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1 Dataset Examples

To provide more context and information to the reader, we expand Figure 2 in the paper providing
many examples per dataset. We provide examples of TAP-Vid-Kinetics in Figures 1 and 2, TAP-
Vid-Davis in Figure 3 and TAP-Vid-Kubric and TAP-Vid-RGB-Stacking in Figure 4. These figures
illustrate the diversity of the tracked points across all the different datasets. Figures 1, 2 and 3 show
how we are tracking points beyond the most salient objects in the video; the vast majority of tracked
points do not correspond to the semantic keypoints of existing datasets. The website contains even
more examples in video format, under the ‘Visualized Ground Truth Examples’ heading.

2 Supplementary Videos, Code, and Website

The website for this project https://storage.googleapis.com/dm-tapnet/index.html con-
tains the following:

1. Ground Truth Point Tracking Annotations. Video examples of groundtruth point annota-
tions in our datasets, as summarized in Section 1 above.

2. Dataset Download Links and Processing. Download links for the TAP-Vid-{Kinetics,
DAVIS, RGB-Stacking} datasets, and instructions for processing and aligning raw Kinetics
videos to the annotations and for running the visualization scripts. It also includes licensing
information.

3. Improving Human Point Annotation with Flow-Based Tracker. Comparison of human
point annotation quality on the DAVIS dataset with and without optical flow track assistance.

The index.html included with this supplementary file contains some supplementary information
which is not included in the TAP-Vid webpage as we do not consider it a part of the dataset:

1. DAVIS/RGB-Stacking Point Tracks Prediction. TAP-Net point tracking predictions on
videos from the DAVIS point tracking benchmark and from the RGB-Stacking robotics
benchmark.

2. Videos used for Quantitative Evaluation of the Flow-Based Tracker. For reference, we
include the exact 10 videos that annotators labeled before their annotations were compared
with Kubric ground truth.

3 Annotation Instructions and Workflow

Figure 5 summarizes the guidelines given to the annotators to encourage acquisition of high-quality
point tracks. Note, the guidelines do not limit the scope of the kind or type of points the annotators

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://storage.googleapis.com/dm-tapnet/index.html


Figure 1: Examples from TAP-Vid-Kinetics: In this figure we show a few examples of TAP-Vid-
Kinetics annotations with 3 frames per example.
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Figure 2: Examples from TAP-Vid-Kinetics: In this figure we show a few examples of TAP-Vid-
Kinetics annotations with 3 frames per example.
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Figure 3: Examples from TAP-Vid-Davis: In this figure we show examples of TAP-Vid-Davis
annotations with 3 frames per example. 4



TAP-Vid-RGB-Stacking TAP-Vid-Kubric

Figure 4: Examples from TAP-Vid-Kubric and TAP-Vid-RGB-Stacking: In this figure we show
examples of TAP-Vid-Kubric and TAP-Vid-RGB-Stacking annotations with 3 frames per example.
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1. View the video once. Choose a point that appears on the object (specified by the given
bounding-box) for the very first time. Prefer locations such that the point marker plotted at
the chosen location should have its center and periphery both completely inside the object
region. Try to spread out the points on different parts and label them with part tags if
possible (i.e., human hand, human head, car wheel etc.).

2. Find the last frame after which the point gets occluded (e.g., because the object moves
outside of the frame) and end the track. Then if it becomes visible again, and start a new
track to follow it under the same tag, repeating this process until the end of the video.

3. Wait for the optical flow assist algorithmic annotations to adjust based on the manual input.
Once the algorithmic annotations are available, add manual annotations until the automated
annotations are consistent with the schematic below:

Edit:
Make changes

Accept:
Do not make any 
changes 
(Acceptable 
accuracy)

Intended point Point annotated by the algorithm

4. Go through the video again to identify any interpolated points in the un-annotated frames
with obvious position errors. Correct the error by manually adding a point. Wait a few
seconds for the assist algorithm to update the point tracks. Continue the process of reducing
errors in the remaining un-annotated frames.

5. Once satisfied with the point track in all frames where it is visible, choose another point
and repeat the process from the beginning.

Figure 5: Representative annotator guidelines. (Minor variations were used as we saw results and
gave feedback).

can select (e.g., a specific object category etc.); hence, any point which the annotators can track
reliably is admissible, resulting in a diverse set of point trajectories in the dataset. The annotators
are encouraged to leverage the optical flow track assist algorithm to help improve their accuracy and
productivity, although they have the option to turn it off if it’s not helpful, resulting in a fallback to
linear interpolation. A visual representation of acceptable discrepancy between manual and automated
point selections is provided to help the annotators decide when to intervene by adding another point.

4 Simulated Dataset Generation

For synthetic data, obtaining point tracks is conceptually straightforward, as the simulator typically
knows the shape and position of all objects. However, most modern simulators don’t directly expose
point tracks, so we must compute them. Since both Kubric and RGB-Stacking contain only rigid
objects, we therefore obtain point tracks in the following manner. We first choose query points
in pixel space, which ensures that the query is visible. Then we find the location of that point in
the object’s local coordinate frame, using either coordinate maps (available for Kubric objects) or
by back-projecting using the depth map and applying the inverse object transformation. Next, we
compute the 3D location in world coordinates for every other frame using the known transformation
of each object. Finally we project the point to the image plane. To compute occlusion, we compare
the computed depth at the target frame with the depth map rendered from the simulator. Specifically,
if the point is behind the depth map (the max depth of the 4 nearest pixels to the reprojected point) by
a sufficient margin (1%), we mark it as occluded.

For Kubric, we sample exactly 256 query points from each video, and we try to have the same number
of points for every object, including the background. However, this can lead to far too many points for
very small objects, so we limit sampling to 0.16% of the total pixels on each object. There may then
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not be enough pixels on the smallest objects to sample the same number for each object. Therefore,
we sort objects by the number of pixels, and sample iteratively starting with the smallest: if there are
K objects, and the smallest object has only P pixels, then we sample N pixels from this smallest
object, where N = ⌊min(P ∗ .0016, 256/K)⌋. Then we reduce 256 by N , reduce K by 1, and repeat
until we’ve sampled points from all objects. This ensures the most balanced set of points possible
without having too many points per object.

For TAP-Vid-RGB-Stacking, we sample exactly 600 query points uniformly from the first frame for
each video and tracked them via the described method above throughout the video. Then we sample
30 points per video such that 20 of them are from moving objects (i.e. tracks with significant motion)
and 10 points are from static objects/background (i.e. tracks with minimal or no motion).

5 Dataset Statistics: Agglomerative Clustering of Trajectories

To assess diversity of point motion in our annotations, we cluster the point trajectories in each
labelled video (approx. 30 trajectories per video). Agglomerative clustering is performed starting
with assigning each trajectory to an independent cluster and recursively merging the clusters until
all the inter-cluster distance are greater than a threshold (set to 2 pixels). The cluster distance
between two given clusters is the minimum distance between any two trajectories in the two clusters.
The distance between trajectories is computed as the mean-centered Euclidean distance between
non-occluded trajectory points; this distance is assumed to be undefined (i.e. not counted when
comparing clusters) if there are less than 10 frames of overlap. Listing 1 gives a Python-pseudocode
implementation of the above.

6 Quantitative Validation of the Human Annotation Procedure

6.1 Validation on Simulated Videos

While it is difficult to validate our annotation procedure on real data, we can easily do so on synthetic
data where the ground truth is known. We annotate videos with length 2-seconds (24-frame) from
the Kubric dataset [1], where we have known ground truth point tracks. Annotators are instructed
to label 3 points on any object up to a maximum of 10 objects (up to 30 points per video). We
instruct annotators to choose points which are visible in the first frame, and treat those as queries for
computing ground truth tracks.

Because it is a graphics package, Kubric contains all the information required to obtain perfect
ground-truth tracks for any point the annotators choose. We can compare the annotated tracks to the
ground truth using the same metrics proposed in the original point tracking task.

To make the videos more representative of realistic annotation challenges, we simulate camera jitter
(not present in MOVi-E), which is a common phenomenon in many real-world videos. We also
increase the framerate from 12 FPS to 25, to match our real videos. All generated videos are included
in our supplementary html files. Annotators are instructed to label 3 points on any object up to a
maximum of 10 objects (up to 30 points per video). We can compare the annotated tracks to the
ground truth. In both cases, annotation was performed at 1024 × 1024 resolution, although the
evaluation is still done at 256 × 256 pixels to be consistent with our evaluation procedure. The
most intuitive method is the fraction of points with error less than a given threshold, although for
completeness we include all metrics proposed for evaluation.

Table 1 gives our full results, demonstrating the accuracy of our annotators given the optical flow
track assist algorithm. Table 1 also compares results with and without the proposed optical flow track
assist algorithm. We see non-trivial improvements in accuracy with the proposed tool, especially
on the metrics emphasizing higher levels of precision: for instance, the error rate for pixels < δ1 (2
pixels away) has been cut by almost half, and for < δ0 (1 pixel away) it has increased by over 25% in
absolute terms. This is true even though annotation was done much faster: time was reduced from 50
minutes per video to 36 minutes per video by using the OF track assist.
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import numpy as np

def track_dist(t1, t2):
vis = np.logical_and(t1.raw_vis, t2.raw_vis)
if np.sum(vis.astype(np.float32)) <= 10:

return float('inf')
xy1 = t1.t_xy[vis]
xy2 = t2.t_xy[vis]
offset = np.mean(xy1 - xy2, axis=0, keepdims=True)
xy2 = xy2 + offset
dist = np.sqrt(np.sum(np.square(xy1 - xy2), axis=-1))
return np.mean(dist)

def cluster_dist(c1, c2):
min_dist = float('inf')
for t1 in c1.children:

for t2 in c2.children:
d = track_dist(t1, t2)
min_dist = min(d, min_dist)

return min_dist

def all_dists(clusters):
n = len(clusters)
dists = np.zeros((n, n)) + float('inf')
for i in range(n-1):

c_i = clusters[i]
for j in range(i+1, n):

c_j = clusters[j]
if c_i and c_j are not merged:

dists[i, j] = cluster_dist(clusters[i], clusters[j])
return dists

def greedy_cluster(xy, occ, dist_thresh=2/256):
"""
Agglomerative trajectory clustering.

xy: [N, T, 2] shaped batch of N trajectory coordinates.
occ: [N, T] shaped batch of N trajectory occlusions.
dist_thresh: float, distance threshold for merging clusters.
"""
# initialize with one cluster per trajectory
clusters = []
for i in range(xy.shape[0]):

clusters.append((xy[i], occ[i]))
# compute all NxN pairwise trajectory distances
dists = all_dists(clusters)
while np.min(dists) < dist_thresh:

min_ij = np.argmin(dists)
i, j = np.unravel_index(min_ij, dists.shape)
# merge trajectories i and j (impl omitted)
...
# re-compute trajectory distances:
dists = all_dists(clusters)

return clusters

Listing 1: Agglomerative clustering of trajectories.
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method AJ < δxavg OA Jac. δ0 Jac. δ1 Jac. δ2 Jac. δ3 Jac. δ4 < δ0 < δ1 < δ2 < δ3 < δ4

No OF 74.7 83.1 97.4 25.8 64.2 90.5 96.2 96.9 41.2 78.8 96.3 99.5 100.0
With OF 81.4 90.0 96.9 49.5 76.1 90.0 95.2 96.0 66.6 87.5 96.2 99.5 100.0

Table 1: Annotation accuracy with and without the optical flow track assist algorithm. Jac. δx is the
Jaccard metric measuring both occlusion estimation and point accuracy, with a threshold of δx; AJ
is the Average Jaccard across x between 0 and 4. < δx is the fraction of points not occluded in the
ground truth for which the prediction is less than δx, and < δxavg is the average across x between 0
and 4. Occlusion Accuracy is denoted with OA. We set δ = 2.

OA < δ0 < δ1 < δ2 < δ3 < δ4

95.5 51.8 78.3 92.5 98.7 100.0

Table 2: Inter-rater agreement on the same set of point tracks for DAVIS. < δx is the fraction of
points not occluded in the ground truth for which the prediction is less than δx, x between 0 and 4.
We set δ = 2. Occlusion Accuracy is denoted with OA.

6.2 Validation on Inter-Rater Agreement

We further conduct inter-human agreement studies on the DAVIS point track videos. For the total
of 650 points in 30 videos, we select the first-frame points from the first round of annotation, and
ask 2 human raters annotate the following frames for each point. We then compare the similarity
between the 2 human annotations using our established metrics. Table 2 shows the human agreement
results. On average, human on occlusion with 95.5% accuracy, and 92.5% on location with a 4 pixel
threshold. Note that the metrics are evaluated under 256x256 resolution.

7 TAPNet Implementation and Analysis

We propose the first end-to-end deep learning algorithm we are aware of for tracking any point.
The network takes a video and a set of query points as inputs and outputs full tracks. The critical
component of our system is the cost volume, whereby features for a query point are compared to
features at every other location in the video. We then apply a simple network on top of the cost
volume at each frame to predict the position and occlusion.

7.1 Cost Volume

Any tracking problem involves comparing the query point to other locations in the video in order to
find a match. Our approach is inspired by cost volumes [3, 13, 18], which have proven successful for
optical flow. We first compute a dense feature grid for the video, and then compare the features for
the query point with the features everywhere else in the video. Then we treat the set of comparisons
as if it were a feature itself, and perform more neural network computation on top. Cost volumes can
detect repeated patterns even when those patterns are unlike those seen in training. Unlike prior work,
however, we compute an multi-headed cost volume, i.e., we compute multiple feature vectors for
every spatial position, and concatenate the cost volumes for each. This gives us a richer feature for
further processing.

Figure 6 shows the procedure. Given a video, we first compute a feature grid F , where Fijt is a
d-dimensional feature representing the image content at spatial location i, j and time t. For this, we
use a TSM-ResNet-18 [12] with time shifting in only the first two layers, as we find that single-frame
feature maps, and feature maps with a larger temporal footprint, tended to perform worse; see
supplementary for details. This feature grid is broken into n heads along the channel axis, each of
dimension d/n. Given a query point at position xq, yq and time tq, we extract a feature to represent
it from the feature grid Ft via bilinear interpolation on the grid, at position iq, jq, tq. We call the
extracted feature Fq . We then compute the cost volume as a matrix product: i.e., if each feature in the
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Figure 6: Cost volume computation for a single query. Features for all video frames are extracted
using a per-frame ConvNet. Features for the given query point location (i, j) in the tq–th frame are
then obtained through 2D bilinear interpolation. The features are dotted with the spatial features from
a different time t∗ to obtain the corresponding cost volume.
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Figure 7: Inferring position and occlusion from a cost volume. The cost volume slice (for frame
t∗ and query q) is fed into two branches: occlusion and coordinate regression. The occlusion branch
collapses the spatial features through pooling before regressing a scalar occlusion logit. The point-
regression branch collapses the channels through a Conv layer, applies a spatial softmax, and then
applies a soft argmax (weighted average of grid-coordinates within a Euclidean ball B).

feature map F is shape n× (d/n), then the output cost volume Cqijt = F⊤
q Fijt. Thus, Cq can be

seen as a 4-D tensor with n channels.

7.2 Track Prediction

The next step is to post-process the cost volume associated with the query point, which is done
independently for each frame. The architecture for one frame is shown in Figure 7. After a first
Conv+ReLU, we split into two branches: one for occlusion inference, and the other for position
inference. In practice, we find that standard average pooling for occlusion estimation results in
unstable training. Therefore, our occlusion branch uses a Conv (32 units), followed by spatial average
pooling. This is followed by a linear layer (16 units), a ReLU, and another linear layer which produces
a single logit.

For position inference, we apply a Conv layer with a single output, followed by a spatial softmax.
This is followed by a soft argmax [9], which means computing the argmax of the heatmap, followed
by a spatial average position of the activations within a radius around that argmax location.

Mathematically, let us assume that Sqijt ∈ R is the softmax activation at time t and spatial position
i, j for query q. Let G be a spatial grid, i.e., Gij ∈ R2 is the spatial position of Sij in image
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coordinates. Finally, let (̂iqt, ĵqt) be the argmax location of Sqt. Then we compute the output position
as:

pqt =

∑
ij 1

(
||(̂iqt, ĵqt)− (i, j)||2 < τ

)
SqijtGij∑

ij 1
(
||(̂iqt, ĵqt)− (i, j)||2 < τ

)
Sqijt

(1)

τ here is a constant, typically equal to 5 grid cells. Note that some parts of this expression are not
differentiable: notably the thresholding and the argmax. However, the gradients will still point in
the right direction, as errors will typically cause the network to shift the overall mass of the softmax
toward the ground truth location [9].

7.3 Loss Definition

Our loss for each query point then has the following form:

L(p̂, ô, pgt, ogt) =
∑
t

(1− ogtt )LH(p̂t, p
gt
t )− λ

[
log(ô)ogt + log(1− ô)(1− ogt)

]
(2)

Here, LH is the Huber loss [4]. pgt is the ground-truth position, and ogt is a (binary) ground truth
occlusion. That is, we treat position as a simple regression problem for frames where the point is
visible. We use a Huber loss because we expect occasional large errors, and we don’t want to penalize
these excessively. For occlusions, the loss is a standard cross entropy. λ is the trade-off parameter.

7.4 Other Architectural Details

After computing the cost volume, we feed the output to a Conv layer with stride 1, a 3× 3 receptive
field, and 16 hidden units, followed by a ReLU.

The occlusion branch takes this output and applies a convolution with stride 2, 3× 3 receptive field,
and 32 hidden units. This is followed by average pooling, a linear layer with 16 hidden units, ReLU,
and a final linear layer for output.

The prediction branch applies a Conv layer with stride 1, 3 × 3 receptive field, and 1 hidden unit,
which produces the input for the softmax, which is then used in the soft argmax above.

When computing the Huber loss, we first rescale both the prediction and ground truth coordinates
to be in the range [-1,1]. For each coordinate, we compute the Euclidean distance ||(x̂qt, ŷqt) −
(xgt

qt, y
gt
qt)||2 =

√
(xqt − x̂gt

qt)
2 + (yqt − ŷgtqt)

2). Then we apply a Huber loss with a threshold 1/32

(which corresponds to 4 pixels error in the 256× 256 images we train on). The Huber loss is scaled
much smaller than the sigmoid cross entropy, so we set λ = 100.

Our TSM-ResNet-18 follows ResNet-18: i.e., it has no ‘bottleneck’ layers, so each residual unit is
2 convolutional layers with a 3× 3 spatial receptive field. Each ‘layer’ contains 2 units. It uses no
temporal downsampling, meaning that each output has a temporal receptive field of 9 frames. The
final output has 256 channels.

7.5 Training

We use a cosine learning rate schedule with a peak rate of 2e−3 and 5,000 warmup steps. We train
on 64 TPU-v3 cores with a batch size of 4 MOVi-E 24-frame videos per core. Each model trains
for 50,000 steps. We use an Adam optimizer with β1 = .9 and β2 = .95. We also use weight
decay of 1e−2, applied after the Adam rescaling (i.e. Adam-W). We use cross-replica batch norm in
the ResNet/TSM-ResNet backbone, but don’t use batch norm anywhere in or after the cost volume
computation.

We performed minimal hyperparameter tuning by observing transfer performance primarily on DAVIS,
tuning learning rate, model size, and optimizer parameters in separate sweeps. Each experiment
requires roughly 24 hours. Roughly 25 full-scale experiments were required to arrive at the final
model.
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Method AJ < δxavg OA Jac. δ0 Jac. δ1 Jac. δ2 Jac. δ3 Jac. δ4 < δ0 < δ1 < δ2 < δ3 < δ4

Full Model 46.6 60.9 85.0 11.3 31.6 53.3 65.8 71.2 19.8 46.4 69.3 81.7 87.4
ResNet-18 46.0 60.7 85.8 9.6 29.5 52.7 66.2 71.9 17.6 45.0 69.8 82.8 88.6
Full TSM 45.4 60.1 83.7 10.8 31.0 52.1 64.0 69.1 19.2 45.9 68.5 80.6 86.4
No Soft Argmax 45.8 59.0 84.6 10.4 30.8 52.6 64.8 70.2 18.2 44.8 67.4 79.1 85.3

Table 3: Ablation of the architectural choices for our model on TAP-Vid-Kinetics. ResNet-18 has no
temporal receptive field in the backbone, whereas Full TSM uses time-shifting at every layer, giving
a large temporal receptive field. No Soft Argmax replaces the soft argmax with a simple MLP.

Query method Kinetics DAVIS RGB-Stacking
Strided 46.6 60.9 85.0 38.4 53.1 82.3 59.9 72.8 90.4
First 38.5 54.4 80.6 33.0 48.6 78.8 53.5 68.1 86.3

Table 4: Comparison of performance for the same output tracks, but with different query points.
‘First’ refers to using only the first visible point in each trajectory as a query, whereas ‘Strided’ means
sampling multiple query points per trajectory at a stride of 5 frames.

7.6 Model Ablations

We next ablate our design decisions. For this, we use TAP-Vid-Kinetics, the largest and most realistic
dataset available to us. We follow the same training setup as TAP-Net for all experiments.

We first ablate our backbone network. Recall that we use a TSM-ResNet-18, with shifting only in the
first two layers. Thus we try TSM-ResNet-18, which uses time shifting at every layer, and ResNet-18,
without time shifting. We also tried replacing the soft argmax operation with a 2-layer MLP regressor
(128 hidden units, ReLU activations) that operates directly on the output heatmap.

We see that all of these changes harm the performance to some extent. Surprisingly, TSM-ResNet
performs worse despite allowing the network to integrate across more frames; one possible interpreta-
tion is that it gives the network an opportunity to memorize motions in the Kubric dataset. On the
other hand, giving no temporal information is also somewhat worse, particularly for the Average
Jaccard metric (though not for occlusion estimation), suggesting that this method makes errors on
occlusion estimation even when the location is correct and vice-versa. One possible interpretation
is that with a small amount of temporal information, the network can do a better job of segmenting
the object of interest, which allows the network to track and estimate occlusion for the body as a
whole. Allowing this kind of reasoning while preventing memorization of motion patterns presents
an interesting challenge for future research. The soft argmax is also important, possibly because it
enforces that the network performs matching rather than memorizing motion patterns.

8 Query sampling strategies

Recall that our prediction algorithms take as input query points, which specify which point needs to
be tracked. For most of this work, we assume that all points are treated equally: any point along a
track may be sampled as a query. In practice, we sample queries in a strided fashion: every 5 frames
starting at frame 0, we sample a query for every visible point. This means we may have multiple
queries with the same target output trajectory. An alternative approach which is potentially relevant in
an online setting is to start with the first frame where the point is visible, and track only into the future
(during evaluation, we ignore the predictions for frames earlier than the query frame, as the algorithm
can easily assume that these points are occluded, and we don’t want to encourage researchers to
hardcode this). In practice, this setting is harder, because on average, the query frame will be farther
from each output frame. However, we include both in order to facilitate comparisons with online
methods. Table 4 shows the comparison for the three relevant datasets. Kubric is not included, as
it uses a different, randomized sampling strategy detailed in the original paper [1]. Note that query
sampling is a potential area of improvement for this dataset: some queries may be ambiguous if they
are, e.g., behind translucent objects or very close to occlusion boundaries. However, we leave the
problem of query sampling to future work.
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Kinetics Kubric DAVIS RGB-Stacking JHMDB PCK
Method AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA @0.1 @0.2

Kubric only 46.6 60.9 85.0 65.4 77.7 93.0 38.4 53.1 82.3 59.9 72.8 90.4 62.3 79.8
Finetune Kinetics 51.6 64.9 90.4 59.9 73.1 90.8 41.5 56.0 82.4 63.2 74.7 90.2 63.4 80.1
Finetune JHMDB 36.4 58.6 71.3 51.4 69.9 83.9 31.6 49.0 77.0 53.0 69.1 90.9 71.3 87.7

Table 5: TAP-Net performance after fine-tuning. We see that fine-tuning on JHMDB harms
performance on all datasets except JHMDB by a large margin, but finetuning on Kinetics improves
performance on JHMDB, demonstrating the domain transfer properties of the TAP task when the
dataset contains arbitrary points tracked on a diverse YouTube dataset. The highlight numbers show
the gap specifically.

9 Implementation of the Comparison to JHMDB

Numerous prior methods which aim to benchmark class-agnostic point tracking do so using a dataset
called JHMDB. These algorithms typically begin by training self-supervised point tracking algorithms
in a class-agnostic manner, and then applying them directly to JHMDB in a semi-supervised manner:
joint locations are given on the first frame, and the algorithm must track them over time. The
popularity of JHMDB used in this way [5, 7, 8, 10, 15–17] underscores the demand for point tracking
evaluations in the literature.

However, JHMDB provides ground truth locations exclusively for human joint locations, which
are not points on the surface of objects, but rather inside them. This means that tracking based on
appearance alone is poorly defined (algorithms must somehow infer the depth of the points beneath
the surface). Furthermore, it gives advantages to algorithms that are biased toward humans, ignoring
common cases in robotics where the surfaces of inanimate objects must be tracked. In this section,
we aim to show the limitations of using JHMDB for class-agnostic point tracking by showing that the
dataset isn’t as general as TAP-Vid. Specifically, we will train a straightforward model (TAPNet) on
TAP-Vid and demonstrate that it can improve class-agnostic tracking on JHMDB (resulting in SOTA
performance on this dataset). However, training on JHMDB actually harms tracking on TAP-Vid, as
it ignores many important cases of point tracking.

We take the full model pretrained on TAP-Vid-Kubric and fine-tune using the same settings on both
Kinetics and JHMDB. For simplicity, we use no data augmentation on either dataset; both datasets are
resized to 256x256. We sample 128 queries from each video uniformly at random from all possible
queries (unoccluded tracked points), and feed the corresponding tracks as training examples. We
train with 1 video per TPU core, and otherwise use the same training setup as for training on Kubric
(64 TPU-v3 cores, Adam optimizer), but we train for only 5000 steps (100 warmup steps followed by
a cosine schedule) with a much smaller learning rate of 1e− 5 (otherwise the network overfits badly
to the relatively small number of points). For JHMDB, we fine-tune on the full train+val dataset, but
we evaluate (after Kinetics fine-tuning) on only the JHMDB val-set in order to be comparable with
prior results in the literature.

Table 5 shows the performance across all datasets with and without finetuning. Not that we’re
particularly interested in transfer (salmon-colored rows); i.e., it’s not surprising that performance on
Kinetics is best for the model finetuned there, and same for JHMDB, as we train on the evaluation
images for both. However, what’s interesting is that our full model obtains 62.3 PCK@0.1 and 79.8
PCK@0.2 on JHMDB when trained only on Kubric, but 63.4 PCK@0.1 and 80.1 PCK@0.2 after
finetuning on Kinetics. However, the model finetuned on JHMDB obtains 58.6 < δxavg on Kinetics,
and 36.4 Average Jaccard, versus 46.6 and 60.9 respectively training purely on synthetic data. Note
the loss of performance on occlusion accuracy and Average Jaccard are perhaps not so surprising,
as JHMDB contains no information about occlusion (the evaluation assumes that points which are
unoccluded in the first frame are unoccluded in all frames, and we train on all such points). However,
< δxavg ignores occlusion, and TAP-Net is still substantially worse with JHMDB finetuning than
without it. We see a consistent downtrend in < δxavg (and average Jaccard) throughout training for all
datasets, suggesting that this is not merely an issue of overfitting, but rather a fundamental problem
with the JHMDB dataset.
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10 Baselines

Kubric-VFS-Like We first evaluate a point tracking algorithm inspired by VFS [17] released as
part of Kubric [1], and the only algorithm which can be applied directly to our setup. This algorithm
uses a contrastive loss to learn features, contrasting points along the trajectory with points off of the
trajectory. At test time, this algorithm computes dot products between the query features and the
features at every other frame, before applying a spatial soft argmax similar to the one described in
equation 1 for each frame. It finally estimates occlusion via cycle consistency: i.e., by computing
correspondence backward from the target frame to the query frame, and seeing if the correspondence
is the same. Note that our metrics don’t exactly match those from the original paper [1]; the codebase
is the same, but we used a ResNet-18 backbone to match this paper, and unlike the original work, we
include the query points in the evaluation. We ran each evaluation on an internal V100 GPU; the full
set took approximately 1 hour to run.

RAFT [14] This algorithm performs near state-of-the-art for optical flow estimation, i.e., tracking
points between individual frames. We extend this to multiple frames by integrating the flow from the
query point: i.e., we use bilinear interpolation of the flow estimate to update the query point, and
then move to the next frame and repeat. If the point is outside the frame, we use the flow value at the
nearest visible pixel. While RAFT is extremely accurate over short time scales, this approach has
some obvious problems with long time scales. First, it provides no simple way to deal with occlusions
(we simply mark points as occluded if they’re outside the frame). Furthermore, it has no way to
recover from errors, so slight inaccuracies on each frame tend to accumulate over time even when the
point remains visible. Experiments were on an internal V100 GPU and took approximately 24 hours.

COTR [6] Like RAFT, COTR operates on pairs of images; however, it was designed to handle
substantially more motion between images. The underlying architecture uses a transformer to find
global scene alignment, followed by more local refinement steps to ensure high accuracy. It is trained
on MegaDepth [11], which contains real-world scenes and uses reconstruction to get ground-truth
correspondence. Due to this robustness, we use a different strategy from RAFT to apply COTR to
videos: we compare the query frame to every other frame in the video, and find correspondences
directly. COTR has no simple mechanism for detecting occlusions, so we apply the cycle-consistency
strategy proposed in Kubric-VFS-Like: given correspondences between the query and target frame,
we take the points in the target frame and find their correspondence in the query image. If the distance
to the original query is greater than 48 pixels, we mark the point as occluded. Note that it’s very
expensive to run the model in this way: if there’s queries on every frame, then we need to run COTR
on every frame pair. Each pair takes 1 second with 30 points. Thus, for evaluation, we simplify our
benchmark and take only queries from a single frame; thus these numbers are not precise, but good
enough to get an idea of COTR’s performance on our benchmarks. Experiments were on a GCP
machine with 4 A100 GPUs and required approximately 20 hours.

PIPs [2] We ran Persistent Independent Particles (PIPs) following the "chaining" workflow, as the
bulk of the algorithm is intended to operate on 8-frame segments. PIPs extracts features for both
the query point and the rest of the video using a ConvNet, similar to TAP-Net. With the chaining
workflow, tracks on each segment are estimated one-by-one, with the final point of each segment
used to initialize the subsequent segment. Given an initial position estimate for a segment, it refines
both the query features and the output trajectory using an MLP-Mixer applied iteratively. Similar to
TAP-Net, the input for this refinement network includes the dot product between the query features
and the features in the other frames, although in the case of PIPs, the dot products come from a local
neighborhood around the spatial position estimate. The initial spatial position for each 8-frame chunk
is the last spatial position that the point was estimated to be visible. As PIPs operates only forward
in time, we run it twice for each query point: once forward, and once backward in time. Otherwise,
we run the algorithm without modification, directly using its visibility estimates with a threshold of
0.5 to estimate occlusion. We found that the chaining algorithm requires more than 30 minutes to
process a 250-frame video at 256 × 256 resolution, meaning that we only had time to run on 167
random Kinetics videos before the deadline. Unlike for COTR, however, these results use all points
available in each video. Experiments were run on a GCP machine with 1 V100 GPU and required
approximately 100 hours.
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11 Semantic analysis

Although our dataset is not intended for classification, it is useful to consider the distribution of
labeled objects to understand performance. While DAVIS and RGB-stacking are small enough for
the object distribution to be observed qualitatively, for Kinetics, we had annotators explicitly label the
boxes before adding points. This process was informal, and we don’t control for duplicates or typos;
nevertheless, we show the full list of labels as well as their frequencies in Tables 6–9. We see a large
variety of objects, although unsurprisingly for Kinetics, they tend to be people, clothing, and moving
objects that are relevant for human actions, across indoor and outdoor, as well as several types of
animals. We manually broke these into broader categories, and found 26.1% are on humans, 23.4%
on clothing (on or off the body), and 50.4% are on other types of objects. This is consistent with the
instructions (to target moving/foreground objects), and we believe it makes the dataset relevant for
agents interacting with humans and performing tasks in human environments.
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person:7012 flexi:9 hacksaw:3 lady:3 cleaning brush:3
shoe:842 mini car:9 statue table:3 black curtain:3 sleeveless:3
pant:833 plant pot:9 dried palm leaves:3 electric pencil sharpner:3 strap:3
tshirt:796 cat:9 blue blanket:3 white jacket:3 aquarium:3
object:614 weight plate:9 blue mat:3 flowers:3 green grill:3
shirt:608 musical instrument:9 steel tap:3 window sheet:3 tumbler:3
hand:542 clock:9 silver foil:3 floor mat:3 arrow holder:3
car:447 comb:9 toy train tracker:3 decor:3 roll:3
short:413 paper roll:9 gas:3 frame stand:3 elastic band:3
t shirt:412 ac:9 plastic plate:3 wash basin:3 welding machine:3
cap:377 roller:9 sledge:3 bathtub:3 cotton box:3
chair:372 lamp light:9 mini trampoline:3 showcase plant:3 steel rods:3
box:370 screw tighter:9 pendant:3 spinning top:3 white scooter:3
table:347 garland:9 snake:3 hook:3 propane fueling station:3
bottle:310 tower:9 face cream:3 wall hanger:3 blue scooter:3
jacket:247 black coat:9 headphone:3 mining helmet:3 hanging handle:3
helmet:235 plastic item:9 violin stick:3 color box:3 wall decor:3
ring:223 barrier:9 circular frame:3 sleeve dress:3 thermocol:3
light:215 tree pot:9 skiers:3 crocodile:3 green bag:3
watch:214 crown:9 system:3 christmas tree:3 machine part:3
bowl:209 chess piece:9 paint spray machine:3 white tray:3 wood object:3
cloth:207 bedsheet:9 iron grill:3 helmate:3 screwdriver:3
glove:186 wrist band:9 marker pen:3 red shirt:3 concrete fire bowl:3
machine:186 pencil:9 yarn:3 righthand:3 side pin:3
bag:176 glouse:9 plastic glass:3 streetlight:3 whistle:3
pole:167 yacht:9 glass bowl:3 trumpet:3 icebreaker:3
toy:163 wall poster:9 p:3 whiper:3 sushi food:3
plate:158 headphones:9 pouch:3 shaving razor:3 plaster roller:3
spects:150 red button:9 mic stand:3 golfstick:3 gift wrap:3
ball:147 blue tshirt:9 car cover:3 banner stand:3 plaster:3
frame:147 lantern:9 staff:3 flex:3 blue cover:3
wood:140 black short:9 chips:3 bean bag:3 spects frame:3
door:139 wood board:9 handband:3 egg:3 snow scooter:3
dress:138 black top:9 snow bike:3 holdingbelt:3 switch box:3
paper:135 bat:9 bed cot:3 air pump machine:3 man hole:3
glass:132 photographer:9 yellow belt:3 blue barrel:3 embroidery hoop ring:3
vehicle:132 jug:9 shark:3 dumbell:3 staple puller:3
stick:119 wood block:9 plastic box:3 broom stick:3 cutting plier:3
sofa:117 wind cart:9 luggage bag:3 right gloves:3 clothes tub:3
coat:115 electric pole:9 double tape:3 plunger:3 black bucket:3
window:114 instrument:9 decoration light:3 western toilet seat:3 clothes bag:3
board:108 light stand:9 baw:3 cutting machine:3 silver stick:3
rod:105 flying disc:9 refrigerator:3 pallet:3 wooden roller:3
rope:102 vacuum cleaner:9 teeth braces:3 black dress:3 support board:3
stand:97 oil bottle:9 side mirror:3 blade:3 metal water pipe:3
tool:93 mouse:9 tool box:3 meat pieces:3 paper sheet:3
knife:92 weight lift:9 machinery equipment:3 groove machine:3 automatic door operator:3
flag:92 watermelon:9 cable:3 white short:3 chef cap:3
pipe:91 zip:9 putty plate:3 measuring tape:3 green apple:3
bucket:91 fish:9 coupling pipe:3 baby boy:3 petrol holder:3
band:86 cleaner:8 stairs:3 wooden spoon:3 car petrol cap:3
mat:84 card shelf:8 neck support:3 white pad:3 petrol pipe:3
right hand:81 cushion:8 glass object:3 black cup:3 orange light:3
brush:79 bandage:8 gear shifter:3 red block:3 white light:3
curtain:76 red box:8 drilling machine:3 shield:3 red light:3
thread:75 black t shirt:8 hinge:3 electric stove:3 car bumper:3
hat:75 red ball:8 door engis:3 streeing:3 dumbbell plate:3
book:75 wooden board:8 goal post:3 metal chrome polish bottle:3 flex banner:3
left hand:74 carpet:8 fedlight:3 exhaust pipe:3 podium:3
chain:74 mixer:7 yellow bucket:3 wooden staircase:3 baby mattress:3
dog:72 spatula:7 wood bench:3 ladder stand:3 wood tray:3
mirror:72 fire extinguisher:7 paino:3 bubble bottle:3 sharpner:3
horse:72 googles:7 western top:3 scrubber:3 tissue box:3
belt:70 tile:7 black item:3 water sprinkler:3 brown sheet:3
wire:70 bottle cap:7 coconut:3 chandelier:3 cup board:3
hand band:63 carry bag:7 green mat:3 cot:3 fruits:3
socket:63 wall clock:7 art sheet:3 pumpkin piece:3 snow lifter:3
cover:62 straightener:6 blue egg:3 backet:3 wood cutting machine:3
button:61 key:6 pink basket:3 exercise suit:3 wood box:3
cycle:60 elephant statue:6 yellow egg:3 watermelon piece:3 snow toy:3
goggles:58 specs:6 dog sofa:3 torch light:3 vaccum pipe:3
bike:58 bridge:6 left gloves:3 leather hand band:3 carry baby bag:3
handle:56 yoga mat:6 green button:3 hoop hula:3 straw:3
photo frame:55 mattress:6 suitcase:3 rings:3 pink jacket:3
speaker:55 plastic bowl:6 light lamp:3 white hoody:3 mitten:3
spectacles:55 black pant:6 car engine:3 soap bubble sticks:3 pepper crusher:3

Table 6: Full list of object categories named by annotators in TAP-Vid-Kinetics. Number of
points per category is listed next to the category.
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basket:54 green rope:6 injector pipe:3 white item:3 oil container:3
poster:54 flower:6 tube:3 pagdi:3 mug jar:3
mike:53 wooden pole:6 desktop:3 wooden mud pot:3 wafer:3
pot:53 basketball board:6 support rod:3 tyrecap:3 orange rope:3
girl:52 cutting player:6 machine tool:3 black paper:3 paint bottle:3
mobile:51 wall:6 woolen thread:3 right ring:3 table cover:3
boy:51 paper rocket:6 weaving needle:3 left bracelet:3 dolpin:3
switch board:51 rolling mat:6 trolly:3 guitar box:3 railing bridge:3
packet:51 doughnut:6 brown bricks:3 baby chair:3 ice box:3
ear ring:48 washing machine:6 train toy:3 refridgerator:3 cold jar:3
top:47 clothes:6 chisel:3 string:3 black rod:3
right shoe:46 motorcycle:6 orange pencil:3 food packet:3 net holder:3
spoon:46 scooter:6 white marble:3 swim glasses:3 exercise ball:3
bed:46 left glove:6 paper punch:3 traning fin:3 big basket:3
cup:45 jack:6 papers:3 scuba diving fins:3 ash shirt:3
tyre:45 blue jacket:6 backpack:3 hookah pipe:3 wooden base:3
card:45 red bag:6 knife box:3 lorry:3 hair straightener:3
pan:44 rim:6 phone mount:3 chopping board:3 blue board:3
equipment:43 chimney:6 ornament:3 cake piece:3 cement brick:3
apple piece:42 sandle:6 motor switch:3 steel plate:3 pompoms:3
boat:42 speedometer:6 seat cover:3 decorative:3 gift box:3
hair band:42 wind gong:6 sign:3 painting board:3 exam pad:3
jar:42 nut:6 milk box:3 key hole:3 wooden floor:3
hoodie:41 number plate:6 mixer grinder:3 glass pipe:3 stretcher:3
net:40 blue joystick:6 steel net:3 frock:3 powered parachute:3
tray:40 swim suit:6 white bricks:3 music instrument plate:3 ring box:3
guitar:40 stage:6 blue button:3 crash cymbal:3 stopper cone:3
left shoe:40 tire:6 white machine:3 card door lock:3 gas stove:3
stool:39 digging tool:6 glass bottle:3 selfie stick:3 wheel barrow:3
kid:39 ribbon:6 carrot piece:3 banana:3 wax strip:3
wheel:39 steel table:6 wing screw:3 basketball hoop:3 router box:3
bracelet:39 animal:6 microphone stand:3 filmy equipment:3 small tin:3
parachute:38 binding rod:6 sand tray:3 wooden pad:3 pipe slide:3
mic:37 steel rod:6 brown pant:3 hand towel:3 ear stud:3
scissor:36 necklace:6 extinguisher:3 water jug:3 shorts:3
stone:36 rightshoe:6 coke bottle:3 plates:3 barbell rod:3
socks:35 hipbelt:6 purse:3 mud remover:3 score card:3
pillow:35 display:6 tripod:3 leaves:3 baseball bat:3
television:35 inner wear:6 ridge gourd:3 swim fin:3 id card:3
rock:35 log:6 costume:3 paint spray:3 black grill:3
slipper:35 metal sheet:6 ridge gourd piece:3 chain locket:3 music instrument:3
camera:34 utensil:6 pink shirt:3 ceiling ac vents:3 pad plates:3
apple:34 cucumber:6 cable roller:3 pink object:3 pool bridge:3
pen:33 wall frame:6 airtrack:3 mike stand:3 air meter:3
monitor:33 goal:6 nose ring:3 baby crib:3 swimming item:3
child:33 diving shoe:6 steel tray:3 wooden stool:3 eyebrow pencil:3
house:33 duster:6 igloo house:3 metal wall design:3 eye lash shaper:3
bolt:33 time adjuster:6 wooden table:3 brake:3 curling machine:3
tub:33 white bin:6 vechile:3 rubber:3 kids play slide:3
towel:33 bus:6 blue short:3 pad stand:3 plastic ring:3
black object:33 wooden cupboard:6 yellow tshirt:3 round table:3 pink tshirt:3
jeans:32 play card:6 green short:3 fruit basket:3 water skater:3
cupboard:32 hairclip:6 woodframe:3 mike transmitter:3 sand machine:3
tie:30 charger:6 cock:3 silver nut:3 extension socket:3
statue:30 swim cap:6 mannequin:3 water pot:3 paint tube:3
baby:30 trolley:6 soft boat:3 yellow bowl:3 cotton cake box:3
bangle:30 clay:6 fire stand:3 snow shovel:3 weight:3
red object:29 wooden bar:6 yellow handle:3 book rack:3 round comb:3
lamp:29 blue jeans:6 stroller:3 white pipe:3 creddle:3
white box:28 signboard:6 back wheel:3 black stand:3 glass plate:3
sheet:28 bread piece:6 shell:3 fire wood:3 water safety:3
hammer:28 brown object:6 beanie:3 small girl:3 cake plate:3
dustbin:27 white cap:6 yellow rope:3 chess board:3 white stool:3
bicycle:27 dumble:6 iron handler:3 pink box:3 hair roller:3
laptop:27 wooden chair:6 mushroom:3 pink book:3 dish wash bottle:3
holder:27 potted plant:6 strings:3 meat:3 solar board:3
bench:27 head cap:6 wick:3 helicopter:3 screw holder:3
candle:27 red thread:6 black board:3 statue head:3 nail polish:3
needle:27 measuring tool:6 black half sleeve shirt:3 finger cap:3 paper packet:3

Table 7: Full list of object categories named by annotators in TAP-Vid-Kinetics, continued.
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ladder:26 shoe rack:6 oxygen tank:3 steel item:3 peeler:3
phone:25 white block:6 toy track:3 girl dress:3 oil tub:3
sign board:25 glass jar:6 purple jacket:3 short pant:3 locker:3
tree:25 food:6 fuel can:3 surfboard:3 water can:3
dumbbell:25 painting:6 match stick:3 drum plate:3 support stand:3
rack:25 baby bed:6 pink top:3 door closer:3 white band:3
bow:24 orange:6 footwear:3 wood plank:3 dust bin:3
photo:24 orange slice:6 stove stand:3 gear:3 pine apple:3
mascara:24 giraffe:6 white flower:3 plastic knob:3 white blind:2
doll:24 sheep:6 tape dispenser:3 wooden rack:3 right sock:2
fan:24 metal candle cup:6 balloon toy:3 snowman:3 sketch:2
tap:24 glass table:6 ballon:3 wind instrument:3 pink thread:2
gloves:24 tomato:6 supporter:3 safety cap:3 filter:2
cutter:24 steel object:6 aeroplane:3 window glass:3 saddle:2
earring:24 stainer:6 pineapple:3 dash board:3 stethoscope:2
sweater:23 projector:6 pink bin:3 electric engraving machine:3 foam:2
cake:21 steel box:6 cards:3 wood stand:3 white cardboard:2
blue cloth:21 white strip:6 right indicator:3 orangestool:3 hinges:2
spray bottle:21 sponge:6 left indicator:3 calender:3 saddle rope:2
dolphin:21 door handle:6 match box:3 blinds:3 news paper:2
sticker:21 blue top:6 broom:3 vaccum machine:3 doormate:2
balloon:21 head scarf:6 roti maker:3 game equipment:3 bull ride:2
fence:21 cradle:6 cleaning machine:3 game board:3 pineapple slice:2
drum:21 light pole:6 cabin:3 coolent box:3 box cap:2
steering:21 head band:6 card board:3 funnel:3 grinder:2
banner:21 boxing bag:6 food box:3 infuser:3 bracelette:2
fork:21 cd box:6 pricetag:3 bike delivery box:3 wind manipulator:2
block:21 wardrobe:6 stamps:3 carrot:3 underwear:2
screw:21 door lock:6 gum tube:3 wooden pot:3 white napkin:2
tin:21 woman:6 number sheet:3 showpiece:3 robot toy:2
black box:21 rubber band:6 roughfile:3 stainless steel water jug:3 mobile holder:2
yellow object:20 dish:6 label:3 cigarette pipe:3 oxygen pumping machine:2
berry:20 piano:6 softdrink tin:3 bluetooth:3 gym bench:2
fridge:20 train:6 arrow:3 watering pipe:3 tennis bat:2
white board:20 scale:6 foot:3 radio:3 red rod:2
blue shirt:20 gear rod:6 yellow short:3 decor light:3 green pant:2
stove:20 slide:6 dressing table:3 disco light:3 orange shirt:2
remote:20 water bottle:6 cristmas tree:3 music box:3 violet dress:2
oven:19 mixer jar:6 jumping castle:3 drum stick:3 left handle:2
napkin:19 yellow thread:6 machine top:3 music plate:3 flower balloons:2
hanger:18 machine rod:6 bike mirror:3 bell plate:3 yellow button:2
potato:18 wool:6 front shield:3 windgong:3 frontwheel:2
steel:18 battery box:6 swim board:3 air pump:3 black band:2
white object:18 microphone:6 torch:3 spading stick:3 watertin:2
vest:18 iron sheet:6 bra pad:3 pool lane rope:3 pertson:2
tissue:18 thread bundle:6 bra tag:3 bee box:3 vehcile:2
cow:18 black button:6 sewing machine:3 steel glass:3 hanging light:2
skate board:18 car seat:6 blue object:3 tea pot:3 fishing stick:2
lighter:18 white t shirt:6 cotton:3 sleeve shirt:3 plane:2
flute:18 crane:6 cleaning mop:3 fencing mesh:3 fishing rod:2
hand glove:18 weight equipment:6 decoration item:3 cooling glasses:3 plastic disk:2
black bag:18 spray:6 white ball:3 sticky notes:3 iron stand:2
shovel:18 red carpet:6 white boat:3 album:3 table fan:2
screen:18 steamer:6 legs:3 stick paper:3 shed:2
apron:18 wooden bench:6 wallet:3 file handle:3 goat:2
headband:17 commode:6 globe:3 hand kerchief:3 head cover:2
plant:17 wristband:6 trimble scanning:3 id tag:3 fencing rod:2
seat:17 wiper:6 avacado:3 snow stick:3 dartboard:2
sock:16 sword:6 handles:3 metal tool:3 blue banner:2
red cloth:16 leftshoe:6 rubiks cube:3 treadmill:3 textperson:2
knob:16 scissors:6 right mirror:3 spin bike:3 shampoo bottle:2
coin:15 books:6 metal wire:3 left slipper:3 tperson:1
ship:15 green box:6 chopstick:3 tongs:3 boxcap:1
umbrella:15 extension box:6 nail cutter:3 wrist belt:3 parchute:1
blanket:15 soap:6 hatchet:3 handwash:3 bracelettle:1
blue box:15 right leg:6 black file:3 honey tray:3 letter e:1
pin:15 traffic cone:6 hand catcher:3 shutter gear box:3 dishwasher:1
tv:15 walkie talkie:6 speed meter:3 gear box:3 frige:1
mask:15 black stick:6 inhaler:3 shop:3 shie:1
drill machine:15 ski:6 horn switch:3 football net:3 wodd:1
brick:15 trunk belt:6 letter m:3 sink:3 coffee maker:1
cabinet:15 boot:6 t shirt roll:3 breather:3 blue suit:1
tape:15 tab:6 menu book:3 handle knob:3 pine apple slice:1
cylinder:15 weight lifting equipment:6 green jacket:3 red machine:3 bandage clip:1
camel:15 blue pant:6 ski helmet:3 show case:3 new paper:1
windmill:15 watering can:6 traffic light:3 yellow stone:3 pany:1
red cap:15 left leg:6 steel bowl:3 chappal:3 newspaper:1
leg:15 disk:6 water melon piece:3 white background:3 water melon peice:1
gate:15 weight lifting:6 toy brick:3 wrapper:3 show peice:1
bird:15 cigar pipe:6 flip flop:3 land line:3 dart board:1
cardboard:15 lefthand:6 left socks:3 ventilator:3 white cupboard:1

Table 8: Full list of object categories named by annotators in TAP-Vid-Kinetics, continued.

18



hand bag:15 trimmer:6 knife holder:3 suit:3 head:1
van:15 mortar board holder:6 megaphone speaker:3 sleeveless tshirt:3 oxygen pumpimg machine:1
wooden box:15 metal:6 barricating floor stand:3 detector:3 wall poster top:1
iron rod:15 wrench:6 porch swing:3 sniper box:3 cushoin:1
pad:15 spanner:6 watertank:3 thermocol sheet:3 galss:1
axe:15 basin:6 tiger:3 track pant:3 frame top:1
berries:15 couch:6 black suit:3 white bucket:3 peerson:1
wooden object:15 bud:6 wooden shelf:3 green truck:3 pizza oven:1
gun:15 white tshirt:6 red clip:3 circle balloon:3 gyn bench:1
lock:15 chips packet:6 hairpin:3 toy block:3 branch:1
tent:15 burner:6 mobile case:3 traffic light toy:3 preson:1
idol:15 vase:6 wood blocks:3 spectacle:3 sipper:1
can:14 eyelash curler:6 black pipe:3 baby dress:3 street light:1
hockey stick:14 marble:6 blue block:3 baby apron:3 headlight:1
scarf:14 ribbon roll:5 finger tool:3 sausage:3 cardshelf:1
cone:14 blue sheet:5 green shirt:3 blue chalk:3 persoon:1
black shirt:14 container:5 glue gun tool:3 soap stand:3 greenpipe:1
white cloth:14 pig:5 iron frame:3 gamepad:3 glasse middle:1
clip:13 chip:5 umberlla stand:3 yellow toy:3 glass right:1
white sheet:13 guage:5 bathing basin:3 door handler:3 glass left:1
flower vase:13 tube light:5 plastic curtain:3 purple bottle:3 laddder:1
bin:12 left mirror:5 fan hanger:3 c c camera:3 vihicle:1
grill:12 kite:5 rod piece:3 hairband:3 paper shredder:1
bed sheet:12 playing machine:5 orange tool:3 hut:3 frame middle:1
black jacket:12 dish washer:5 maroon cloth:3 yellow paper:3 persson:1
gym equipment:12 ice axe:5 yellow cloth:3 syringe:3 form:1
file:12 photoframe:5 telephone:3 metal piece:3 tbowl:1
duck:12 show piece:5 car number plate:3 drawer:3 boardboard:1
headset:12 wooden log:5 blue thread:3 toy house:3 plastic desk:1
pumpkin:12 skipping rope:5 toy stick:3 marker:3 whiteshirt:1
black cloth:12 white shirt:5 olive oil bottle:3 barricade:3 palne:1
sandal:12 hoddie:5 detecting machine:3 hand break:3 bowling equipment:1
sprayer:12 cpu:5 mixing bowl:3 wooden piece:3 hooddie:1
puzzle:12 dining table:5 steel tool:3 tambourine:3 res cloth:1
elephant:12 point:5 paint filler:3 guitar bag:3 red scarf:1
chess coin:12 track:5 piano keyboard:3 white bottle:3 yelllow object:1
tissue roll:12 hair dryer:4 tv stand:3 glass door:3 tabel:1
skirt:12 gauge:4 toy car:3 stop indicator board:3 plastic object:1
wooden block:12 building:4 cutting board:3 leaning bench:3 mug:1
tong:12 black thread:4 sound box:3 bar lifting:3 balack band:1
wood piece:12 motor:4 tambourine hand percussion:3 threadmill:3 front wheel:1
wooden plank:12 iron box:4 pool lane divider:3 mosquito killer:3 spects left:1
diaper:12 power box:4 desk:3 shelf:3 white rolling button:1
wrist watch:12 wooden stick:4 wooden tray:3 dvd player:3 person back shoulder:1
racket:12 blue funnel:3 bread:3 paper crusher:3 person forehead:1
lid:12 handler:3 red jacket:3 auto:3 cupboard top:1
flower pot:12 plucker tool:3 work piece:3 woollen:3 cupboard middle:1
glasses:12 skate boarding:3 red blanket:3 blue color object:3 cupboard bottom:1
hair clip:12 iron lid:3 cloths:3 green object:3 personn:1
carton box:12 greentub:3 pebble:3 person hand:3 rind:1
truck:12 cement lid:3 trowel:3 candle cap:3 door mate:1
joystick:12 router:3 red suit:3 cube:3 jeans jacket:1
keyboard:12 yellow carpet:3 rope ball:3 brown box:3 white card board:1
bulb:12 tractor:3 woolen roll:3 paper glass:3 ttshirt:1
screw driver:12 baby bottle:3 man:3 wood machine:3 table right:1
stud:12 kids walker:3 talcum powder:3 light box:3 table middle:1
plastic cover:12 store:3 drink bottle:3 laptop table:3 table left:1
right glove:11 dumbbell set:3 turban:3 rack cupboard:3 parachute skydiving:1
fruit:11 left ear stud:3 ash tshirt:3 tyer:3 nuts packet bottom:1
switch:11 needle bag:3 round disk:3 orange tshirt:3 perason:1
green pipe:11 parachute rope:3 safety jacket:3 rod stand:3 blue stone:1
text:11 controller:3 plank:3 red curtain:3 swimming goggles:1
switchboard:10 violin:3 teddy:3 dryer:3 hesd cover:1
kangaroo:10 cellphone:3 chart:3 railing:3 photofrane:1
plastic bag:10 kids slide:3 cake pan:3 topwear:3 balll:1
paint brush:9 red toy:3 orange object:3 strainer:3 nuts packet top:1
egg yolk:9 electrical box cover:3 tank:3 brown bag:3 nuts packet middle:1
head light:9 big spoon:3 room cleaner:3 mascara stick:3 frame bottom:1
black tshirt:9 left sock:3 wheel cap:3 pink sheet:3

Table 9: Full list of object categories named by annotators in TAP-Vid-Kinetics, continued.
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