then we have

∥xk+1 − xk∥+ ∥yk+1 − yk∥ ≤
(
1− µxτx

2

)k/2√
2max

{
4

µx
,
88

µy

}
V0.

For n ≥ k, we obtain

∥xn − xk∥+ ∥yn − yk∥ ≤
n−1∑
i=k

∥xi+1 − xi∥2 + ∥yi+1 − yi∥2

≤

√
2max

{
4

µx
,
88

µy

}
V0

∞∑
i=k

(
1− µxτx

2

)i/2
≤ ck/2

1−
√
c

√
2max

{
4

µx
,
88

µy

}
V0,

where c = 1− µxτx/2. We know that when n → ∞, we have (xn, yn) → (x∗, y∗) where (x∗, y∗)
is a saddle point, Taking square on both sides completes our proof.

B.2 Convergence under One-sided PL condition

When f is nonconvex in x, we have the following theorem for GDA.
Theorem B.2. Suppose function f(x, y) satisfies L-smooth, µy-PL in y. Let τy = 1/L, λ = 4L2/µ2

y

and τx = τy/(18λ), then the sequence {(xk, yk)}K−1
k=0 generated by Algorithm 4 satisfies,

1

K

K−1∑
k=0

∥∇g(xk)∥2 ≤ 288L3

Kµ2
y

V0.
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Furthermore, if we choose the output (x̂, ŷ) uniformly from {(xk, yk)}K−1
k=0 , then we can get

∥∇g(x̂)∥ ≤ ϵ with no more than O(nκ2
yL/ϵ

2) first-order oracle calls.

Proof. Using equation (8) and Lemma A.6 that ∥∇g(xk)−∇xf(xk, yk)∥2 ≤ 2L2Bk/µy ,we have

Ak+1 ≤ Ak − τx
2
∥∇g(xk)∥2 +

τxL
2

µy
Bk. (17)

Further, using equation (12), we have

Bk+1 ≤ Bk +
9τx
2

∥∇g(xk)∥2 +
11τx
2

∥∇g(xk)−∇xf(xk, yk)∥2 −
τy
4
∥∇yf(xk, yk)∥2

≤ Bk +
9τx
2

∥∇g(xk)∥2 +
11τxL

2

µy
Bk − µyτy

2
Bk

≤ (1− µyτy
4

)Bk +
9τx
2

∥∇g(xk)∥2,

(18)

where we use Lemma A.6 and PL condition in y in the first inequality and 11τxL
2/µy ≤ µyτy/4 by

the choices of τx, τy . Thus,

Bk ≤
(
1− µyτy

4

)k
B0 +

9τx
2

k−1∑
i=0

(
1− µyτy

4

)k−i−1

∥∇g(xi)∥2.

Plugging into (17),

Ak+1 ≤ Ak − τx
2
∥∇g(xk)∥2 +

τxL
2

µy

(
1− µyτy

4

)k
B0 +

9τ2
xL

2

2µy

k−1∑
i=0

(
1− µyτy

4

)k−i−1

∥∇g(xi)∥2.

Telescoping and noticing that 18τ2xL
2/τyµ

2
y ≤ τx/4 and λ = 4L2/µ2

y , we have

AK+1 ≤ A0 −
τx
2

K∑
k=0

∥∇g(xk)∥2 +
τxL

2

µy

K−1∑
k=0

(
1− µyτy

4

)k
B0

+
9τ2xL

2

2µy

K∑
k=1

k−1∑
i=0

(
1− µyτy

4

)k−i−1

∥∇g(xi)∥2

= A0 −
τx
2

K∑
k=0

∥∇g(xk)∥2 +
τxL

2

µy

K−1∑
k=0

(
1− µyτy

4

)k
B0

+
9τ2xL

2

2µy

K−1∑
i=0

K∑
k=i+1

(
1− µyτy

4

)k−i−1

∥∇g(xi)∥2

≤ A0 −
τx
2

K∑
k=0

∥∇g(xk)∥2 +
τxL

2

µy

K−1∑
k=0

(
1− µyτy

4

)k
B0 +

18τ2xL
2

τyµ2
y

K−1∑
i=0

∥∇g(xi)∥2

≤ A0 −
τx
2

K∑
k=0

∥∇g(xk)∥2 +
τxL

2

µy

K−1∑
k=0

(
1− µyτy

4

)k
B0 +

18τ2xL
2

τyµ2
y

K∑
k=0

∥∇g(xk)∥2

≤ A0 −
τx
4

K∑
k=0

∥∇g(xk)∥2 +
4τxL

2

τyµ2
y

B0

= V0 −
τx
4

K∑
k=0

∥∇g(xk)∥2.

Rearranging and noticing that AK+1 ≥ 0, we can see that

1

K + 1

K∑
k=0

∥∇g(xk)∥2 ≤ 4V0

(K + 1)τx
,

which is equivalent to the desired inequality.
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Algorithm 5 SVRG-GDA (f, (x0, y0), T, S,M,B, τx, τy)

1: x̄0 = x0, ȳ0 = y0

2: for t = 0, 1, . . . , T − 1 do
3: for s = 0, 1, . . . , S − 1 do
4: xs,0 = x̄s, ys,0 = ȳs

5: compute ∇xf(x̄s, ȳs) =
1
n

∑n
i=1 ∇xfi(x̄s, ȳs)

6: compute ∇yf(x̄s, ȳs) =
1
n

∑n
i=1 ∇yfi(x̄s, ȳs)

7: for k = 0, 1, . . . ,M − 1

8: draw samples Sx, Sy independently with both size B.

9: Gx(xs,k, ys,k) =
1
B

∑
i∈Sx

[∇xfi(xs,k, ys,k)−∇xfi(x̄s, ȳs) +∇xf(x̄s, ȳs)]

10: Gy(xs,k, ys,k) =
1
B

∑
i∈Sy

[∇yfi(xs,k, ys,k)−∇xfi(x̄s, ȳs) +∇xf(x̄s, ȳs)]

11: xs,k+1 = xs,k − τxGx(xs,k, ys,k)

12: ys,k+1 = ys,k + τyGy(xs,k, ys,k)

13: end for
14: x̄s+1 = xs,M , ȳs+1 = ys,M

15: end for
16: choose (xt, yt) from {{(xs,k, ys,k)}M−1

k=0 }S−1
s=0 uniformly at random.

17: x̄0 = xt, ȳ0 = yt

18: end for
19: return (xT , yT )

C Convergence of GDA with SVRG Gradient Estimators

In this section, we will show the convergence rate of GDA with SVRG gradient estimators is O((n+
n2/3κxκ

2
y) log(1/ϵ)), which is faster than the result of O((n+ n2/3 max{κ3

x, κ
3
y}) log(1/ϵ)) given

by SVRG-AGDA Yang et al. [45]. Plus, we can prove that the same convergence rate can be achieved
by AGDA with similar techniques since in our algorithm we set τx ≪ τy , therefore xk changes much
slower than yk. The reason for unbalanced step sizes lies in that g(x) is (L + L2/µy)-smooth by
Lemma A.8. Thus, we can regard that the condition number of solving problem maxy∈Rdy f(x, y)

is O(κy) while that of solving minx∈Rdx g(x) is O(κxκy). Thus, it is reasonable that the total
complexity has a factor of O(κxκ

2
y). The algorithm is described in 5.

For the innermost loop about subscript k when t and s are both fixed, we define the Lyapunov function
as follows:

Vs,k = As,k +
λτx
τy

Bs,k + cs,k∥xs,k − x̄s∥2 + ds,k∥yk − ȳs∥2,

where As,k = g(xs,k) − g(x∗) and Bs,k = g(xs,k) − f(xs,k, ys,k) and cs,k, ds,k will be defined
recursively with cs,M = ds,M = 0 in our proof. Then we can have the following lemma.

Lemma C.1. Under Assumption 6.1 and 3.1, if we let τy = ν/(Lnα), λ = 14L2/µ2
y and τx =

τy/(22λ), where ν = 1/(176(e − 1)), 0 < α ≤ 1; let B = 1,M = ⌊n3α/2/(2ν)⌋. Then for
Algorithm 5, the following statement holds true:

E[Vs,k+1] ≤ Vs,k − τx
8
∥∇g(xs,k)∥2 −

λτx
16

∥∇yf(xs,k, ys,k)∥2,

where As,k = g(xs,k)−g(x∗) and Bs,k = g(xs,k)−f(xs,k, ys,k). Above, the definitions of cs,k, ds,k
is given recursively with cs,M = ds,M = 0 as:

cs,k = cs,k+1(1 + τxγ1) +

(
cs,k+1τ

2
x +

3τ2xL
2

µy

)
L2 +

(
ds,k+1τ

2
y +

λτxτyL

2

)
L2,
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ds,k = ds,k+1(1 + τyγ2) +

(
cs,k+1τ

2
x +

3τ2xL
2

µy

)
L2 +

(
ds,k+1τ

2
y +

λτxτyL

2

)
L2.

Proof. Since s is fixed in thie lemma, we omit subscripts of t in the following proofs, then the
Lyapunov function can be written as:

Vk = Ak +
λτx
τy

Bk + ck∥xk − x̄∥2 + dk∥yk − ȳ∥2.

Before the formal proof, we present some standard properties of variance reduction. We denote the
stochastic gradients as:

Gx(xk, yk) =
1

B

∑
i∈Sx

(
∇xfi(xk, yk)−∇xfi(x̄, ȳ) +∇xf(x̄, ȳ)

)
and

Gy(xk, yk) =
1

B

∑
i∈Sy

(
∇yfi(xk, yk)−∇yfi(x̄, ȳ) +∇yf(x̄, ȳ)

)
.

Then we know that the stochastic gradients satisfy unbiasedness that

E[Gx(xk, yk)] = ∇xf(xk, yk) and E[Gy(xk, yk)] = ∇yf(xk, yk).

And we can bound the variance of the stochastic gradients as follows:

E∥Gx(xk, yk)−∇xf(xk, yk)∥2

= E∥∇xfi(xk, yk)−∇xfi(x̄, ȳ) +∇xf(x̄, ȳ)−∇xf(xk, yk)∥2

≤ E∥∇xfi(xk, yk)−∇xfi(x̄, ȳ)∥2

≤ L2E∥xk − x̄∥2] + L2E[∥yk − ȳ∥2.

(19)

Similarly, we have

E∥Gy(xk, yk)−∇yf(xk, yk)∥2 ≤ L2E∥xk − x̄∥2 + L2E∥yk − ȳ∥2. (20)

Equipped with the above properties of SVRG, now we can begin our proof of Lemma C.1.

Since we know that g is (2L2/µy)-smooth by Lemma A.8 and τx ≤ µy/2L
2, we have

E[g(xk+1)] ≤ E
[
g(xk) +∇g(xk)

⊤(xk+1 − xk) +
2L2

µy
∥xk+1 − xk∥2

]
≤ E

[
g(xk)− τx∇g(xk)

⊤Gx(xk, yk) +
τ2xL

2

µy
∥Gx(xk, yk)∥2

]
≤ E

[
g(xk)− τx∇g(xk)

⊤∇xf(xk, yk) +
τx
2
∥∇xf(xk, yk)∥2

]
+ E

[
τ2xL

2

µy
∥Gx(xk, yk)−∇xf(xk, yk)∥2

]
= E

[
g(xk)−

τx
2
∥∇g(xk)∥2 +

τx
2
∥∇g(xk)−∇xf(xk, yk)∥2

]
+ E

[
τ2xL

2

µy
∥Gx(xk, yk)−∇xf(xk, yk)∥2

]
,

(21)

where we use τ2xL
2 ≤ µy in the third inequality. Also, we have

E[f(xk, yk)] ≤ E
[
f(xk+1, yk)−∇xf(xk, yk)

⊤(xk+1 − xk) +
L

2
∥xk+1 − xk∥2

]
= E

[
f(xk+1, yk) + τx∇xf(xk, yk)

⊤Gx(xk, yk) +
τ2xL

2
∥Gx(xk, yk)∥2

]
= E

[
f(xk+1, yk) + τx∥∇xf(xk, yk)∥2 +

τ2xL

2
∥∇xf(xk, yk)∥2

]
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+ E
[
τ2xL

2
∥Gx(xk, yk)−∇xf(xk, yk)∥2

]
≤ E

[
f(xk+1, yk) +

3τx
2

∥∇xf(xk, yk)∥2 +
τ2xL

2
∥Gx(xk, yk)−∇xf(xk, yk)∥2

]
,

where we use the quadratic upper bound implied by L-smoothness in the first inequality and τy ≤ 1/L
in the second one. Similarly,

E[f(xk+1, yk)] ≤ E
[
f(xk+1, yk+1)−∇yf(xk+1, yk)

⊤(yk+1 − yk) +
L

2
∥yk+1 − yk∥2

]
= E

[
f(xk+1, yk+1)− τy∇yf(xk+1, yk)

⊤Gy(xk, yk) +
τ2
yL

2
∥Gy(xk, yk)∥2

]
≤ E

[
f(xk+1, yk+1)− τy∇yf(xk+1, yk)

⊤∇yf(xk, yk) +
τy
2
∥∇yf(xk, yk)∥2

]
+ E

[
τ2
yL

2
∥Gy(xk, yk)−∇yf(xk, yk)∥2

]
= E

[
f(xk+1, yk+1)−

τy
2
∥∇yf(xk+1, yk)∥2

]
+ E

[
τy
2
∥∇yf(xk+1, yk)−∇yf(xk, yk)∥2 +

τ2
yL

2
∥Gy(xk, yk)−∇yf(xk, yk)∥2

]
≤ E

[
f(xk+1, yk+1)−

τy
4
∥∇yf(xk+1, yk)∥2

]
+ E

[
τy∥∇yf(xk+1, yk)−∇yf(xk, yk)∥2 +

τ2
yL

2
∥Gy(xk, yk)−∇yf(xk, yk)∥2

]
≤ E

[
f(xk+1, yk+1)−

τy
4
∥∇yf(xk+1, yk)∥2

]
+ E

[
τyτ

2
xL

2∥Gx(xk, yk)∥2 +
τ2
yL

2
∥Gy(xk, yk)−∇yf(xk, yk)∥2

]
≤ E

[
f(xk+1, yk+1)−

τy
4
∥∇yf(xk+1, yk)∥2 + τx∥∇xf(xk, yk)∥2

]
+ E

[
τ2
xL∥Gx(xk, yk)−∇xf(xk, yk)∥2 +

τ2
yL

2
∥Gy(xk, yk)−∇yf(xk, yk)∥2

]
.

Above, the first and fourth inequalities are both due to L-smoothness; the second one follows from
τy ≤ 1/L; the third one uses the fact that −E[∥a− b∥2] ≤ − 1

2E[∥a∥
2] + E[∥b∥2]; the last one relies

on E[∥Gx(xk, yk)∥2] = E[∥∇xf(xk, yk)∥2 + ∥Gx(xk, yk) − ∇xf(xk, yk)∥2] and the choices of
τx, τy . Summing up the above two inequalities, we obtain

E[f(xk, yk)] ≤ E
[
f(xk+1, yk+1) +

5τx
2

∥∇xf(xk, yk)∥2 +
3τ2

xL

2
∥Gx(xk, yk)−∇xf(xk, yk)∥2

]
E
[
−τy

4
∥∇yf(xk, yk)∥2 +

τ2
yL

2
∥Gy(xk, yk)−∇yf(xk, yk)∥2

]
.

Combing with inequality (21), we can see that

E[Bk+1] ≤ E
[
Bk − τx

2
∥∇g(xk)∥2 +

τx
2
∥∇g(xk)−∇xf(xk, yk)∥2

]
+ E

[
−τy

4
∥∇yf(xk, yk)∥2 +

5τx
2

∥∇xf(xk, yk)∥2
]

+ E

[
τ2yL

2
∥Gy(xk, yk)−∇yf(xk, yk)∥2 +

5τ2xL
2

2µy
∥Gx(xk, yk)−∇xf(xk, yk)∥2

]

≤ E
[
Bk +

9τx
2

∥∇g(xk)∥2 +
11τx
2

∥∇g(xk)−∇xf(xk, yk)∥2
]

+ E
[
−τy

4
∥∇yf(xk, yk)∥2

]
+ E

[
τ2yL

2
∥Gy(xk, yk)−∇yf(xk, yk)∥2 +

5τ2xL
2

2µy
∥Gx(xk, yk)−∇xf(xk, yk)∥2

]
,

(22)
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where we use E∥∇xf(xk, yk)∥2 ≤ E∥∇g(xk)∥2 + E∥∇g(xk) − ∇xf(xk, yk)∥2. Using Young’s
inequality as equation (37) and (38) in [45], we have

E∥xk+1 − x̄∥2 ≤ E
[
τ2x∥Gx(xk, yk)−∇xf(xk, yk)∥2

]
+ E

[
(1 + τxγ1)∥xk − x̄∥2 +

(
τ2x +

τx
γ1

)
∥∇xf(xk, yk)∥2

]
,

E∥yk+1 − ȳ∥2 ≤ E
[
τ2y ∥Gy(xk, yk)−∇yf(xk, yk)∥2

]
+ E

[
(1 + τyγ2)∥yk − ȳ∥2 +

(
τ2y +

τy
γ2

)
∥∇yf(xk, yk)∥2

]
,

where γ1, γ2 are two positive constant in Young’s inequality which will be chosen later.

Then, using equation (19), (20), (21), (22), we have

E[Vk+1] = E
[
Ak+1 +

λτx
τy

Bk+1 + ck+1∥xk+1 − x̄∥2 + dk+1∥yk+1 − ȳ∥2
]

≤ Ak +
λτx
τy

Bk −
(
1− 9λτx

τy

)
τx
2
∥∇g(xk)∥2+

+

(
1 +

11λτx
τy

)
τx
2
∥∇xf(xk, yk)−∇g(xk)∥2

− λτx
4

∥∇yf(xk, yk)∥2 +
2τ2xL

2

µy

(
1 +

5λτx
4τy

)
∥Gx(xk, yk)−∇xf(xk, yk)∥2

+
λτxτyL

2
∥Gy(xk, yk)−∇yf(xk, yk)∥2

+ E[ck+1∥xk+1 − x̄∥2 + dk+1∥yk+1 − ȳ∥2]

= Vk −
(
1− 9λτx

τy

)
τx
2
∥∇g(xk)∥2 +

(
1 +

11λτx
τy

)
τx
2
∥∇xf(xk, yk)−∇g(xk)∥2

− λτx
4

∥∇yf(xk, yk)∥2 + ck+1

(
τ2x +

τx
γ1

)
∥∇xf(xk, yk)∥2

+ dk+1

(
τ2y +

τy
γ2

)
∥∇yf(xk, yk)∥2

≤ Vk −
(
1− 9λτx

τy

)
τx
2
∥∇g(xk)∥2 +

(
1 +

11λτx
τy

)
τx
2
∥∇xf(xk, yk)−∇g(xk)∥2

− λτx
4

∥∇yf(xk, yk)∥2 + dk+1

(
τ2y +

τy
γ2

)
∥∇yf(xk, yk)∥2

+ 2ck+1

(
τ2x +

τx
γ1

)
∥∇g(xk)∥2

+ 2ck+1

(
τ2x +

τx
γ1

)
∥∇xf(xk, yk)−∇g(xk)∥2

≤ Vk − τx
4
∥∇g(xk)∥2 +

3τx
4

∥∇xf(xk, yk)−∇g(xk)∥2 −
λτx
4

∥∇yf(xk, yk)∥2

+ dk+1

(
τ2y +

τy
γ2

)
∥∇yf(xk, yk)∥2 + 2ck+1

(
τ2x +

τx
γ1

)
∥∇g(xk)∥2

+ 2ck+1

(
τ2x +

τx
γ1

)
∥∇xf(xk, yk)−∇g(xk)∥2,

(23)

where the second last inequality relies on

∥∇xf(xk, yk)∥2 ≤ 2∥∇g(xk)∥2 + 2∥∇g(xk)−∇xf(xk, yk)∥2;
in the last inequality we use 11λτx/τy ≤ 1/2 by our choices of λ, τx, τy; the second equality is due
to the definition of ck+1, dk+1.
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Now we define ek = max{ck, dk} and we bound ek by letting γ1 = λL/nα/2 and γ2 = L/nα/2.
Then according to the definition of ck, dk given by our definition, we have

ek ≤ (1 + τyγ2 + τ2yL
2)ek+1 +

3τ2xL
4

µy
+

λτxτyL
3

2

≤ (1 + τyγ2 + τ2yL
2)ek+1 + τ2yL

3

=

(
1 +

ν

n3α/2
+

ν2

n2α

)
+

Lν2

n2α

≤
(
1 +

2ν

n3α/2

)
ek+1 +

Lν2

n2α
,

where we use τx ≤ τy and γ1τx ≤ γ2τy in the first; the second inequality is due to τ2xL/µy ≤ τ2y /6
and λτx ≤ τy/4 ; we plug in τy = ν/Lnα in the third line; we use ν ≤ 1 in the last inequality.

Since M = ⌊n3α/2/(2ν)⌋ and cM = dM = 0, if we define θ = 2ν/n3α/2, then

e0 ≤ Lν2

n2α

(1 + θ)M − 1

θ
≤ Lν(e− 1)

2nα/2
. (24)

Since ek+1 ≤ ek, we know that ek ≤ e0, then

dk+1

(
τ2y +

τy
γ2

)
≤ e0

(
τy +

1

γ2

)
τy

≤ Lν(e− 1)

2nα/2

(
τy +

1

γ2

)
τy

=
ν(e− 1)

2

( ν

n3α/2
+ 1
)
τy

≤ ν(e− 1)τy,

(25)

where we use dk+1 ≤ e0 in the first inequality and (24) in the second one, and in the third line we
plug in τy = ν/(Lnα) and γ2 = L/nα/2. The last inequality follows from ν/n3α/2 ≤ 1.

Similarly, note that γ1 ≥ γ2 and τx ≤ τy by the choices of τx, τy , then we have

ck+1

(
τ2x +

τx
γ1

)
≤ e0

(
τx +

1

γ1

)
τx ≤ e0

(
τy +

1

γ2

)
τx ≤ 3ν(e− 1)τx. (26)

Plugging (25) and (26) into (23),

E[Vk+1] ≤ Vk − τx
4
∥∇g(xk)∥2 +

3τx
4

∥∇xf(xk, yk)−∇g(xk)∥2 −
λτx
4

∥∇yf(xk, yk)∥2

+ ν(e− 1)τy∥∇yf(xk, yk)∥2 + 2ν(e− 1)τx∥∇g(xk)∥2

+ 2ν(e− 1)τx∥∇xf(xk, yk)−∇g(xk)∥2.
If we let ν ≤ 1/(176(e− 1)), then we can verify that the following statements hold true:

ν(e− 1)τy ≤ λτx
8

,

2ν(e− 1)τx ≤ τx
8
.

Thus,

E[Vk+1] ≤ Vk − τx
8
∥∇g(xk)∥2 +

7τx
8

∥∇xf(xk, yk)−∇g(xk)∥2 −
λτx
8

∥∇yf(xk, yk)∥2.

Using Lemma A.7 and µy-PL condition in y and plugging in λ = 14L2/µ2
y yields

7τx
8

∥∇xf(xk, yk)−∇g(xk)∥2 ≤ λτx
16

∥∇yf(xk, yk)∥2.

Thus,

E[Vk+1] ≤ Vk − τx
8
∥∇g(xk)∥2 −

λτx
16

∥∇yf(xk, yk)∥2.
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Now it is sufficient to show the convergence of SVRG-GDA.
Theorem C.1. Under Assumption 3.2 and 3.1, if we let SM = ⌈8/(µxτx)⌉, T = ⌈log(1/ϵ)⌉ and
M,B, τx, τy defined in Lemma C.1, then the following statement holds true for Algorithm 5:

E
[
Ãt+1 +

λτx
τy

B̃t+1

]
≤ 1

2

(
Ãt +

λτx
τy

B̃t

)
,

where Ãt = g(xt)− g(x∗) and B̃t = g(xt)− f(xt, yt). Furthermore, let α = 2/3, then it requires
O((n+n2/3κxκ

2
y) log(1/ϵ)) stochastic first-order calls to achieve g(xT )−g(x∗) ≤ ϵ in expectation.

Proof. By Lemma C.1 and Lemma A.5 that g satisfies µx-PL in x and Assumption 3.2 that function
f satisfies µy-PL in y, we have

E[Vs,k+1] ≤ Vs,k − µxτx
4

As,k − µyτy
8

λτx
τy

Bs,k ≤ Vs,k − µxτx
4

Vs,k,

where in the last inequality we use µxτx/4 ≤ µyτy/8. Telescoping for k = 0, 1, . . . ,M − 1 and
s = 0, 1, . . . , S − 1 and rearranging, we can see that in round t, it holds that

1

SM

S−1∑
s=0

M−1∑
k=0

Vs,k ≤ 4

µxτxSM
(V0,0 − VS,M ) ≤ 1

2
V0,0,

where the last inequality is due to the choice of S.

The above inequality is exactly equivalent to what we want to prove:

E
[
Ãt+1 +

λτx
τy

B̃t+1

]
≤ 1

2

(
Ãt +

λτx
τy

B̃t

)
.

Note that we have M = O(n3α/2) and S = O(κxκ
2
y/n

α/2), then the complexity is

O
(
(n+ SM + Sn) log

(
1

ϵ

))
= O

(
(n+ (nα + n1−α/2)κxκ

2
y) log

(
1

ϵ

))
.

Plugging in α = 2/3 yields the desired complexity and it can also be seen that it is also the best
choice of α.

D Proof of Section 4

In this section, we show that why SPIDER type stochastic gradient estimators outperforms SVRG
with complete proofs. Using recursive updates by SPIDER, the variance of gradients are under
control.
Lemma D.1 (Fang et al. [12, Modified form Lemma 1]). In Algorithm 1, it holds true that

E[∥Gx(xk, yk)−∇xf(xk, yk)∥2] ≤
L2

B

k∑
j=(nk−1)M

(
τ2
xE[∥Gx(xj , yj)∥2] + τ2

yE[∥Gy(xj , yj)∥2]
)
,

E[∥Gy(xk, yk)−∇yf(xk, yk)∥2] ≤
L2

B

k∑
j=(nk−1)M

(
τ2
xE[∥Gx(xj , yj)∥2] + τ2

yE[∥Gy(xj , yj)∥2]
)
,

where nk = ⌈k/M⌉ and (nk − 1)M ≤ k ≤ nkM − 1.

The following lemma describes the main convergence property of SPIDER-GDA.
Lemma D.2. Under Assumption 6.1 and 3.1, setting all the parameters as defined in Theorem 4.1,
then it holds true that

E[∥∇xf(x̃t+1, ỹt+1)∥2 + ∥λ∇yf(x̃t+1, ỹt+1)∥2] ≤
64

τxK
E
[
Ãt +

λτx
τy

B̃t

]
,

where Ãt = g(x̃t)− g(x∗) and B̃t = g(x̃t)− f(x̃t, ỹt).
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Proof. First of all, we fix t and analyze the inner loop. We define the Lyapunov function as:

Vt,k = At,k +
λτx
τy

Bt,k,

where At,k = g(xt,k)− g(x∗) and Bt,k = g(xt,k)− f(xt,k, yt,k).

For simplification, we omit the subscripts t when there is no ambiguity. Note that g(x) is (2L2/µy)-
smooth, we have

E[g(xk+1)− g(x∗)]

≤ E
[
g(xk)− g(x∗) +∇g(xk)

⊤(xk+1 − xk) +
L2

µy
∥xk+1 − xk∥2

]
= E

[
g(xk)− g(x∗)− τx∇g(xk)

⊤Gx(xk, yk) +
L2τ2x
µy

∥Gx(xk, yk)∥2
]

= E
[
g(xk)− g(x∗)− τx(∇g(xk)−Gx(xk, yk))

⊤Gx(xk, yk) +

(
L2τ2x
µy

− τx

)
∥Gx(xk, yk)∥2

]
≤ E

[
g(xk)− g(x∗) +

τx
2
∥∇g(xk)−Gx(xk, yk)∥2 +

(
L2τ2x
µy

− τx
2

)
∥Gx(xk, yk)∥2

]
≤ E

[
g(xk)− g(x∗) + τx∥∇g(xk)−∇xf(xk, yk)∥2

]
+ E

[
τx∥Gx(xk, yk)−∇xf(xk, yk)∥2 −

τx
4
∥Gx(xk, yk)∥2

]
,

(27)

where the second inequality follows from the fact that E[a⊤b] ≤ 1
2E[∥a∥

2] + 1
2∥b∥

2; the third
inequality is because we have τx ≤ µy/(4L

2). Similarly, we can show that

E[f(xk, yk)− f(xk+1, yk)]

≤ E
[
−∇xf(xk, yk)

⊤(xk+1 − xk) +
L

2
∥xk+1 − xk∥2

]
= E

[
τx∇xf(xk, yk)

⊤Gx(xk, yk) +
τ2xL

2
∥Gx(xk, yk)∥2

]
= E

[
τx(∇xf(xk, yk)−Gx(xk, yk))

⊤Gx(xk, yk) +

(
τ2xL

2
+ τx

)
∥Gx(xk, yk)∥2

]
≤ E

[τx
2
∥∇xf(xk, yk)−Gx(xk, yk)∥2 + 2τx∥Gx(xk, yk)∥2

]
,

and

E[f(xk+1, yk)− f(xk+1, yk+1)]

≤ E
[
−∇yf(xk+1, yk)

⊤(yk+1 − yk) +
L

2
∥yk+1 − yk∥2

]
= E

[
−τy∇yf(xk+1, yk)

⊤Gy(xk, yk) +
τ2yL

2
∥Gy(xk, yk)∥2

]

= E

[
−τy(∇yf(xk+1, yk)−Gy(xk, yk))

⊤Gy(xk, yk) +

(
τ2yL

2
− τy

)
∥Gy(xk, yk)∥2

]

≤ E

[
τy
2
∥∇yf(xk+1, yk)−Gy(xk, yk)∥2 +

(
τ2yL

2
− τy

2

)
∥Gy(xk, yk)∥2

]
≤ E

[
τy∥∇yf(xk, yk)−Gy(xk, yk)∥2 + τy∥∇yf(xk, yk)−∇yf(xk+1, yk)∥2

]
+ E

[(
τ2yL

2
− τy

2

)
∥Gy(xk, yk)∥2

]
≤ E

[
τy∥∇yf(xk, yk)−Gy(xk, yk)∥2 + τyτ

2
xL

2∥Gx(xk, yk)∥2
]
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+ E

[(
τ2yL

2
− τy

2

)
∥Gy(xk, yk)∥2

]
≤ E

[
τy∥∇yf(xk, yk)−Gy(xk, yk)∥2 + τx∥Gx(xk, yk)∥2 −

τy
4
∥Gy(xk, yk)∥2

]
,

where we use τy ≤ 1/(2L) and τx ≤ 1/L and Young’s inequality.

Summing up the above two inequalities, we have

E[f(xk, yk)− f(xk+1, yk+1)] ≤ E
[τx
2
∥∇xf(xk, yk)−Gx(xk, yk)∥2 + 3τx∥Gx(xk, yk)∥2

]
+ E

[
τy∥∇yf(xk, yk)−Gy(xk, yk)∥2 −

τy
4
∥Gy(xk, yk)∥2

]
.

Combing with inequality (27), it can be seen that

E[Bk+1] = E[g(xk+1)− f(xk+1, yk+1)]

≤ E[g(xk+1)− g(xk) + g(xk)− f(xk, yk) + f(xk, yk)− f(xk+1, yk+1)]

≤ E
[
Bk + τx∥∇g(xk)−∇xf(xk, yk)∥2 +

3τx
2

∥Gx(xk, yk)−∇xf(xk, yk)∥2
]

+ E
[
τy∥Gy(xk, yk)−∇yf(xk, yk)∥2 −

τy
4
∥Gy(xk, yk)∥2 + 3τx∥Gx(xk, yk)∥2

]
.

Therefore, using 24λτx ≤ τy and inequality (27) again, we obtain

E[Vk+1] = E
[
Ak+1 +

λτx
τy

Bk+1

]
≤ E

[
Ak +

λτx
τy

Bk +

(
τx +

λτx
τy

)
∥∇g(xk)−∇xf(xk, yk)∥2

]
+ E

[(
τx +

3λτ2x
2τy

)
∥Gx(xk, yk −∇xf(xk, yk)∥2

]
+ E

[(
3λτ2x
τy

− τx
4

)
∥Gx(xk, yk)∥2

]
+ E

[
λτx∥Gy(xk, yk)−∇yf(xk, yk)∥2 −

λτx
4

∥Gy(xk, yk)

]
≤ E

[
Ak +

λτx
τy

Bk + 2τx∥∇g(xk)−∇xf(xk, yk)∥2
]

+ E
[
5τx
2

∥Gx(xk, yk)−∇xf(xk, yk)∥2 −
τx
8
∥Gx(xk, yk)∥2

]
+ E

[
λτx∥Gy(xk, yk)−∇yf(xk, yk)∥2 −

λτx
4

∥Gy(xk, yk)∥2
]
.

Furthermore,

E[Vk+1] ≤ E
[
Vk +

2L2τx
µ2
y

∥∇yf(xk, yk)∥2
]

+ E
[
5τx
2

∥Gx(xk, yk)−∇xf(xk, yk)∥2 −
τx
8
∥Gx(xk, yk)∥2

]
+ E

[
λτx∥Gy(xk, yk)−∇yf(xk, yk)∥2 −

λτx
4

∥Gy(xk, yk)∥2
]

≤ E
[
Vk +

5τx
2

∥Gx(xk, yk)−∇xf(xk, yk)∥2 −
τx
8
∥Gx(xk, yk)∥2

]
+ E

[
9λτx
8

∥Gy(xk, yk)−∇yf(xk, yk)∥2 −
λτx
8

∥Gy(xk, yk)∥2
]
.
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Above, the first inequality follows from Lemma A.7 and the second inequality uses Young’s inequality
that E[∥a− b∥2] ≤ E[∥a∥2 + ∥b∥2] and λ = 32L2/µ2

y .

Now, plug in the variance bound of Spider given by Lemma D.1 and B = M , we have

E[Vk+1] ≤ E

Vk +

(
5

2
+

9λ

8

)
τ3xL

2

M

k∑
j=(nk−1)M

∥Gx(xj , yj)∥2 −
τx
8
∥Gx(xk, yk)∥2


+ E

(5

2
+

9λ

8

)
τxτ

2
yL

2

M

k∑
j=(nk−1)M

∥Gy(xj , yj)∥2 −
λτx
8

∥Gy(xk, yk)∥2


≤ E

Vk +
5λτ3xL

2

4M

k∑
j=(nk−1)M

∥Gx(xj , yj)∥2 −
τx
8
∥Gx(xk, yk)∥2


+ E

5λτxτ2yL2

4M

k∑
j=(nk−1)M

∥Gy(xj , yj)∥2 −
λτx
8

∥Gy(xk, yk)∥2
 .

Now we telescope for i = (nk − 1)M, · · · , k.

E[Vk+1] ≤ E
[
V(nk−1)M

]
+ E

 k∑
i=(nk−1)M

 i∑
j=(nk−1)M

5λτ3xL
2

4M
∥Gx(xj , yj)∥2 −

τx
8
∥Gx(xi, yi)∥2


+ E

 k∑
i=(nk−1)M

 i∑
j=(nk−1)M

5λτxτ
2
yL

2

4M
∥Gy(xj , yj)∥2 −

λτx
8

∥Gy(xi, yi)∥2


≤ E

V(nk−1)M +

k∑
j=(nk−1)M

(
5λτ3xL

2

4
∥Gx(xj , yj)∥2 −

τx
8
∥Gx(xj , yj)∥2

)
+ E

 k∑
j=(nk−1)M

(
5λτxτ

2
yL

2

4
∥Gy(xj , yj)∥2 −

λτx
8

∥Gy(xj , yj)∥2
)

≤ E

V(nk−1)M − τx
16

k∑
j=(nk−1)M

∥Gx(xj , yj)∥2 −
λτx
16

k∑
j=(nk−1)M

∥Gy(xj , yj)∥2
 ,

where we use λτ2xL
2 ≤ 1/20 and τ2yL

2 ≤ 1/20 in the last inequality.

From now on, we need to write down the subscripts with respect to t. Telescope for k = 0, · · · ,K−1.

E[Vt,K ] ≤ E

[
Vt,0 −

τx
16

K−1∑
k=0

∥Gx(xt,k, yt,k)∥2 −
λτx
16

K−1∑
k=0

∥Gy(xt,k, yt,k)∥2
]
.

Noting that we choose (x̃t+1, ỹt+1) from {(xt,k, yt,k)}K−1
k=0 uniformly at random, we have

E
[
τx
16

∥Gx(x̃t+1, ỹt+1)∥2 +
λτx
16

∥Gy(x̃t+1, ỹt+1)∥2
]
≤ 1

K
E
[
Ãt +

λτx
τy

B̃t

]
. (28)

Additionally, denote random variable ξt as the index from k = 0, 1, · · · ,K − 1 that is chosen as
(x̃t+1, ỹt+1), it holds that

E[∥Gx(x̃t+1, ỹt+1)−∇xf(x̃t+1, ỹt+1)∥2]

≤ E

L2τ2x
B

ξt∑
j=(nξt−1)M

∥Gx(xj , yj)∥2

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≤ L2τ2xM

TB

K−1∑
j=0

E∥Gx(xj , yj)∥2

=
L2τ2x
K

K−1∑
j=0

E∥Gx(xj , yj)∥2

= L2τ2xE∥Gx(x̃t+1, ỹt+1)∥2,

where we use Lemma D.1 again in the first inequality; the second inequality holds because the
probability that nξt = 1, 2, · · · , nK is less than or equal to M/K. Similarly,

E∥Gx(x̃t+1, ỹt+1)−∇xf(x̃t+1, ỹt+1)∥2 ≤ L2τ2xE∥Gx(x̃t+1, ỹt+1)∥2.

Now it is sufficient to show that

E[∥∇xf(x̃t+1, ỹt+1)∥2 + λ∥∇yf(x̃t+1, ỹt+1)∥2]
≤ E[2∥∇xf(x̃t+1, ỹt+1)−Gx(x̃t+1, ỹt+1)∥2 + 2∥Gx(x̃t+1, ỹt+1)∥2]
+ E[2∥∇yf(x̃t+1, ỹt+1)−Gy(x̃t+1, ỹt+1)∥2 + 2∥Gy(x̃t+1, ỹt+1)∥2]

≤ 2(1 + L2τ2x)E[∥Gx(x̃t+1, ỹt+1)∥2] + 2λ(1 + L2τ2y )E[∥Gy(x̃t+1, ỹt+1)∥2]
≤ 4E∥Gx(x̃t+1, ỹt+1)∥2 + 4λE∥Gy(x̃t+1, ỹt+1)∥2

≤ 64

τxK
E
[
Ãt +

λτx
τy

B̃t

]
,

where we use inequality (28) in the last line.

Equipped with the above lemma, we can easily prove Theorem 4.1.

D.1 Proof of Theorem 4.1

Proof. Using the properties of PL condition, it holds true that

E
[
Ãt+1 +

λτx
τy

B̃t+1

]
≤ E

[
1

2µx
∥∇g(x̃t+1)∥2 +

λτx
2µyτy

∥∇yf(x̃t+1, ỹt+1)∥2
]

≤ E
[

1

2µx
∥∇g(x̃t+1)∥2 +

1

48µy
∥∇yf(x̃t+1, ỹt+1)∥2

]
≤ E

[
1

µx
∥∇xf(x̃t+1, yt+1)∥2 +

1

µx
∥∇xf(x̃t+1, ỹt+1)−∇g(x̃t+1)∥2

]
+ E

[
1

48µy
∥∇yf(x̃t+1, ỹt+1)∥2

]
≤ E

[
1

µx
∥∇xf(x̃t+1, ỹt+1)∥2 +

(
1

48µy
+

L2

µxµ2
y

)
∥∇yf(x̃t+1, ỹt+1)∥2

]
≤ E

[
1

µx
∥∇xf(x̃t+1, ỹt+1)∥2 +

33L2

32µxµ2
y

∥∇yf(x̃t+1, ỹt+1)∥2
]

≤ 33

µx
E
[
∥∇xf(x̃t+1, ỹt+1)∥2 + λ∥∇yf(x̃t+1, ỹt+1)∥2

]
≤ 2112

µxτxK
E
[
Ãt +

λτx
τy

B̃t

]
≤ 1

2
E
[
Ãt +

λτx
τy

B̃t

]
.
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Above, in the first inequality we use the definition of PL condition; in the the second we plug in
λτx/τy = 1/24; the third one is due to Young’s inequality; the fourth one follows from Lemma A.7;
the fifth and sixth ones are both trivial; in the second last one we use Lemma D.2 and in the last one
we plug in our choice of K. Therefore, to find x̂ such that g(x̂)−g(x∗) ≤ ϵ and g(x̂)−f(x̂, ŷ) ≤ 24ϵ
in expectation, the complexity is

O
(
(n+MK) log

(
1

ϵ

))
= O

(
(n+K

√
n) log

(
1

ϵ

))
= O

(
(n+

√
nκxκ

2
y) log

(
1

ϵ

))

E Proof of Section 5

In this section, we present the convergence results of AccSPIDER-GDA when γ = 0, now Fk can be
written as:

min
x∈Rdx

max
y∈Rdy

Fk(x, y) ≜ f(x, y) +
β

2
∥x− xk∥2.

First of all, we take a closer look at Fk. The regularization term β transforms the condition number
of the problem.

Lemma E.1. Given β > L, the sub-problem Fk(x, y) is (β − L)-PL in x , µy-PL in y and (β + L)-
smooth if f satisfies L-smmoth and µx-PL in x.

Strong duality also holds for sub-problem Fk(x, y) since its saddle point exist.

Lemma E.2. Under Assumption 6.1 and 5.1, given β > L, the sub-problem Fk(x, y) has a unique
saddle point.

Proof. Denote Gk(x) ≜ maxy∈Rdy Fk(x, y). According to Assumption 5.1, the inner problem
maxy∈Rdy Fk(x, y) has a unique solution y∗(x).

Additionally, it is clear that Fk(x, y) is strongly convex in x for β > L. Hence, we know that Gk(x)
is strongly convex since taking the supremum is an operation that preserve (strong) convexity and .
In this case, the outer problem minx∈Rdx Gk(x) also has a unique solution x∗.

Above, the point (x∗, y∗) is a unique global minimax point of Fk(x, y). And the global minimax
point of Fk(x, y) is equivalent to a saddle point of Fk(x, y) by Lemma A.1.

From now on, throughout this section, we always (x̃k, ỹk) be the saddle point of Fk−1 for all k ≥ 1.

Next, we study the error brought by the inexact solution to the sub-problem. The idea is that when
we can controls the precision of Fk with a global constant δ, then the algorithm will be close to the
exact proximal point algorithm. We omit the notation of expectation when no ambiguity arises.

Lemma E.3. Suppose xk+1 satisfies E[∥xk+1 − x̃k+1∥2] ≤ δ for any saddle point (x̃k+1, ỹk+1) of
Fk, then it holds that

E [Fk(xk+1, ỹk+1)− Fk(x̃k+1, ỹk+1)] ≤
(β + L)2δ

2(β − L)
.

Proof. Lemma A.2 tells us that Fk(x̃k+1, ỹk+1) = minx∈Rdx Fk(x, ỹk+1), thus, we have

E[Fk(xk+1, ỹk+1)− Fk(x̃k+1, ỹk+1)]

= E[Fk(xk+1, ỹk+1)− min
x∈Rdx

Fk(x, ỹk+1)]

≤ 1

2(β − L)
E[∥∇xFk(xk+1, ỹk+1)∥2]

=
1

2(β − L)
E[∥∇xFk(xk+1, ỹk+1)−∇xFk(x̃k+1, ỹk+1)∥2]

29



≤ (β + L)2

2(β − L)
E[∥xk+1 − x̃k+1∥2]

≤ (β + L)2δ

2(β − L)
,

where the first and third inequalities rely on Lemma E.1 that Fk(x, y) is (β − L)-PL in x and
(β + L)-smooth and the second equality is dependent on the fact that ∇xFk(x̃k+1, ỹk+1) = 0.

We can see that when we can find a δ-saddle point of Fk, then we can approximate g(x) well.

Lemma E.4. Suppose xk+1 satisfies E∥xk+1 − x̃k+1∥2 ≤ δ for any saddle point (x̃k+1, ỹk+1) of
Fk, then it holds that

E|g(xk+1)− g(x̃k+1)| ≤
(
(β + L)2

2(β − L)
+

β

2

)
δ.

Proof. By definition we know the relationship between g(x) and Fk(x, y) is given by:

g(x) = max
y∈Rdy

f(x, y) = Fk(x, ỹk+1)−
β

2
∥x− xk∥2.

Thus,

E|g(xk+1)− g(x̃k+1)|

= E
∣∣∣∣(Fk(xk+1, ỹk+1)−

β

2
∥xk+1 − xk∥2

)
−
(
Fk(x̃k+1, ỹk+1)−

β

2
∥x̃k+1 − xk∥2

)∣∣∣∣
≤ E

[
Fk(xk+1, ỹk+1)− Fk(x̃k+1, ỹk+1) +

β

2
∥xk+1 − x̃k+1∥2

]
≤
(
(β + L)2

2(β − L)
+

β

2

)
δ,

where the second inequality follows from the triangle inequality of distance and the third inequality
follows from Lemma E.3.

When the sub-problem is solved precisely enough, we can show that g(x) decreases in each iteration.

Lemma E.5. Suppose xk+1 satisfies E∥xk+1 − x̃k+1∥2 ≤ δ for any saddle point (x̃k+1, ỹk+1) of
Fk, then it holds that

E[g(xk+1)− g(x∗)] ≤ E
[
g(xk)− g(x∗)− β

2
∥xk+1 − xk∥2 +

(β + L)2δ

2(β − L)

]
,

Proof. Consider the following inequalities:

E[g(xk+1)− g(x∗)] = E
[
Fk(xk+1, ỹk+1)− g(x∗)− β

2
∥xk+1 − xk∥2

]
≤ E

[
Fk(x̃k+1, ỹk+1)− g(x∗)− β

2
∥xk+1 − xk∥2 +

(β + L)2δ

2(β − L)

]
≤ E

[
g(xk)− g(x∗)− β

2
∥xk+1 − xk∥2 +

(β + L)2δ

2(β − L)

]
,

where in the first inequality we use Lemma E.3, the second inequality is because we know it holds
that Fk(x̃k+1, ỹk+1) ≤ Fk(xk, ỹk+1) = g(xk).

Now, we consider how g(xk) converge to g(x∗) when precision δ is obtained.
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Lemma E.6. Suppose xk+1 satisfies E∥xk+1 − x̃k+1∥2 ≤ δ for any saddle point (x̃k+1, ỹk+1) of
Fk, then it holds that

E[g(xk+1)− g(x∗)] ≤ E
[
g(xk)− g(x∗)− 1

4β
∥∇g(x̃k+1)∥2 +

(
(β + L)2

2(β − L)
+

β

2

)
δ

]
.

Proof. The proof is based on Lemma E.5

E[g(xk+1)− g(x∗)] ≤ E
[
g(xk)− g(x∗)− β

2
∥xk+1 − xk∥2 +

(β + L)2δ

2(β − L)

]
≤ E

[
g(xk)− g(x∗)− β

4
∥x̃k+1 − xk∥2 +

β

2
∥xk+1 − x̃k+1∥2 +

(β + L)2δ

2(β − L)

]
= E

[
g(xk)− g(x∗)− 1

4β
∥∇g(x̃k+1)∥2 +

(
(β + L)2

2(β − L)
+

β

2

)
δ

]
,

where the second inequality relies on the fact that −∥a− b∥2 ≤ 1
2∥a∥

2 + ∥b∥2. In the last equality
we use the fact that (x̃k+1, ỹk+1) is also a stationary point by Lemma A.1, which implies that
∇g(x̃k+1) + β(x̃k+1 − xk) = 0.

E.1 Proof of Lemma 5.1

Proof. Noting that g(x) satisfies µx-PL by Lemma A.5 and using the result of Lemma E.6, we can
see that

E[g(xk+1)− g(x∗)] ≤ E
[
g(xk)− g(x∗)− 1

4β
∥∇g(x̃k+1)∥2 +

(
(β + L)2

2(β − L)
+

β

2

)
δ

]
≤ E

[
g(xk)− g(x∗)− µx

2β
(g(x̃k+1)− g(x∗)) +

(
(β + L)2

2(β − L)
+

β

2

)
δ

]
.

Using Lemma E.4, we obtain

E[g(xk+1)− g(x∗)] ≤ E
[
g(xk)− g(x∗)− µx

2β
(g(xk+1)− g(x∗)) +

(
1 +

µx

2β

)(
(β + L)2

2(β − L)
+

β

2

)
δ

]
.

Rearranging,

E[g(xk+1)− g(x∗)] ≤ E
[(

1− µx

2β + µx

)
(g(xk)− g(x∗)) +

(
(β + L)2

2(β − L)
+

β

2

)
δ

]
.

Let q ≜ µx/(2β + µx) and telescope, then we can obtain that

E[g(xk)− g(x∗)] ≤ (1− q)k(g(x0)− g(x∗)) +

(
(β + L)2

2(β − L)
+

β

2

)
δ

k−1∑
i=0

(1− q)i

≤ (1− q)k(g(x0)− g(x∗)) +

(
(β + L)2

2(β − L)
+

β

2

)
δ

q
.

Plugging in β, δ yields the desired statement,

Now we show that how we can control the precision of the sub-problem δ recursively to satisfy the
condition of Lemma 5.1 that E[∥xk − x̃k∥2 + ∥yk − ỹk∥2] ≤ δ holds for all k ≥ 1.

Before that, we need the following lemma showing that when ∥xk −xk+1∥ is small, then the distance
between the saddle points of Fk and Fk+1 will be also small. Denote (x̃k, ỹk) be a saddle point of
sub-problem Fk−1 and (x̃k+1, ỹk+1) be a saddle point of sub-problem Fk.
Lemma E.7. If we let β > L, then it holds true that

∥x̃k+1 − x̃k∥2 + ∥ỹk+1 − ỹk∥2 ≤ 4β2

(β − L)µy
∥xk − xk−1∥2.
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Proof. Noting that Fk−1 is (β − L)-PL in x and µy-PL in y by Lemma E.1 and using the quadratic
growth condition by Lemma A.4, we have

β − L

2
∥x̃k+1 − x̃k∥2 ≤ Fk−1(x̃k+1, ỹk)− min

x∈Rdx
Fk−1(x, ỹk) = Fk−1(x̃k+1, ỹk)− Fk−1(x̃k, ỹk),

µy

2
∥ỹk+1 − ỹk∥2 ≤ max

y∈Rdy
Fk−1(x̃k, y)− Fk−1(x̃k, ỹk+1) = Fk−1(x̃k, ỹk)− Fk−1(x̃k, ỹk+1).

Combining the above two inequalities, we can see that

β − L

2
∥x̃k+1 − x̃k∥2 +

µy

2
∥ỹk+1 − ỹk∥2

≤ Fk−1(x̃k+1, ỹk)− Fk−1(x̃k, ỹk+1)

= Fk(x̃k+1, ỹk) +
β

2
∥x̃k+1 − xk−1∥2 −

β

2
∥x̃k+1 − xk∥2

− Fk(x̃k, ỹk+1)−
β

2
∥x̃k − xk−1∥2 +

β

2
∥x̃k − xk∥2

≤ β

2
∥x̃k+1 − xk−1∥2 −

β

2
∥x̃k+1 − xk∥2 −

β

2
∥x̃k − xk−1∥2 +

β

2
∥x̃k − xk∥2

= β(x̃k+1 − x̃k)
⊤(xk − xk−1)

≤ β − L

4
∥x̃k+1 − x̃k∥2 +

β2

β − L
∥xk − xk−1∥2,

where the second inequality is based on Fk(x̃k+1, ỹk) ≤ Fk(x̃k+1, ỹk+1) ≤ Fk(x̃k, ỹk+1) by
(x̃k+1, ỹk+1) is a saddle point of Fk. In the last inequality we use Young’s inequality. Rearranging,

β − L

4
∥x̃k+1 − x̃k∥2 +

µy

2
∥ỹk+1 − ỹk∥2 ≤ β2

β − L
∥xk − xk−1∥2.

Since we have (β − L)/µy ≥ L/4 ≥ µy/4, we can obtain that

∥x̃k+1 − x̃k∥2 + ∥ỹk+1 − ỹk∥2 ≤ 4β2

(β − L)µy
∥xk − xk−1∥2,

An additional bound is for the use of the base case, i.e. k = 0.
Lemma E.8. If we let β > L, then it holds true that

∥x0 − x̃1∥2 + ∥y0 − ỹ1∥2 ≤ 2

µy
(g(x0)− g(x∗))

Proof. Note that F1 satisfies (β−L)-PL in x and µy-PL in y. We can bound ∥x0− x̃1∥2+∥y0− ỹ1∥2
as follows:

β − L

2
∥x0 − x̃1∥2 ≤ F0(x0, ỹ1)− min

x∈Rdx
F0(x, ỹ1) = F0(x0, x̃1)− F0(x̃1, ỹ1),

µy

2
∥y0 − ỹ1∥2 ≤ max

y∈Rdy
F0(x̃1, y)− F0(x̃1, y0) = F0(x̃1, ỹ1)− F0(x̃1, y0).

Combining the above two inequalities, we have

β − L

2
∥x0 − x̃1∥2 +

µy

2
∥y0 − ỹ1∥2

≤ F0(x0, ỹ1)− F0(x̃1, y0)

= f(x0, ỹ1)− f(x̃1, y0)−
β

2
∥x0 − x̃1∥2

≤ f(x0, ỹ1)− f(x̃1, y0)

≤ max
y∈Rdy

f(x0, y)− min
x∈Rdx

f(x, y0)
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= max
y∈Rdy

f(x0, y)− min
x∈Rdx

max
y∈Rdy

f(x, y) + min
x∈Rdx

max
y∈Rdy

f(x, y)− min
x∈Rdx

f(x, y0)

≤ g(x0)− g(x∗),

where we use the definition of g and the fact that minx∈Rdx maxy∈Rdy f(x, y) ≥ minx∈Rdx f(x, y0)
in the last inequality. Rearranging and noting that β − L ≥ L ≥ µy , we finish the proof.

E.2 The Proof of Lemma 5.2

Proof. Recall we solve the sub-problem:

max
y∈Rdy

min
x∈Rdx

Fk(x, y) = − min
x∈Rdx

max
y∈Rdy

{−Fk(x, y)}.

It is µy-PL in y and L-strongly-convex in x and thus clearly satisfies L-PL in x.

We define Hk(y) = minx∈Rdx
Fk(x, y). By Lemma A.8 and A.5, we know that Hk(y) is also µy-PL

in y and it is 12L-smooth since Fk is 3L-smooth.

According to Theorem 4.1, We know that SPIDER-GDA makes sure

E
[
Hk+1(ỹk+1)−Hk+1(yk+1) +

1

24
(Fk+1(xk+1, yk+1)−Hk+1(yk+1))

]
︸ ︷︷ ︸

LHS

≤ δk E
[
Hk+1(ỹk+1)−Hk+1(yk) +

1

24
(Fk+1(xk, yk)−Hk+1(yk))

]
︸ ︷︷ ︸

RHS

.

For the left hand side (LHS), we bound it according to

E∥yk+1 − ỹk+1∥2 ≤ 2

µy
E[Hk+1(ỹk+1)−Hk+1(yk+1)] (29)

(where we use the µy-PL condition in y) and

E∥xk+1 − x̃k+1∥2

≤ 2E[∥xk+1 − x∗(yk+1)∥2 + ∥x∗(yk+1)− x̃k+1∥2]
= 2E[∥xk+1 − x∗(yk+1)∥2 + ∥x∗(yk+1)− x∗(ỹk+1)∥2]
≤ 2E[∥xk+1 − x∗(yk+1)∥2 + 18E[∥yk+1 − ỹk+1∥2]

≤ 4

L
E[Fk+1(xk+1, yk+1)−Hk+1(yk+1)] +

36

µy
E[Hk+1(ỹk+1)−Hk+1(yk+1))],

(30)

where we use Lemma A.9 in the second last inequality and the PL condition of Fk(x, y) and Hk(y)
in the last one. Summing up (29) and (30), we have

E[∥yk+1 − ỹk+1∥2 + ∥xk+1 − x̃k+1∥2]

≤ 4

L
E[Fk+1(xk+1, yk+1)−Hk+1(yk+1)] +

38

µy
E[Hk+1(ỹk+1)−Hk+1(yk+1))]

≤ 96

µy
× LHS

≤ 96δk
µy

× RHS.

For the right hand side (RHS), we bound it using

RHS = Hk+1(ỹk+1)−Hk+1(yk) +
1

24
(Fk+1(xk, yk)−Hk+1(yk))

≤ 1

2µy
∥∇Hk+1(yk)∥2 +

1

48L
∥∇xFk+1(xk, yk)∥2
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=
1

2µy
∥∇Hk+1(yk)−∇Hk+1(ỹk+1)∥2 +

1

48L
∥∇xFk+1(xk, yk)−∇xFk+1(x

∗(yk), yk)∥2

≤ 72L2

µy
∥yk − ỹk+1∥2 +

3L

16
∥xk − x∗(yk)∥2

≤ 72L2

µy
∥yk − ỹk+1∥2 +

3L

8
∥xk − x̃k+1∥2 +

3L

8
∥x∗(ỹk+1)− x∗(yk)∥2

≤ 72L2

µy
∥yk − ỹk+1∥2 +

L

24
∥xk − x̃k+1∥2 +

27L

8
∥yk − ỹk+1∥2.

Above, the first inequality is due to the PL condition of Fk(x, y) and Hk(y); the second inequality
follows from Hk(y) is 12L-smooth and Fk(x, y) is 3L-smooth; the third one directly follows from
the Young’s inequality; the fourth inequality uses Lemma A.9 and the fact that Fk(x, y) is L-PL in x
and 3L-smooth.

Therefore, we obtain

E[∥yk+1 − ỹk+1∥2 + ∥xk+1 − x̃k+1∥2] ≤ δ′k(∥yk − ỹk+1∥2 + ∥xk − x̃k+1∥2),

where

δ′k = 7236κ2
yδk. (31)

Now it is sufficient to control δ recursively.
Lemma E.9. If we solve each sub-problem Fk with precision δk as defined in Theorem 5.1, then for
all k it holds true that

E∥xk − x̃k∥2 + ∥yk − ỹk∥2 ≤ δ.

Proof. We prove by induction. Suppose we the following statement holds true for all 1 ≤ k′ ≤ k
that we have

E∥xk′ − x̃k′∥2 + ∥yk′ − ỹk′∥2 ≤ δ,

Then, by Lemma 5.2 we have

E[∥xk+1 − x̃k+1∥2 + ∥yk+1 − ỹk+1∥2]
≤ δ′k(∥xk − x̃k+1∥2 + ∥yk − ỹk+1∥2)
≤ 2δ′k(∥xk − x̃k∥2 + ∥yk − ỹk∥2) + 2δ′k(∥x̃k+1 − x̃k∥2 + ∥ỹk+1 − ỹk∥2)

≤ 2δ′kδ +
8β2δ′k

(β − L)µy
∥xk − xk−1∥2,

where δ′k follows from (31) and we use the induction hypothesis and Lemma E.7 in the third inequality.
Note that our choice of δk and the relationship between δk and δ′k satisfy

max

{
2δ′kδ,

8β2δ′k∥xk − xk−1∥2

(β − L)µy

}
≤ δ

2
.

Therefore, we can see that

E[∥xk+1 − x̃k+1∥2 + ∥yk+1 − ỹk+1∥2] ≤ δ,

which completes the induction from k to k + 1. For the induction base, using Lemma E.8 we have

E[∥x1 − x̃1∥2 + ∥y1 − ỹ1∥2] ≤ δ′0(∥x0 − x̃1∥2 + ∥y0 − ỹ1∥2)

≤ 2δ′0
µy

(g(x0)− g∗)

≤ δ.
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E.3 Proof of Theorem 5.1

Combing Lemma 5.1, Lemma 5.2 and Lemma E.9, we can easily prove Theorem 5.1.

Proof. Note that each sub-problem Fk is 3L-smooth, L-PL in x and µy-PL in y for β = 2L. Now if
we choose

K = ⌈((2β + µx)/µx) log(2/ϵ)⌉ = O(κx log(1/ϵ)),

then by Lemma 5.1 it is sufficient to guarantee that E[g(xK) − g(x∗)] ≤ ϵ, while solving each
sub-problem Fk requires no more than Tk ≤ a(n +

√
nκy) log(κy/δk) first-order oracle calls in

expectation by Lemma 5.2, where a is an independent positive constant.

Now we telescope the inequality in Lemma E.5 and we can obtain

K−1∑
k=0

E
[
∥xk+1 − xk∥2

]
≤ 2

β
(g(x0)− g∗) +

(β + L)2δ

β(β − L)
. (32)

Note that we have

1

δk
≤ ω ×max

{
4,

16κy∥xk − xk−1∥2

δ

}
≤ ω ×

(
4 +

16κy∥xk − xk−1∥2

δ

)
,

by the choice of δk for all k ≥ 1 (5), where ω = 7236κ2
y . Denote C = a(n+

√
nκ), then

K∑
k=0

Tk

= T0 +

K∑
k=1

Tk

≤ C log

(
ω × 2κy(g(x0)− g∗)

δµy

)
+ C

K∑
k=1

log

(
κy

δk

)

≤ C log

(
ω × 2κy(g(x0)− g∗)

δµy

)
+ C

K∑
k=1

log

(
ω ×

(
4κy +

16κ2
y∥xk − xk−1∥2

δ

))

≤ C log

(
ω × 2κy(g(x0)− g∗)

δµy

)
+ CK log

(
ω ×

K∑
k=1

(
4κy +

16κ2
y∥xk − xk−1∥2

δ

))

= C log

(
ω × 2κy(g(x0)− g∗)

δµy

)
+ CK log

(
ω ×

K−1∑
k=0

(
4κy +

16κ2
y∥xk − xk−1∥2

δ

))
.

(33)

Above, the second inequality relies on the choice of δk and the third inequality is due to the fact that
(
∏n

i=1 xi)
1/n ≤ 1

n

∑n
i=1 xi, which implies that

∑n
i=1 log xi ≤ n log

(
1
n

∑n
i=1 xi

)
.

Lastly, we use (32) and notice that δ (3) is dependent on ϵ, κx and ω is dependent on κy to show the
SFO complexity of the order

O((nκx +
√
nκxκy) log(1/ϵ) log(κxκy/ϵ)).

F Proof of Section 6

First of all, we show the convergence of SVRG-GDA and SPIDER-GDA under one-sided PL
condition as studied in Section 6. We reuse the lemmas under two-sided PL condition. It is worth
noticing that we can discard the outermost loop with respect to restart strategy for both SVRG-GDA
and SPIDER-GDA, i.e we set T = 1 in this setting.
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F.1 SVRG-GDA under one-sided PL condition

For SVRG-GDA, we have the following theorem.

Theorem F.1. Under Assumption 6.1 and 3.1, let T = 1 and M, τx, τy, λ defined in Lemma C.1;
α = 2/3, SM = ⌈8/(τxϵ2)⌉. Algorithm 2 can guarantee the output x̂ to satisfy ∥∇g(x̂)∥2 ≤ ϵ in
expectation with no more than O(n+ n2/3κ2

yLϵ
−2) stochastic first-order oracle calls.

Proof. Telescoping for k = 0, . . . ,M − 1 and s = 0, . . . , S − 1 for the inequality in Lemma C.1:

1

SM

S−1∑
s=0

M−1∑
k=0

E[∥∇g(xs,k)∥2] ≤
8V0,0

τxSM
.

Note that we have M = O(n3α/2) and if we let SM = ⌈8/(τxϵ2)⌉, then S = O(Lκ2
y/(n

α/2ϵ2)),
so the complexity is

O(n+ SM + Sn) = O

(
n+

κ2
yL(n

α + n1−α/2)

ϵ2

)
.

Plugging in α = 2/3 yields the desired complexity.

F.2 Proof of Theorem 6.1

Similarly to SVRG-GDA, we can also analyze the convergence of SPIDER-GDA.

Proof. It is almost direct result of Lemma D.2. Denote (x̂, ŷ) the output, then

E∥∇g(x̂)∥2 ≤ 2E
[
∥∇xf(x̂, ŷ)∥2 + ∥∇xf(x̂, ŷ)−∇g(x̂)∥2

]
≤ 2E

[
∥∇xf(x̂, ŷ)∥2 +

L2

µ2
y

∥∇yf(x̂, ŷ)∥2
]

≤ 2E[∥∇xf(x̂, ŷ)∥2 + λ∥∇yf(x̂, ŷ)∥2]

≤ 32

τxK
E
[
Ã0 + B̃0

]
,

where the first inequality follows from Young’s inequality; the second one relies on Lemma A.7; the
third one uses the definition of λ and the last one uses Lemma D.2.

Since τx = O(1/(κ2
yL)) and M = B =

√
n, the complexity becomes:

O
(
n+

√
n

τxϵ2

)
= O

(
n+

√
nκ2

yL

ϵ2

)
.

Above, we have show that the complexity of SVRG-GDA is O(n+n2/3κ2
yLϵ

−2) and the complexity
of SPIDER-GDA is O(n+

√
nκ2

yLϵ
−2) 6. Thus, we can come to the conclusion that SPIDER-GDA

strictly outperforms SVRG-GDA under both two-sided and one-sided PL conditions. In the rest of
this section, we mainly focus on the complexity of AccSPIDER-GDA under one-sided PL condition.

In the following lemma, we show that AccSPIDER-GDA converge when we can control the precision
of solving each sub-problem with a global constant δ.

6To be more precise, our theorem only suits the case when 1/(κ2
yLϵ

2) >
√
n for SPIDER-GDA. If not, we

can directly set K = 2M to achieve the same convergence result.
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F.3 Proof of Lemma 6.1

Proof. Similar to the proof under two-sided PL condition, we begin our proof with Lemma E.6. We
can see that

E[g(xk+1)] ≤ E
[
g(xk)−

1

4β
∥∇g(x̃k+1)∥2 +

(
(β + L)2

2(β − L)
+

β

2

)
δ

]
≤ E

[
g(xk)−

1

8β
∥∇g(xk+1)∥2

]
+ E

[
1

4β
∥∇g(x̃k+1)−∇g(xk+1)∥2 +

(
(β + L)2

2(β − L)
+

β

2

)
δ

]
≤ E

[
g(xk)−

1

8β
∥∇g(xk+1)∥2

]
+ E

[
L2

2µyβ
∥x̃k+1 − xk+1∥2 +

(
(β + L)2

2(β − L)
+

β

2

)
δ

]
≤ E

[
g(xk)−

1

8β
∥∇g(xk+1)∥2 +

(
L2

2µyβ
+

(β + L)2

2(β − L)
+

β

2

)
δ

]
,

where we use the fact that −∥a− b∥2 ≤ 1
2∥a∥

2 + ∥b∥2 in the second inequality, g(x) is (2L2/µy)-
smooth in the third one and ∥x̃k+1−xk+1∥2 ≤ δ in the last one. Telescoping for k = 0, 1, 2, ...K−1,
we can see that

1

8β

K−1∑
k=0

E
[
∥∇g(xk)∥2

]
≤ E

[
g(x0)− g(xK) +

(
L2

2µyβ
+

(β + L)2

2(β − L)
+

β

2

)
Kδ

]
≤ E

[
g(x0)− g∗ +

(
L2

2µyβ
+

(β + L)2

2(β − L)
+

β

2

)
Kδ

]
.

Divide both sides by K, then

1

K

K−1∑
k=0

E
[
∥∇g(xk)∥2

]
≤ E

[
8β(g(x0)− g∗)

K
+ 8β

(
L2

2µyβ
+

(β + L)2

2(β − L)
+

β

2

)
δ

]
.

Plugging the choice of δ yields the desired inequality.

F.4 Proof of Theorem 6.2

Combing Lemma 6.1, Lemma 5.2 and Lemma E.9, we can easily prove Theorem 6.2. We remark
that both the proof Lemma 5.2 and Lemma E.9 only uses the PL property in the direction of y, so
they can both be directly applied to the one-sided PL case.

Proof. Note that each sub-problem Fk is 3L-smooth, L-PL in x and µy-PL in y for β = 2L. Now if
we choose

K =
⌈
16β(g(x0)− g∗)/ϵ2

⌉
= O(Lϵ−2),

then by Lemma 6.1 it is sufficient to guarantee that E[∥g(x̂)∥] ≤ ϵ, while solving each sub-problem
Fk requires no more than Tk ≤ a(n+

√
nκy) log(κy/δk) first-order oracle calls in expectation by

Lemma 5.2, where a is an independent positive constant.

Therefore, using (32), (33) and noticing that δ (6) is dependent on ϵ, κy and ω in (33) is dependent on
κy to show the SFO complexity of the order

O((n+
√
nκy)Lϵ

−2 log(κy/ϵ)).
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