
Appendix

A On sufficient scattering condition for source vectors

The determinant maximization criterion used in matrix factorization frameworks is based on the
assumption that the latent factors are sufficiently scattered in their presumed domain to somewhat
reflect its shape. Both simplex structure matrix factorization and polytopic matrix factorization
frameworks propose precise sufficient scattering conditions for the latent vectors to guarantee their
identifiability under the determinant maximization criterion. In this section, we briefly summarize
these conditions.

(a) The unit simplex
� and the second or-
der cone C.

(b) An illustration of the suf-
ficient scattering condition
for � samples.

(c) The polytope
B1,+ and its
MVIE EB1 .

(d) An illus-
tration of the
sufficient scatter-
ing condition for
B1,+ samples.

Figure 5: The geometry of sufficient scattering conditions for the unit simplex and polytopes
illustrated in three-dimensions.

Sufficient scattering condition for unit simplex sources: An earlier latent factor identfiability assump-
tion for SSMF required the inclusion of the vertices of the unit simplex in the generative latent vector
samples [53]. This, so-called separability or local dominance, assumption was later replaced by a
weaker sufficiently scattered condition (SSC) in [55]. This new condition uses the second order cone

C = {s |1
T
s �

p
n� 1ksk2, s 2 Rn

},

which is illustrated in Figure 5.(a) together with the unit simplex �, as a reference object for defining
SSC. The SSC proposed in [55] for SSMF requires that conic hull of the simplex samples contains C,
i.e.,

cone({s1, s2, . . . , st}) ◆ C.

Let A� represent the affine hull of �. Figure 5.(b) illustrates this requirement restricted to A�: the
red triangle is the boundary of �, the blue dots are sufficiently scattered samples from �, the black
circle and the blue polyhedral region are the boundary of C and the conic hull of sufficiently scattered
samples from � restricted to A�, respectively. There is an additional requirement that the boundaries
of � and cone({s1, s2, . . . , st}) \A� intersect the boundary of C \A� at the identical points.

Sufficient scattering condition for polytopic sources: The reference [26] offers a similar SSC for
polytopic sources for which the reference object for SSC is the maximum volume inscribed ellipsoid
(MVIE), represented by EP of the polytope P . Figure 5.(c) illustrates MVIE (the black ellipsoid)
for the polytope selection P = B1,+ whose edges are the red lines. The SSC for polytopic sources
require that convex hull of the polytopic samples contain the polytope’s MVIE,i.e.,

conv({s1, s2, . . . , st}) ◆ EP .

This condition is illustrated in Figure 5.(d), where the dots represent sufficiently scattered samples and
the blue polyhedral region is their convex hull. The SSC in [26] further require that the boundaries of
P and conv({s1, s2, . . . , st}) intersect EP at the identical points.

B Proof of theorem 1

The proof of Theorem 1 relies on the following lemma, which follows from equality constraints (4b)
and (4c):

15

Lemma 1. Given the mixing model in Section 2.2, for sufficiently large sample sizes enabling full

column-rank condition on X(t), the constraints in (4b) and (4c) define an arbitrary linear mapping

between input and output vectors in the form

yi = W(t)xi, i 2 {1, . . . , t}. (A.1)
where W(t) is full-rank.

Proof of Lemma 1. To see the relation between hi and xi, note that mixing relation (2) and equality
constraint (4b) enforces S(t)TAT

AS(t) = H(t)TD1(t)H(t). Defining A = UA⌃AV
T

A
as the

reduced SVD decomposition for A matrix with UA 2 Rm⇥n,⌃A 2 Rn⇥n,VA 2 Rn⇥n, we can
write A

T
A = VA⌃

2
A
V

T

A
. For sufficiently large sample sizes enabling full rank X(t), these imply

hi = D1(t)�1/2
Q

T

1 (t)⌃AV
T

A
si, i 2 {1, . . . , t}, for some real-orthogonal matrix Q1(t). From this

expression, we can also write hi = D1(t)�1/2
Q

T

1 (t)U
T

A
xi = D1(t)�1/2

⇥
T

1 (t)xi, i 2 {1, . . . , t},
where ⇥1(t) = UAQ1(t) 2 Rm⇥n is a matrix with orthonormal columns.

The weighted inner product matching condition in (4c) implies that the output yi’s are related to the
the slack vectors hi’s through the relationship yi = D2(t)�1/2(t)⇥2(t)hi, i 2 {1, . . . , t}, where
⇥2(t) is another real-orthogonal matrix. Consequently yi = D2(t)�1/2

⇥2(t)D1(t)�1/2
⇥

T

1 (t)xi,
i 2 {1, . . . , t}. Here, the multiplier of xi is in the form of a Singular Value Decomposition of a full
rank matrix, i.e., ⇥2(t)D1(t)�1/2

⇥
T

1 (t) which is left multiplied by a full rank diagonal matrix, i.e.,
D2(t)�1/2 . This implies that the equality constraints (4b) and (4c) in conjunction define an arbitrary
linear mapping between input and output vectors, through inner product matching.

Now we can prove Theorem 1.

Proof of Theorem 1. By Lemma 1, yi = W(t)xi, i = 1, . . . t, where W(t) admits the form W(t) =
D2(t)�1/2

⇥2(t)D1(t)�1/2
⇥

T

1 (t). Therefore, using the mixture-source relationship xi = Asi, we
can write yi = G(t)si, where G(t) = W(t)A is the linear mapping relationship between outputs
and sources. Plugging this into maximization objective in (3), we obtain log(det(Y(t)Y(t)T)) =
2 log(| det(G(t))|) + log(det(S(t)S(t)T)).To proceed, we define A = UA⌃AV

T

A
as the reduced

SVD for matrix A to obtain G(t) = D2(t)�1/2
⇥2(t)D1(t)�1/2

⇥1(t)TUA⌃AV
T

A
. Consequently,

2 log(| det(G(t))|) = � log(det(D1))� log(det(D2)) + 2 log(det(⌃A)). As a result, maximizing
the objective in (3) is equivalent to minimizing log(det(D1)) + log(det(D2)) with some addi-
tional constant terms. Since D1 and D2 are diagonal, the equivalent function can be written asP

n

i=1 log(D1,ii(t)) +
P

n

i=1 log(D2,ii(t)), which is the objective function in (4a).

C Derivations

C.1 The simplification of the similarity matching cost functions

In this section, we provide the simplification of the similarity matching cost functions J1 and J2
in Section 5.1, by preserving only the quadratic terms that are relevant to online optimization with
respect to ht and yt.

Using the matrix partitions X (t) = [�X (t� 1) xt] and H(t) = [�H(t� 1) ht], we can
write J1(H(t),D1(t)) more explicitly as

J1(H(t),D1(t))

=
�2

2⌧2

����


�X (t � 1)TX (t � 1) � �H(t � 1)TD1(t)H(t � 1) X (t � 1)Txt � H(t � 1)TD1(t)ht

x
T
t X (t � 1) � h

T
t D1(t)H(t � 1)

kxtk|22�khtk2D1(t)
�

�����
2

F

=
�4

⌧2
kX (t� 1)TX (t� 1)k2

F
+

�4

⌧2
kH(t� 1)TD1(t)H(t� 1)k2

F

�
2�4

⌧2
Tr(H(t� 1)TD1(t)H(t� 1)X (t� 1)TX (t� 1))

+
2�2

⌧2
kx

T

t
X (t� 1)k2

F
+

2�2

⌧2
kh

T

t
D1(t)H(t� 1)k2

F

�
4�2

⌧2
h
T

t
D1(t)H(t� 1)X (t� 1)Txt +

1

⌧2
(kxtk

4 + khtk
4
D1(t)

� 2kxtk
2
khtk

2
D1(t)

).

16

By keeping only the relevant part of this cost function for online optimization with respect to ht, by
scaling with ⌧/�2, and ignoring the small final term, we obtain the effective online cost function
corresponding to J1 as

c1(ht) = 2hT

t
D1MH(t)D1(t)ht � 4hT

t
D1(t)WHX(t)xt,

where

MH(t) =
1

⌧
H(t� 1)H(t� 1)T =

1

⌧

t�1X

k=1

(�2)t�1�k
hkh

T

k
(A.2)

WHX(t) =
1

⌧
H(t� 1)X (t� 1)T =

1

⌧

t�1X

k=1

(�2)t�1�k
hkx

T

k
. (A.3)

If we apply the same procedure to J2(H(t),D2(t),Y(t)):

J2(H(t),D2(t),Y(t))

=
�2

2⌧2

����


�H(t � 1)TH(t � 1) � �Y(t � 1)TD2(t)Y(t � 1) H(t � 1)Tht � Y(t � 1)TD2(t)yt

h
T
t H(t � 1) � y

T
t D2(t)Y(t � 1)

khtk|22�kytk2D2(t)
�

�����
2

F

=
�4

⌧2
kH(t� 1)TH(t� 1)k2

F
+

�4

⌧2
kY(t� 1)TD2(t)Y(t� 1)k2

F

�
2�4

⌧2
Tr(Y(t� 1)TD2(t)Y(t� 1)H(t� 1)TH(t� 1))

+
2�2

⌧2
kh

T

t
H(t� 1)k2

F
+

2�2

⌧2
ky

T

t
D2(t)Y(t� 1)k2

F

�
4�2

⌧2
y
T

t
D2(t)Y(t� 1)H(t� 1)Tht +

1

⌧2
(khtk

4 + kytk
4
D2(t)

� 2khtk
2
kytk

2
D2(t)

).

Similar to J1, we can simplify the part of the J2 cost function that is dependent on ht and yt as

c2(ht,yt) = 2yT

t
D2(t)MY (t)D2(t)yt � 4yT

t
D2(t)WY H(t)ht + 2hT

t
MH(t)ht,

where

WY H(t) =
1

⌧
Y(t� 1)H(t� 1)T =

1

⌧

t�1X

k=1

(�2)t�1�k
ykh

T

k
, (A.4)

MY (t) =
1

⌧
Y(t� 1)Y(t� 1)T =

1

⌧

t�1X

k=1

(�2)t�1�k
yky

T

k
. (A.5)

As a result, we can write the effective online cost function J , corresponding to ht and yt as

C(ht,yt) = �c1(ht) + (1� �)c2(ht,yt). (A.6)

C.2 Derivatives of the WSM cost function

In this section, we provide the expressions for the gradients of the online WSM cost function J in (5)
to be used in the descent algorithm formulation in Section 5.2 and Appendix D. For the gradients
with respect to ht and yt, we use C(ht,yt) in (A.6), which is the simplified version of J , as derived
in Section C.1.

• The (scaled) gradient with respect to ht:

1

4
rhtJ (H(t),D1(t),D2(t),Y(t)) =

1

4
rhtC(ht,yt)

= ((1� �)MH(t) + �D1(t)MH(t)D1(t))ht

��D1(t)WHX(t)xt � (1� �)WY H(t)TD2(t)yt. (A.7)

By applying the decomposition MH(t) = M̄H(t) + �H(t), where

�H(t) = diag(MH11(t),MH22(t), . . . ,MHdd(t)),

17

we can rewrite the gradient expression in (A.7) as
1

4
rhtC(ht,yt) = vt + ((1� �)M̄H(t) + �D1(t)M̄H(t)D1(t))ht

��D1(t)WHX(t)xt � (1� �)WY H(t)TD2(t)yt. (A.8)
In (A.8), we used the substitution,

vt = ((1� �)�H(t) + �D1(t)�H(t)D1(t)))ht. (A.9)
• The gradient with respect to yt:

1

4
rytC(ht,yt) = (1� �)(�D2(t)WY H(t)ht +D2(t)MY (t)D2(t)yt).

Note that, since D2(t) is positive,

�
1

4(1� �)
D2(t)

�1
rytJ (ht,yt) = WY H(t)ht �MY (t)D2(t)yt (A.10)

is a descent direction. Furthermore, by decomposing MY (t) = M̄Y (t) + �Y (t), where
�Y (t) = diag(MY 11(t),MY 22(t), . . . ,MY dd(t)),

we can rewrite the the descent direction in (A.10) as

�
1

4(1� �)
D2(t)

�1
rytC(ht,yt) = �ut +WY H(t)ht � M̄Y (t)D2(t)yt, (A.11)

where we substituted
ut = �Y (t)D2(t)yt. (A.12)

• The derivative with respect to D1,ii(t):
@J (ht,yt,D1(t),D2(t))

@D1,ii(t)

= �SM�Tr((H(t)TEiiH(t))T (H(t)TD1(t)H(t)�X (t)TX (t))) +
1� �SM

D1,ii(t)

= �SM�Tr(H(t)T
i,:H(t)i,:(H(t)TD1(t)H(t)�X (t)TX (t))) +

1� �SM

D1,ii(t)

= �SM�(H(t)i,:H(t)TD1(t)H(t)H(t)T
i,: �H(t)i,:X (t)TX (t))H(t)T

i,:) +
1� �SM

D1,ii(t)

= �SM�(kMHi,:k
2
D1(t)

� kWHXi,:k
2
2) +

1� �SM

D1,ii(t)
. (A.13)

• The derivative with respect to D2,ii(t):
@J (ht,yt,D1(t),D2(t))

@D2,ii(t)

= �SM (1� �)Tr((Y(t)TEiiY(t))T (Y(t)TD2(t)Y(t)�H(t)TH(t))) +
1� �SM

D2,ii(t)

= �SM (1� �)Tr(Y(t)T
i,:Y(t)i,:(Y(t)TD2(t)Y(t)�H(t)TH(t))) +

1� �SM

D2,ii(t)

= �SM (1� �)(Y(t)i,:Y(t)TD2(t)Y(t)Y(t)T
i,: �Y(t)i,:H(t)TH(t))Y(t)T

i,:) +
1� �SM

D2,ii(t)

= �SM (1� �)(kMY i,:k
2
D2(t)

� kWY Hi,:k
2
2) +

1� �SM

D2,ii(t)
. (A.14)

D Det-max WSM neural networks for example source domains

The proposed Det-Max WSM framework is applicable to infinitely many source domains correspond-
ing to different assumptions on the sources. In this section, we provide derivations and illustrations
of WSM-based Det-Max neural networks for some selected source domains.

18

D.1 Anti-sparse sources

Section 5.2 covers the derivation of the network dynamics and the learning rules for antisparse
sources, i.e., the source domain selection of P = B1. If we summarize the dynamics equations
obtained:

Update dynamics for the hidden layer ht:

dv(⌧)

d⌧
= �v(⌧)� �SM [((1� �)M̄H(t) + �D1(t)M̄H(t)D1(t))h(⌧)

+�D1(t)WHX(t)x(⌧) + (1� �)WY H(t)TD2(t)y(⌧)]

ht,i(⌧) = �A

vi(⌧)

�SM�Hii(t)((1� �) + �D1,ii(t)
2)

!
for i = 1, . . . n.

where �A(·) is the clipping nonlinearity with level A.

Update dynamics for the output yt:

du(⌧)

d⌧
= �u(⌧) +WY H(t)h(⌧)� M̄Y (t)D2(t)y(⌧)

yt,i(⌧) = �1

✓
ui(⌧)

�Y ii(t)D2,ii(t)

◆
, for i = 1, . . . n,

Figure 6 shows the corresponding two-layer neural network.

Feedback Hebbian

Recurrent Anti-Hebbian

Feedforward Hebbian

Figure 6: WSM Det-Max neural network for antisparse sources (P = B1).

D.2 Nonnegative anti-sparse sources

For the case of nonnegative anti-sparse sources, the corresponding network is essentially the same as
the antisparse case in Appendix D.1. The only difference is that the clipping activation functions at
the output layer are replaced with nonnegative clipping function �+(x) illustrated in Figure 7.

As a result, we can write the network dynamics corresponding to the nonnegative anti-sparse case as

Update dynamics for the hidden layer ht:

dv(⌧)

d⌧
= �v(⌧)� �SM [((1� �)M̄H(t) + �D1(t)M̄H(t)D1(t))h(⌧)

+�D1(t)WHX(t)x(⌧) + (1� �)WY H(t)TD2(t)y(⌧)]

ht,i(⌧) = �A

vi(⌧)

�SM�Hii(t)((1� �) + �D1,ii(t)
2)

!
for i = 1, . . . n,

19

Figure 7: Nonnegative clipping function for elementwise projection to B1,+.

Update dynamics for the output yt:

du(⌧)

d⌧
= �u(⌧) +WY H(t)h(⌧)� M̄Y (t)D2(t)y(⌧)

yt,i(⌧) = �1

✓
ui(⌧)

�Y ii(t)D2,ii(t)

◆
, for i = 1, . . . n.

The network corresponding to nonnegative anti-sparse sources is shown in Figure 8.

Feedback Hebbian

Recurrent Anti-Hebbian

Feedforward Hebbian

Figure 8: WSM Det-Max neural network for nonnegative anti-sparse sources (P = B1,+).

D.3 Nonnegative sparse sources

For nonnegative sparse sources, i.e., P = B1,+, we consider the following optimization setting:

minimize
ht,yt

�c1(ht) + (1� �)c2(ht,yt)

subject to kytk1  1, yt � 0 (A.15)

for which the Lagrangian based reformulation can be written as

maximize
�1�0

minimize
ht,yt

�c1(ht) + (1� �)c2(ht,yt) + �1(kytk1 � 1)

The updates for ht, gain variables D1,ii, D2,ii and the synaptic weights follow the equations provided
in Section 5.2.

For the output component yt, the corresponding cost function is an `1 regularized quadratic cost
function. Following the primal-dual approach in [61], we can obtain the dynamic equations for output
update as

du(⌧)

d⌧
= �u(⌧) + �SM (1� �)[WY H(t)h(⌧)� M̄Y (t)D2(t)y(⌧)],

yt,i(⌧) = ReLU
✓

ui(⌧)

�SM (1� �)�Y ii(t)D2,ii(t)
� �1(⌧)

◆
, for i = 1, . . . n,

20

where ReLU(x,�1) is the rectified-linear unit mapping defined by ReLU(x) =

⇢
x x > 0,
0 otherwise .

Based on the dual maximization, the Lagrangian variable �1(⌧) is updated by

da(⌧)

d⌧
= �a(⌧) +

nX

k=0

yt,k(⌧)� 1 + �1(⌧), �1(⌧) = ReLU(a(⌧)). (A.16)

According to the expressions obtained above, in addition to the hidden layer and the output layer
neurons, there is an additional neuron corresponding to the Lagrangian variable �1 of whose dynamics
is governed by (A.16). The corresponding neuron generates an inhibition signal for the output neurons,
based on the total output activation. The corresponding network structure is shown in Figure 9.

Feedback Hebbian

Recurrent Anti-Hebbian

Feedforward Hebbian

Figure 9: WSM Det-Max neural network for nonnegative sparse sources (P = B1,+).

D.4 Sparse sources

In the sparse source setting where P = B1, the only change relative to the nonnegative sparse case is
the replacement of the ReLU output activation function with the soft thresholding function

ST�(x) =

⇢
0 |x|  �

x� sign(x)� otherwise.

Therefore, we can rewrite the output dynamics for P = B1 as

du(⌧)

d⌧
= �u(⌧) + �SM (1� �)[WY H(t)h(⌧)� M̄Y (t)D2(t)y(⌧)],

yt,i(⌧) = ST�1(⌧)

✓
ui(⌧)

�SM (1� �)�Y ii(t)D2,ii(t)

◆
, for i = 1, . . . n,

da(⌧)

d⌧
= �a(⌧) +

nX

k=0

|yt,k(⌧)|� 1 + �1(⌧), �1(⌧) = ReLU(a(⌧)).

Figure 10 illustrates the WSM based Det-Max neural network for sparse BSS.

D.5 Unit simplex sources

The unit simplex set � is a face of the polytope P = B1,+ which is the domain for nonnegative
sparse sources. Therefore, we replace the `1-norm inequality constraint in (A.15) with the equality
constraint to obtain the Det-Max WSM optimization problem for the unit simplex domain:

minimize
ht,yt

�c1(ht) + (1� �)c2(ht,yt)

subject to kytk1 = 1, yt � 0

Therefore, for the Lagrangian based formulation

maximize
�1

minimize
ht,yt

�c1(ht) + (1� �)c2(ht,yt) + �1(kytk1 � 1),

21

Feedback Hebbian

Recurrent Anti-Hebbian

Feedforward Hebbian

Figure 10: WSM Det-Max neural network for sparse sources (P = B1).

we no longer require � to be nonnegative. Therefore, for P = � only required change relative to
B1,+ is the replacement of the ReLU activation function of the rightmost inhibition neuron in Figure
9 with the linear activation. As a result, the output dynamics for the unit simplex sources can be
written as

du(⌧)

d⌧
= �u(⌧) + �SM (1� �)[WY H(t)h(⌧)� M̄Y (t)D2(t)y(⌧)],

yt,i(⌧) = ReLU
✓

ui(⌧)

�SM (1� �)�Y ii(t)D2,ii(t)
� �1(⌧)

◆
, for i = 1, . . . n,

d�1(⌧)

d⌧
= ��1(⌧) +

nX

k=0

yk(⌧)� 1 + �1(⌧).

Figure 11 shows the WSM-based Det-Max neural network for the unit-simplex sources.

Feedback Hebbian

Recurrent Anti-Hebbian

Feedforward Hebbian

Figure 11: WSM Det-Max neural network for unit-simplex sources (P = �).

D.6 Sources with mixed attributes

We consider the following polytope example provided in [26]

Pex =

8
<

:s 2 R3

������

s1, s2 2 [�1, 1], s3 2 [0, 1],����


s1
s2

�����
1

 1,

����


s2
s3

�����
1

 1

9
=

; , (A.17)

which is an example of domains where source attributes such as nonnegativity and sparsity defined
only at the subvector level.

22

The Det-Max WSM optimization setting for this case can be written as

minimize
ht,yt

C(ht,yt)

subject to
����


y1
y2

�����
1

 1,

����


y2
y3

�����
1

 1 y3 � 0

for which the Lagrangian based reformulation can be written as

maximize
�1,�2�0

minimize
ht,y3�0,y1,y2

C(ht,yt) + �1

✓����


y1
y2

�����
1

� 1

◆
+ �2

✓����


y2
y3

�����
1

� 1

◆
.

The proximal operator corresponding to the Lagrangian terms can be defined as

prox
�1,�2

(v) = argmin
q3�0,q1,q2

✓
1

2
kv � qk

2
2 + �1

����


q1
q2

�����
1

+ �2

����


q2
q3

�����
1

◆
. (A.18)

Let q⇤ the output of the proximal operator. From the subdifferential set based optimality condition

• if q⇤1 6= 0 then q⇤1 � v1 + �1sign(v1) = 0 which implies q⇤1 = v1 � �1sign(v1),
• if q⇤2 6= 0 then q⇤2 = v2 � (�1 + �2)sign(v2),
• if q⇤3 6= 0 then q⇤3 = v3 � �2.

Therefore, we can write q1 = ST�1(v1), q2 = ST�1+�2(v2) and q3 = ReLU(v3 � �2). As a result,
we can write the corresponding output dynamics expressions in the form

du(⌧)

d⌧
= �u(⌧) + �SM (1� �)[WY H(t)h(⌧)� M̄Y (t)D2(t)y(⌧)],

yt,1(⌧) = ST�1(⌧)

✓
u1(⌧)

�SM (1� �)�Y 11(t)D2,11(t)

◆
,

yt,2(⌧) = ST�1(⌧)+�2(⌧)

✓
u2(⌧)

�SM (1� �)�Y 22(t)D2,22(t)

◆
,

yt,3(⌧) = ReLU
✓

u3(⌧)

�SM (1� �)�Y 33(t)D2,33(t)
� �2(⌧)

◆
,

da1(⌧)

d⌧
= �a1(⌧) + |yt,1(⌧)|+ |yt,2(⌧)|� 1 + �1(⌧),

�1(⌧) = ReLU(a1(⌧)),

da2(⌧)

d⌧
= �a2(⌧) + |yt,2(⌧)|+ yt,3(⌧)� 1 + �2(⌧),

�2(⌧) = ReLU(a2(⌧)).

Figure 12 shows the Det-Max WSM neural network for the source domain in (A.17).

Feedback Hebbian

Recurrent Anti-Hebbian

Feedforward Hebbian

Figure 12: WSM Det-Max neural network for the polytope in (A.17).

23

E Supplementary on numerical experiments

Update dynamics for the hidden layer ht and the output vector yt are defined by differential equations
depending on the selection of the source domain which lead to recursive neural dynamic iterations.
Algorithm 1 summarizes the neural dynamic iterations for anti-sparse sources covered in Section 5.2.
Very similar output dynamic calculations for each source assumption can be acquired based on the
derivations in Section D. We run the neural dynamic iterations until a convergence check is satisfied
or a predetermined maximum number of iterations ⌧max is reached. In Algorithm 1, ✏ denotes the
tolerance in the relative error check for the stopping condition, and ⌘(⌧) represents the learning rate at
the iteration count ⌧ . In the following subsections, we provide the experimental details and additional
source separation examples for different assumptions on the sources.

Algorithm 1 Neural dynamic iterations for anti-sparse sources
1: Initialize ⌧max, ✏, and ⌧ = 1
2: while (||v(⌧)� v(⌧ � 1)||/||v(⌧)|| > ✏ or ||u(⌧)� u(⌧ � 1)||/||u(⌧)|| > ✏) and ⌧ < ⌧max do

3: v(⌧) = v(⌧ � 1) + ⌘(⌧)dv(⌧�1)
d(⌧�1)

4: Apply Equation 10 for ht,i(⌧)

5: u(⌧) = u(⌧ � 1) + ⌘(⌧)du(⌧�1)
d(⌧�1)

6: Apply Equation 12 for yt,i(⌧)
7: ⌧ = ⌧ + 1
8: end while

E.1 Batch algorithms with correlated source separation capability

In this section, we briefly discuss two batch learning algorithms for blind separation of correlated
sources, which reflect the Det-Max problem 3: 1. Polytopic Matrix Factorization [26], 2. Log-Det
Mutual Information Maximization [59].

• Polytopic Matrix Factorization: [26] recently introduced the Polytopic Matrix Factorization (PMF)
as a structured matrix factorization framework that models the columns of the input matrix, i.e.,
the mixture signals in our problem, as a linear transformation of source vectors from a polytope.
The choice of the underlying polytope in the PMF framework reflects the attributes of the sources
possibly in a heterogeneous perspective; e.g., the polytope discussed in Section D.6 provides
an example of heterogeneous feature assumptions at the subvector level such as mutual sparsity.
Taking into account the mixing model in Section 2.2, PMF uses the following optimization problem,

maximize
Y(t) 2 Rn⇥t,H 2 Rm⇥n

log(det(Y(t)Y(t)T)) (A.19a)

subject to X(t) = HY(t), (A.19b)
yi 2 P, i = 1, . . . , t, (A.19c)

where H and Y(t) correspond to the unknown mixing matrix and the source estimates, respectively.
The aim of PMF is to obtain the original factors of A and S(t) up to some acceptable sign and
permutation ambiguities, i.e., Y(t) = P⇤S(t) and H = AP

T
⇤

�1. The reference [26] provides
the sufficient condition for the identifiability of the original factors of A and S(t) based on the
sufficiently scattering condition discussed in Section A, i.e., if the source vectors are sufficiently
scattered in a permutation-and/or sign only invariant polytope P , then all global optima of the
problem A.19 lead to the ideal separation. For the corresponding algorithm to solve the problem
A.19, we refer to the pseudo-code in [26], which is a batch algorithm with a projected gradient
search.

• Log-Det Mutual Information Maximization: The reference [59] brings a statistical interpretation
to the PMF framework based on a log-determinant (LD) based mutual information measure.
According to this approach, the LD-mutual information between the input and output is maximized,
under the constraint that the outputs are in the presumed source domain. The corresponding
optimization setting is given by

24

maximize
Y(t) 2 Rn⇥t

1

2
log det(R̂y + ✏I)�

1

2
log det(R̂y � R̂yx(✏I + R̂x)

�1R̂T

yx + ✏I) (A.20a)

subject to yi 2 P, i = 1, . . . , t, (A.20b)

where the objective A.20a is defined in terms of sample covariance matrices, i.e., R̂y =
1
t
Y(t)Y(t)T �

1
t2
Y(t)11T

Y(t)T , and R̂yx = 1
t
Y(t)X(t)T �

1
t2
Y(t)11T

X(t)T . Similar to
the PMF framework, the LD-InfoMax approach assumes that the source vectors are drawn from
a presumed polytope P . The LD-InfoMax approach is capable of separating correlated sources,
since it does not assume any statistical independence or uncorrelatedness on the source vectors.
Reference [59] proposes a projected gradient ascent-based algorithm to solve the problem A.20 as
a batch learning approach.

We compare our algorithm with the PMF and LD-InfoMax frameworks for correlated source separa-
tion experiments in Sections 6.1, E.3, E.4, and for sparse source separation experiment in Section
E.5.

E.2 Synthetically correlated source separation with nonnegative anti-sparse sources

In this section, we provide the training details and hyperparameter selections for the numerical
experiment provided in Section 6.1. For this network, we used the following hyperparameter
selections and variable initializations:

• D1 = I, and D2 = I, where I is the identity matrix.
• µD1 = 1, and µD2 = 10�2.
• � = 0.5, �SM = 1� 10�5.
• 1� �2 is dynamically adjusted using 1� �2 = max{⌫/(1 + log(1 + t)), 0.001}, where t is the

data sample index, and ⌫ =

⇢
0.1 ⇢  0.4,
0.05 otherwise. .

• MH = 2I,MY = I.
• WHX = I,WY H = I.
• Learning rate for the neural dynamic iterations is adjusted using max{0.75/(1+ ⌧ ⇥0.005), 0.05},

where ⌧ is the neural dynamic iteration count.
• The maximum number of neural dynamic iterations is restricted to ⌧max = 500 if the stopping

condition is not satisfied.
• For the stability of the learning process, we keep the diagonal weights of D1 and D2 in a predeter-

mined range, i.e., 0.2 � diag(D1) � 106 and 0.2 � diag(D2) � 5.

E.3 Synthetically correlated source separation with anti-sparse sources

To illustrate the correlated source separation of WSM neural networks with antisparse sources, we
consider a numerical experiment with four copula-T distributed sources in the range [�1, 1] with a
Toeplitz correlation calibration matrix whose first row is

⇥
1 ⇢ ⇢2 ⇢3

⇤
. We consider the range

⇢ 2 [0, 0.6] for the correlation level. The sources are mixed with an 8⇥ 4 random matrix with i.i.d.
standard normal entries, and corrupted by i.i.d. standard normal noise corresponding to 30dB SNR
level. Antisparse-WSM neural network is employed in this experiment, which is illustrated in Figure
6. We compare the SINR performance of WSM algorithm with the BSM algorithm [18], Infomax ICA
algorithm [58], PMF algorithm [26], and LD-InfoMax algorithm [59]. Figure 13 illustrates the SINR
performances of these algorithms (averaged over 100 realizations) with respect to the correlation
parameter ⇢. Similar to the results for nonnegative antisparse source separation experiments provided
in Section 6.1, the WSM approach maintains its immunity against source correlations, whereas the
BSM and ICA algorithms, which assume uncorrelated sources, deteriorate with increasing source
correlation. LD-InfoMax and PMF algorithms achieve relatively similar SINR behaviors while their
performance remains comparatively steady with respect to increasing source correlation. We note
that both PMF and LD-InfoMax typically achieve better performances compared to our proposed
online algorithm since these approaches utilize batch algorithms.

25

0.0 0.1 0.2 0.3 0.4 0.5 0.6
ρ

0

5

10

15

20

25

30

SI
NR

 (d
B)

Anti-sparse Source Separation SINR Results

WSM
BSM
ICA-Infomax
LD-InfoMax
PMF

Figure 13: The SINR performances of the WSM, BSM, ICA, LD-InfoMax, and PMF algorithms as a
function of the correlation parameter ⇢.

For the antisparse source separation setting, we used the following hyperparameter selections and
variable initializations:

• D1 = I, and D2 = I,
• µD1 = 1.125, and µD2 = 0.2,
• � = 0.5, �SM = 1� 5⇥ 10�5,
• 1� �2 is dynamically adjusted using 1� �2 = max{⌫/(1 + log(1 + t)), 0.001}, where t is the

data sample index, and ⌫ =

⇢
0.6 ⇢  0.4,
0.25 otherwise. .

• MH = 2I,MY = I,
• WHX = I,WY H = I.
• Learning rate for the neural dynamic iterations is adjusted using max{0.75/(1+ ⌧ ⇥0.005), 0.05},

where ⌧ is the neural dynamic iteration count.
• The maximum number of neural dynamic iterations is restricted to ⌧max = 750 if the stopping

condition is not satisfied.
• For the stability of the learning process, we keep the diagonal weights of D1 and D2 in a predeter-

mined range, i.e., 0.2 � diag(D1) � 106 and 0.2 � diag(D2) � 5.

E.4 Image separation

For the image separation example provided in Section 6.2, the WSM Det-Max Neural Network
illustrated in Figure 8 is employed. For this network, we used the following hyperparameter selections
and variable initializations:

• D1 = I, and D2 = I.
• µD1 = 3.725, and µD2 = 1.125.
• � = 0.5, �SM = 1� 10�5.
• 1 � �2 is dynamically adjusted using 1 � �2 = max{0.11/(1 + log(1 + t)), 0.001}, where t is

the data sample index.
• MH = 2I,MY = I.
• WHX = I,WY H = I.
• Learning rate for the neural dynamic iterations is adjusted using max{0.75/(1+ ⌧ ⇥0.005), 0.05},

where ⌧ is the neural dynamic iteration count.
• Maximum number of neural dynamic iterations is restricted to be ⌧max = 500 if stopping condition

is not satisfied.
• For the stability of the learning process, we keep the diagonal weights of D1 and D2 in a predeter-

mined range, i.e., 10�3
� diag(D1) � 106 and 10�3

� diag(D2) � 20.

26

In this section, we also include the results of batch algorithms PMF and LD-InfoMax as illustrated in
Figure 14 in addition to the source images, mixture images, and the outputs of the ICA, NSM, and
WSM algorithms with better resolutions compared to Figure 4. Recall that our WSM-based network
outputs illustrated in Figure 14e achieves SINR level of 27.49 dB. LD-InfoMax algorihtm’s outputs
in Figure 14f obtain SINR level of 28.65 dB, and the PMF algorithm’s outputs in Figure 14g obtain
the SINR level of 31.92 dB. As expected, both PMF and LD-InfoMax algorithms achieve better
performances due to their batch nature whereas our proposed approach’s output is compatible with
these frameworks.

(a)

(b)

(c)

(d)

Figure 14: (a) Original RGB images, (b) mixture RGB images, (c) ICA outputs, (d) NSM outputs.

27

(e)

(f)

(g)

Figure 14: (e) WSM outputs, (f) LD-InfoMax Outputs, (g) PMF Outputs.

E.5 Sparse source separation

In order to illustrate the use of the proposed framework for a different source domain, we consider
sparse sources where P = B1. We generate n = 5 dimensional source vectors, by projecting i.i.d.
uniform vectors in B1 to B1. The mixing matrix is a 10 ⇥ 5-matrix with i.i.d. standard normal
entries. The mixtures are used to train the sparse-WSM Det-Max network in Figure 10 introduced
in Appendix D.4. For this network, we used the following hyperparameter selections and variable
initializations:

• D1 = 8I, and D2 = I.
• µD1 = 20, and µD2 = 10�2.
• � = 0.5, �SM = 1� 10�5.
• 1 � �2 is dynamically adjusted using 1 � �2 = max{0.25/(1 + log(1 + t)), 0.001}, where t is

the data sample index.
• MH = 0.02I,MY = 0.02I.
• W matrices are initialized first with i.i.d. standard normal random variables. Then, we normalized

the Euclidean norm of all rows to 0.0033 by proper scaling.
• Learning rate for the neural dynamic iterations is determined to be 0.5.
• Maximum number of neural dynamic iterations is restricted to be ⌧max = 750 if stopping condition

is not satisfied.
• For the stability of the learning process, we keep the diagonal weights of D1 and D2 in a predeter-

mined range, i.e., 10�6
� diag(D1) � 106 and 1 � diag(D2) � 1.001.

28

Figure 15 illustrates the SINR convergence behavior for the sparse-WSM network, as a function of
update iterations, for the input SNR level of 30dB (averaged over 200 realizations).

0 10 20 30 40 50
Number of Iterations / 10K

0

5

10

15

20

25

30

SI
NR

 (d
B)

Figure 15: The SINR convergence curve for the sparse-WSM for 30dB input SNR level: mean-solid
line with 25/75-percentile envelope.

Figure 16 demonstrates the separation performance of the sparse-WSM network for different noise
levels.

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
Input SNR (dB)

0

5

10

15

20

25

30

SI
NR

 (d
B)

Figure 16: The output SINR with respect to the input SNR level for the sparse-WSM: mean-solid
line with 25/75-percentile envelope.

To compare our online approach with the batch algorithms LD-InfoMax and PMF, we also performed
experiments with these algorithms for the input SNR level of 30 dB. Table 2 summarizes the averaged
SINR results of each algorithm over 200 realizations for 30 dB input SNR level. In these experiments,
we observe that both PMF and LD-InfoMax obtain better SINR performances on average compared to
our WSM Det-Max network. This condition is due to the batch nature of both PMF and LD-InfoMax
as discussed earlier.

Table 2: Sparse source separation averaged SINR results of WSM, PMF, and LD-InfoMax.

Algorithm WSM PMF LD-InfoMax

SINR 25.14 30.17 30.0

29

E.6 Sparse dictionary learning

Related to the previous example, we consider the well-known example of sparse coding, which
is the dictionary learning for natural image patches [20]. For this experiment, we used 12 ⇥ 12
prewhitened image patches obtained from the website, http://www.rctn.org/bruno/sparsenet. We
used the vectorized versions of these patches to train the sparse Det-Max WSM neural network in
Figure 10. Figure 17 shows the receptive field images obtained from the columns of the inverse of
the sparse-WSM separator, which correspond to localized Gabor-like edge features. This example
confirms that the sparse WSM neural network with a local update rule successfully captures the
behavior observed in primates’ primary visual cortical neurons.

Figure 17: Dictionary obtained from the natural image patches by the sparse-WSM Network.

E.7 Source separation with mixed latent attributes

In this section, we illustrate the source separation setting with different identifiable-enabling polytopes
similar to the given example in D.6. These experiments demonstrate the capability of the proposed
WSM Neural Network for general identifiable polytopes. The identifiability of the provided sets in
this section are verified by the graph automorphism-based identifiability characterization algorithm
presented in [45].

E.7.1 Special polytope example in appendix D.6

We provide numerical experiment results for the WSM Det-Max network in Figure 12 corresponding
to the polytope in (A.17). To employ this WSM Det-Max Neural Network, we synthetically generated
n = 3 dimensional uniform vectors in this polytope and mixed them by a random 6 ⇥ 3-matrix
with i.i.d. standard normal entries. Also, the mixtures are corrupted by i.i.d. standard normal
noise corresponding to 30dB SNR level. Figure 18 illustrates the behavior of the overall SINR and
individual source SNRs in addition to the behavior of diagonal weight matrices (D1 and D2) with
respect to the number of update iterations for a single experiment. To measure the average behavior of
this neural network, we run experiments for 100 different source and mixing matrix generation, and
Figure 19 illustrates the averaged SINR convergence behavior with the 25/75-percentile envelope, as
a function of update iterations.

30

http://www.rctn.org/bruno/sparsenet

0 10 20 30 40 50
Numbe(of Ite(ation) / 10K

5

10

15

20

25

30

SI
NR

 (d
B)

SINR Behavio(

0 10 20 30 40 50
Numbe(of Ite(ation) / 10K

0

5

10

15

20

25

30

35

SN
R
(d
B)

Component SNR Behavio(

Sou(ce 1
Sou(ce 2
Sou(ce 3

0 10 20 30 40 50
Numbe(of Ite(ation) / 10K

2

3

4

5

6

Dia onal Value) of D1

0 10 20 30 40 50
Numbe(of Ite(ation) / 10K

0.96

0.98

1.00

1.02

1.04

Dia onal Value) of D2

Figure 18: Example behaviors of SINR, component SNR values, and diagonal weights of D1 and D2

for a single experiment discussed in E.7.1

0 10 20 30 40
Number of Iterations / 10K

0

5

10

15

20

25

30

SI
NR

 (d
B)

Figure 19: The SINR convergence curve for the experiments discussed in E.7.1: mean-solid line with
25/75-percentile envelope.

For this network, we used the following hyperparameter selections and variable initializations:

• D1 = 4I, and D2 = I.
• µD1 = 5.725, and µD2 = 10�2 (µD2 = 0 for the experiment visualized in Figure 18).
• � = 0.5, �SM = 1� 10�4.
• 1 � �2 is dynamically adjusted using 1 � �2 = max{0.25/(1 + log(1 + t)), 0.001}, where t is

the data sample index.
• MH = 0.02I,MY = 0.02I.

31

• W matrices are initialized first with i.i.d. standard normal random variables. Then, we normalized
the Euclidean norm of all rows to 0.0033 by proper scaling.

• Learning rate for the neural dynamic iterations is determined to be 0.5.
• Maximum number of neural dynamic iterations is restricted to be ⌧max = 750 if stopping condition

is not satisfied.
• For the stability of the learning process, we keep the diagonal weights of D1 and D2 in a predeter-

mined range, i.e., 10�6
� diag(D1) � 106 and 1 � diag(D2) � 1.001.

E.7.2 Mixed anti-sparse and nonnegative anti-sparse sources

As another identifiable polytope example, we consider the following set which assigns mixed
antisparse attributes to the source components: signed or nonnegative. For this experiment, we
randomly selected two components to be nonnegative whereas the remaining three components are
antisparse. The mixing matrix is a 10⇥ 5�matrix with i.i.d. standard normal entries. The mixtures
are used to train the WSM Det-Max network similar to Figure 6 where the clippings at the output
layer corresponding to nonnegative sources are replaced with nonnegative clipping.

P =
�
s 2 R3

�� sj1 , sj2 , sj3 2 [�1, 1], sj4 , sj5 2 [0, 1], ji 2 {1, 2, 3, 4, 5}

, (A.21)

To train the WSM Det-Max network in this scenario, we used the following hyperparameter selections
and variable initializations:

• D1 = I, and D2 = I.
• µD1 = 1.125, and µD2 = 0.1.
• � = 0.5, �SM = 1� 5⇥ 10�5.
• 1� �2 is dynamically adjusted using 1� �2 = max{0.4/(1 + log(1 + t)), 0.001}, where t is the

data sample index.
• MH = 2I,MY = I.
• WHX = I,WY H = I.
• Learning rate for the neural dynamic iterations is adjusted using max{0.75/(1+ ⌧ ⇥0.005), 0.05},

where ⌧ is the neural dynamic iteration count.
• Maximum number of neural dynamic iterations is restricted to be ⌧max = 750 if stopping condition

is not satisfied.
• For the stability of the learning process, we keep the diagonal weights of D1 and D2 in a predeter-

mined range, i.e., 0.2 � diag(D1) � 106 and 0.5 � diag(D2) � 5.

0 10 20 30 40
Number of Iterations / 10K

0

5

10

15

20

25

30

SI
NR

 (d
B)

Figure 20: The SINR convergence curve for the experiments discussed in E.7.2: mean-solid line with
25/75-percentile envelope.

32

E.7.3 Mixed sparse and nonnegative anti-sparse sources

As the last illustration of source separation on identifiable domains, we consider the following
polytope,

P =

8
><

>:
s 2 R3

�������
sj1 2 [0, 1],

�������

2

64

sj2
sj3
sj4
sj5

3

75

�������
1

 1, ji 2 {1, 2, 3, 4, 5}

9
>=

>;
, (A.22)

where only one component is nonnegative and the subvector containing the remaining components
is sparse. To demonstrate the source separation ability of WSM Det-Max Neural Network for this
underlying domain, we generated n = 5 dimensional uniform vectors in this polytope. The sources
are mixed with a 10⇥ 5 random matrix with standard normal entries. To train the WSM Det-Max
network in this setting, we used the following hyperparameter selections and variable initializations:

• D1 = 8I, and D2 = I.
• µD1 = 6, and µD2 = 0.1.
• � = 0.5, �SM = 1� 10�4.
• 1 � �2 is dynamically adjusted using 1 � �2 = max{0.25/(1 + log(1 + t)), 0.001}, where t is

the data sample index.
• MH = 0.02I,MY = 0.02I.
• W matrices are initialized first with i.i.d. standard normal random variables. Then, we normalized

the Euclidean norm of all rows to 0.0033 by proper scaling.
• Learning rate for the neural dynamic iterations is adjusted using max{0.5/(1 + ⌧ ⇥ 0.005), 0.01},

where ⌧ is the neural dynamic iteration count.
• Maximum number of neural dynamic iterations is restricted to be ⌧max = 750 if stopping condition

is not satisfied.
• For the stability of the learning process, we keep the diagonal weights of D1 and D2 in a predeter-

mined range, i.e., 10�6
� diag(D1) � 106 and 1 � diag(D2) � 5.

Figure 21 illustrates the SINR convergence behavior (averaged over 100 realizations) of the WSM
Det-Max network for this scenario, as a function of update iterations.

0 10 20 30 40
Number of Iterations / 10K

0

5

10

15

20

25

SI
NR

 (d
B)

Figure 21: The SINR convergence curve for the experiments discussed in E.7.3: mean-solid line with
25/75-percentile envelope.

E.8 Digital communication example: 4-PAM modulation scheme

We consider the 4 Pulse-amplitude modulation (4-PAM) scheme as a realistic application of blind
separation of digital communication signals, with the symbols {±3,±1}. We consider a uniform
symbol distribution, i.e., P (s = i) = 1

4 8i = ±3,±1, where s represents the transmitted symbol.

33

We assume that 5 sources are transmitted, with 400000 samples each, and mixed through a 10⇥ 5
random matrix with standard normal entries. Without loss of generality, we make use of B`1 polytope
as the source domain assumption so that we feed the mixtures to the WSM Det-Max neural network
for the antisparse sources. To train this network, we used the following hyperparameter selections
and variable initializations:

• D1 = 0.5I, and D2 = 0.5I.
• µD1 = 0.01, and µD2 = 0.01.
• � = 0.5, and �SM = 1� 5⇥ 10�3.
• 1� �2 is dynamically adjusted using 1� �2 = max{0.3/(1 + log(1 + t)), 0.05}, where t is the

data sample index.
• MH = 2I,MY = I.
• W matrices are initialized first with i.i.d. standard normal random variables. Then, we normalized

the Euclidean norm of all rows to 0.005 by proper scaling.
• Learning rate for the neural dynamic iterations is adjusted using max{0.5/(1 + ⌧ ⇥ 0.005), 0.01},

where ⌧ is the neural dynamic iteration count.
• Maximum number of neural dynamic iterations is restricted to be ⌧max = 750 if stopping condition

is not satisfied.
• For the stability of the learning process, we keep the diagonal weights of D1 and D2 in a predeter-

mined range, i.e., 0.2 � diag(D1) � 106 and 0.2 � diag(D2) � 25.

Figure 21 illustrates the SINR convergence behavior (averaged over 20 realizations) of the WSM
Det-Max network for this scenario, as a function of update iterations.We conclude that our proposed
approach is able to separate the source symbols from their mixtures.

1 2 3 4 5 6 7 8 9 10
Numbe of Ite ations / 40K

0

5

10

15

20

25

SI
NR

 (d
B)

Figure 22: The SINR convergence curve for the 4-PAM digital communication signals: mean solid
line with 25/75-percentile envelope.

E.9 Ablation study on hyperparameter selection for nonnegative sparse sources

The proposed Det-Max WSM framework requires many hyperparameter selections. In Section E, we
discuss the selection of these hyperparameters for different source domains. Most of the time, we find
these hyperparameters by trial error and sensitivity analysis. Several ablation studies similar to grid
search are useful to find the optimal values for the hyperparameters. In this section, we provide such
ablation studies on effects of the selection of �SM, D1, µD1 , and �. We chose to focus on �SM here
because we observed that it is one of the most sensitive parameters. Although the other parameters
appear to have less of an effect on the final result than �SM, the cumulative impacts of the combined
hyperparameter choices can substantially influence overall performance.

We consider nonnegative sparse source separation setup, i.e., P = B1,+. We generate n = 5
dimensional source vectors uniformly in B1,+, and the mixing matrix is a 10 ⇥ 5-matrix with
i.i.d. standard normal entries. The mixtures train the nonnegative sparse-WSM Det-Max network

34

illustrated in Figure 9. In these ablation studies, we specifically consider the effect of hyperparameter
selection for 1��SM, initial D1, µD1 , and initial 1��2. For each of the mentioned hyperparameters,
we consider the following choices,

• 1� �SM 2 {10�3, 10�4, 10�5, 10�6
},

• D1 2 {4I, 8I, 12I, 16I},
• µD1 2 {5, 10, 15, 20},
• initial 1� �2

2 {0.15, 0.20, 0.25, 0.30}

While experimenting with one hyperparameter, we fixed the rest of them as given in the following
list,

• D1 = 4I, and D2 = I.
• µD1 = 15, and µD2 = 0.01.
• � = 0.5, and �SM = 1� 10�4.
• 1� �2 is dynamically adjusted using 1� �2 = max{0.25/(1 + log(1 + t)), 10�3

}, where t is the
data sample index.

• MH = 0.02I,MY = 0.02I.
• W matrices are first initialized with i.i.d. standard normal random variables. Then, we normalize

the Euclidean norm of all rows to 0.0033 by proper scaling.
• The learning rate for the neural dynamic iterations is adjusted using max{0.5/(1+⌧⇥0.005), 0.2},

where ⌧ is the neural dynamic iteration count.
• Maximum number of neural dynamic iterations is restricted to be ⌧max = 750 if stopping condition

is not satisfied.
• For the stability of the learning process, we keep the diagonal weights of D1 and D2 in a predeter-

mined range, i.e., 10�6
� diag(D1) � 106 and 1 � diag(D2) � 1.001.

Figure 23a illustrates the SINR performance of the WSM Det-Max network concerning 1� �SM, and
it demonstrates that it significantly affects the final SINR behavior of the proposed approach. We
argue that the selection �SM = 1� 10�4 is a near-optimal for nonnegative sparse source separation
with the WSM Det-Max network, whereas one can also implement a more detailed search based on
possibly other hyperparameter dependencies. We also analyze the effect of initial D1 on the final
SINR, and Figure 23b demonstrates the performance change with D1 gain initialization. We inspect
that the WSM Det-Max network for nonnegative sparse sources relatively maintains its averaged
performance against different initial gain parameters, whereas the selection of D1 = 4I leads to best
performance with a significantly lower variance compared to other initialization choices. In Figure
22c, we visualize the effect of learning rate choice for D1. It is noticeable that µD1 is less effective
in SINR performance compared to other considered hyperparameters, but µD1 = 15 achieves the
best average result with a lower variance. As the final ablation study on hyperparameter selection, we
consider the initial value of 1��2 which we dynamically adjust using max{⌫/(1+log(1+t)), 10�3

},
where t is the data sample index and ⌫ is the initial value. Figure 22d illustrates the effect for the
initial value ⌫, and it is remarkable that an improved result is attained for ⌫ = 0.25.

10−6 10−5 10−4 10−3

1 − λSM

10
12
14
16
18
20
22
24
26

SI
NR

 (d
B)

(a)

4 8 12 16
D1, ii Gain Initialization

20

21

22

23

24

25

26

27

SI
NR

 (d
B)

(b)

35

5 10 15 20
μD1

20

21

22

23

24

25

26

27

SI
NR

 (d
B)

(c)

0.15 0.20 0.25 0.30
Initial selection of 1 − γ2

20

21

22

23

24

25

26

27

SI
NR

 (d
B)

(d)

Figure 22: SINR performances of WSM Det-Max networks for different hyperparameter selections
(averaged over 50 realizations, mean solid lines with 25/75-percentile envelopes): (a) averaged SINR
performance with respect to 1� �SM, (b) averaged SINR performance with respect to initial D1, (c)
averaged SINR performance with respect to µD1 , (d) averaged SINR performance with respect to
initial 1� �2.

F Discussion on the complexity of the proposed approach

In this section, we discuss the computational complexity of the proposed WSM Det-Max neural
network implementations. For simplicity, we consider the antisparse source separation cases discussed
in Section 5.2. Remarkably, the overall complexity is due to the output computation complexities
which are determined by (9)-(10) and (11)-(12). Note that these differential equations are naturally
solved in neuromorphic implementations. However, in digital computer simulations, we need to
implement loops to obtain their iterative solutions, as summarized in Algorithm 1. As described in
Section 2.2, assume that there are n sources and m mixtures, i.e., xt 2 Rm, and ht,yt 2 Rn for all t.
Assuming that the factors (1��)M̄H(t)+�D1(t)M̄H(t)D1(t), �D1(t)WHX(t), WY H(t)TD2(t),
and M̄Y (t)D2(t) are computed outside the iterative loop of Algorithm 1, the expressions in (9)
and (11) require 2n2 + mn and 2n2 multiplications, respectively. If we assume that the neural
dynamic loop reaches to the pre-determined maximum number of iterations ⌧max, i.e., the numerical
relative error check for the convergence is not satisfied, then the total number of multiplication is
dominated by the factor ⌧max(4n2+mn). If we analyze the computational requirements of the factors
(1��)M̄H(t)+�D1(t)M̄H(t)D1(t), �D1(t)WHX(t), WY H(t)TD2(t), and M̄Y (t)D2(t), these
calculations require multiplications of (n2

� n)/2 + n2 + 3n, mn + n, n2, and n2, respectively,
since D1(t) and D2(t) are diagonal matrices and M̄H(t), M̄Y (t) are symmetric matrices. Therefore,
the complexity of the neural dynamics of our proposed approach is dominated by the factor of
⌧max(4n2+mn). The complexity of the update rules of the gain variables expressed in equations (13)
and (14) is dominated by the multiplication factor of 3n for all 2n variables, leading to the dominant
multiplication factor of 6n2. Moreover, the update rules of the synaptic weight updates expressed in
equation (15) are dominated by the multiplication factor of n2 or mn, leading to 4(n2 +mn) number
of multiplications. Therefore, the worst-case complexity of our proposed method per sample in terms
of the big-O notation is O(⌧maxmn).

We now compare this with the complexity of the NSM and BSM algorithms. We first consider the
prewhitening layer introduced in [16], as both algorithms require input to be prewhitened. Taking
into account equations (28), (29), and (30) in [16] for output computation and synaptic weight
updates of the prewhitening layer, the complexity can be expressed in terms of big-O notation as
O(⌧ (NSM)

max (m+ k)n), where k � n is an integer introduced as a result of the Lagrangian multiplier in
equation (12) in the reference [16], and ⌧ (NSM)

max is the maximum predetermined number of iterations
for the neural dynamic loop of NSM (see equation (28) and (33) in the reference). The output
dynamics and the synaptic weight updates of the second layer of the online NSM network is
described by the equations (33), (34), and (35) in [16] which lead to the complexity in terms of big-O
notation of O(n2). As a result, the overall complexity of the NSM algorithm per sample can be
stated as O(⌧NSM

max (m + k)n). Similar to the WSM network, the neural dynamic loop of BSM has

36

the complexity of O(⌧ (BSM)
max mn) as a result of recursion defined by Equation (17) in [18], where

⌧ (BSM)
max is the predetermined maximum number of iterations for the neural dynamic loop of BSM.

Furthermore, synaptic weight and gain updates introduce O(n2) complexity similar to the WSM
algorithm. Therefore, combining with prewhitening, the overall complexity of the BSM algorithm
per sample becomes O(⌧ (BSM)

max (m+ k)n)

In conclusion, for the biologically plausible neural network solutions to the blind source separation
problem, the overall complexity is determined by the recursive neural dynamic loops due to the
implicit definition of the network output. Although this condition makes the implementation of such
algorithms less feasible for digital hardware, they enable low-power implementations in future analog
neuromorphic systems with local learning constraints.

37

	Introduction
	Other related work

	Problem statement
	Sources
	Mixing
	Separation

	Determinant maximization based blind source separation
	An alternative optimization formulation of determinant-maximization based on weighted similarity matching
	Biologically-plausible neural networks for WSM-based BSS
	Online optimization setting for WSM-based BSS
	Description of network dynamics for bounded anti-sparse sources
	Det-max WSM neural network examples for more general source domains

	Numerical experiments
	Synthetically correlated source separation
	Image separation

	Discussion and Conclusion
	On sufficient scattering condition for source vectors
	Proof of theorem 1
	Derivations
	The simplification of the similarity matching cost functions
	Derivatives of the WSM cost function

	Det-max WSM neural networks for example source domains
	Anti-sparse sources
	Nonnegative anti-sparse sources
	 Nonnegative sparse sources
	Sparse sources
	Unit simplex sources
	Sources with mixed attributes

	Supplementary on numerical experiments
	Batch algorithms with correlated source separation capability
	Synthetically correlated source separation with nonnegative anti-sparse sources
	Synthetically correlated source separation with anti-sparse sources
	Image separation
	Sparse source separation
	Sparse dictionary learning
	Source separation with mixed latent attributes
	Special polytope example in appendix D.6
	Mixed anti-sparse and nonnegative anti-sparse sources
	Mixed sparse and nonnegative anti-sparse sources

	Digital communication example: 4-PAM modulation scheme
	Ablation study on hyperparameter selection for nonnegative sparse sources

	Discussion on the complexity of the proposed approach

