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Abstract

General Value Function (GVF) is a powerful tool to represent both the predictive
and retrospective knowledge in reinforcement learning (RL). In practice, often
multiple interrelated GVFs need to be evaluated jointly with pre-collected off-policy
samples. In the literature, the gradient temporal difference (GTD) learning method
has been adopted to evaluate GVFs in the off-policy setting, but such an approach
may suffer from a large estimation error even if the function approximation class
is sufficiently expressive. Moreover, none of the previous work have formally
established the convergence guarantee to the ground truth GVFs under the function
approximation settings. In this paper, we address both issues through the lens of a
class of GVFs with causal filtering, which cover a wide range of RL applications
such as reward variance, value gradient, cost in anomaly detection, stationary
distribution gradient, etc. We propose a new algorithm called GenTD for off-
policy GVFs evaluation and show that GenTD learns multiple interrelated multi-
dimensional GVFs as efficiently as a single canonical scalar value function. We
further show that unlike GTD, the learned GVFs by GenTD are guaranteed to
converge to the ground truth GVFs as long as the function approximation power
is sufficiently large. To our best knowledge, GenTD is the first off-policy GVF
evaluation algorithm that has global optimality guarantee.

1 Introduction

The value function, which represents the expected accumulation of reward [43], serves as a reliable
performance metric of policy in the reinforcement learning (RL) tasks [42, 23]. In many RL
applications, however, looking at only the value function is not enough. For example, in the risk-
sensitive domains such as health care and financial assets, the variance of "reward-to-go" rather
than the value function, i.e., the mean of "reward-to-go", is a more suitable performance metric. As
another example, to obtain a variance-reduced or bias-reduced policy gradient estimator [14, 61, 18],
in addition to the value function, the information of "gradient of value function" is also required.
Moreover, in continuous control domain with differentiable and deterministic policy, the computation
of policy gradient is only possible through "action/state-value gradient" [38, 8, 12], etc. All the
aforementioned metrics can be viewed as predicative knowledge of certain multiple intercorrelated
cumulative "signals" (possibly high-dimensional, e.g., the gradient of value function), and thus
naturally fall into the framework of forward GVFs (refers to forward general value functions)
[48, 57, 32, 33] (see Section 2.1 for the formal definition). One typical approach to evaluate GVFs,
is to learn from samples that pre-collected from one or more behavior policies, which yields an
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off-policy method. In practice, multiple forward GVFs are usually evaluated jointly at the same time
due to their interrelationships [37, 33].

In contrast to forward GVFs defined based on predictive knowledge, the backward GVFs represents
retrospective knowledge, which captures the accumulation of signals from the past to the present
time [70] (see Section 2.2 for the formal definition). Although the concept of the backward GVFs
has not been formally proposed until very recently [70], it is rooted in a number of important RL
applications such as anomaly detection [70], emphatic weight learning [46, 70] and evaluation of
gradient of logarithmic stationary distribution [26, 61, 18]. Different from the forward GVFs, for
which the Bellman operator can be defined independently from the sampling distribution [37, 42, 44],
the Bellman operator of the backward GVFs is only valid if the sampling exactly follows the on-policy
stationary distribution [70]. Due to such a reason, off-policy evaluation of the backward GVFs is
much more challenging than that of the forward GVFs.

In general, due to the high dimensionality and intercorrelation, it is very challenging to evaluate
multiple GVFs simultaneously with standard policy evaluation approaches [55, 45, 23]. In previous
studies, the gradient temporal difference (GTD) learning [45, 23], one of the most popular off-policy
methods in value function evaluation, has been adopted to solve both the forward and backward
GVFs evaluation problems [48, 37, 69]. GTD adopts the mean squared projected Bellman error
(MSPBE) as its optimization objective and takes the expectation over the behavior policy, which does
not exactly reflect the desirable evaluation under the target policy. As a result, GTD can encounter
serious issues in GVFs evaluation problems. First, the optimal point to which GTD converges can be
far away from the ground truth value of GVFs. It becomes worse when multiple GVFs are evaluated
simultaneously, because the error of one GVFs evaluation can be further amplified across other
GVFs’ evaluation due to their inherent correlations. In the literature, no provable bound has been
established on such an error, which can, in fact, be unbounded for some cases (see Example 1 in
[19]). Second, for high-dimensional GVFs evaluations, the landscape geometry of the GTD objective
function can be ill-conditioned [23], which could slow down the convergence of GTD significantly.
As demonstrated by our empirical results in Section 5, GTD can suffer from both the large estimation
error and the slow convergence rate, which further suggests that GTD may not be a good choice for
GVFs evaluation tasks. This motivates our paper to address the following question:

• Can we design a new off-policy approach for multiple interrelated and high-dimensional GVFs
evaluation problems, which is guaranteed to converge fast and converge to the ground truth GVFs?

Our Contributions. In this paper, we investigate the problem of evaluating multiple interrelated
GVFs jointly. Rather than studying different GVFs on a case-by-case basis, we explore the class
of "GVFs with causal filtering", which captures a common structural feature shared by GVFs in
a wide range of RL applications (see Appendix C). (a) We prove that both forward and backward
GVFs with causal filtering are the unique fixed point of their corresponding general Bellman operator
(GBO) (defined for multiple high-dimensional GVFs), which is shown to have a contraction property
with respect to a properly constructed norm metric. (b) Based on such a property of GVFs, we
propose a new algorithm GenTD to solve off-policy GVFs evaluation problem. GenTD introduces a
density ratio to adjust the behavior distribution and further incorporates a policy-agnostic approach
GenDICE/GradientDICE [65, 70] for estimating the density ratio jointly with GVF evaluation. (c) In
the linear function approximation setting, we show that GenTD converges to the globally optimal
point at the rate of O(1/T ), with conditional number independent from the dimension of GVFs.
Such a result implies that GenTD learns multiple interrelated possibly high-dimensional GVFs as
efficiently as TD learning for a single canonical scalar value function. (d) We further show that
unlike GTD, GenTD is guaranteed to approximate the ground truth GVFs well as long as the function
expressive power is sufficiently large. To our best knowledge, GenTD is the first off-policy GVF
evaluation algorithm that has such a ground truth guarantee. (e) Our experiments further demonstrate
that GenTD converges much faster than GTD, and more importantly, converges to ground truth
closely, whereas GTD suffers from large approximation error.

Related Work. The forward GVF was first introduced in [48] to represent a set of accumulation
of general signals with possibly time-varying discount factors. The forward GVF was later used
to represent a set of interrelated predictions [37, 9, 41, 24, 33]. It has been observed that some RL
metrics such as variance, gradient of value function, state/action value gradient can also be viewed as
forward GVFs [51, 14, 61, 18, 38, 48, 57, 32, 8, 5]. In previous works, both TD learning and GTD
have been used to evaluate forward GVFs in the on- and off-policy settings [48, 37, 33], respectively.
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A more comprehensive review of studies of forward GVFs has been provided in [35]. The backward
GVF was formally defined in [70]. Some previous works have also considered metrics that can be
represented as accumulations of signals in the reverse time direction, such as emphatic weighting,
page ranking cost, and derivative of logarithmic stationary distribution [66, 68, 26, 63, 10]. Another
track of research has focused on evaluation of a general scalar function in the off-policy setting, a.k.a
off-policy evaluation (OPE) [4, 64, 16]. However, since the focus of this paper is on the evaluation of
multiple high-dimensional GVFs, results in OPE are not directly comparable with ours.

The theoretical studies of off-policy GVFs evaluation algorithms are rather limited. So far, only the
asymptotic convergence guarantee (without the convergence rate characterization) of GTD has been
established in both the forward and backward GVFs evaluation settings [37, 70]. The convergence
rate of GTD has only been established in [62, 7, 17, 6, 58, 21] for the simple canonical value function
evaluation setting, which is a special case of forward GVFs. However, as pointed out in [19, 10, 27],
the optimal point of GTD may suffer from possibly unbounded approximation error, which is not
desirable in practice. In contrast, we propose a new off-policy GVFs evaluation algorithm, which
can solve a wide range of forward and backward GVFs evaluation problems, with convergence rate
characterization and guaranteed optimality with respect to the ground truth GVFs value.

We note that the contraction property of GBO for forward GVFs has also been investigated in [33]
with a structure called "acyclic graph", which is similar to "causal filtering" in our paper (see the
footnote comment for Proposition 1). However, the results of backward GVFs are established in
our work for the first time. The focus of this paper is on the finite time performance and optimality
guarantee for a new off-policy GVFs evaluation algorithm GenTD, which was not studied in [33].

2 Markov Decision Process and General Value Function

We consider an infinite-horizon Markov Decision Process (MDP) with a state space S, an action
space A, a reward function r : S ×A → R, a transition kernel P : S × S ×A → [0, 1], a discounted
factor γ ∈ (0, 1), and an initial distribution µ0 : S → [0, 1]. An policy π(a|s) is the probability
of taking action a at state s. At time step t, an agent at a state st selects an action at according to
π(·|st), receives a reward r(st, at), and transits to state st+1 according to P(·|st, at). The state-action
transition kernel is defined as Pπ ∈ R|S||A|×|S||A|, in which Pπ((s, a), (s

′, a′)) = P(s′|s, a)π(a′|s′).
When the MDP is ergodic, we define µπ as the state-action stationary distribution which satisfies:
µ⊤
π Pπ = µ⊤

π . For such an MDP, we define the discounted accumulation of reward as the "reward-
to-go": Jπ =

∑∞
t=0 γ

tr(st, at). The state-action value function (i.e., Q-function) is defined as
Qπ(s, a) = E[Jπ|(s0, a0) = (s, a)], and the state value function (i.e., V-function) is defined as
Vπ(s) = E[Qπ(s, a)|s]. Note that Qπ(s, a) satisfies the following Bellman equation

Qπ = TπQπ = R+ γPπQπ, (1)

where Tπ is the Bellman operator, and Qπ and R ∈ R|S||A| are vectors obtained via stacking
Qπ(s, a) and r(s, a) over state-action space S × A. We introduce a function of (s, a) (possibly in
the vector form) as v(s, a) ∈ Rd (d ≥ 1). Consider a distribution ξ(·) over S × A. We define the

ξ–norm of v ∈ Rd|S||A| as ∥v∥ξ =
√∑

(s,a) ξ(s, a) ∥v(s, a)∥
2
2, where v is obtained by stacking

the function v(s, a) over S × A. It has been proved that Tπ is γ–contraction in µπ–norm, i.e.,
∥Tπv − Tπv′∥µπ

≤ γ ∥v − v′∥µπ
and Qπ is the unique fixed point of Tπ [44, 42, 55]. In the sequel,

we denote Id as the identity matrix with the dimension d and ⊗ as the Kronecker product. We
further define Uπ = diag(Uπ,1, · · · , Uπ,k), in which Uπ,i = diag(µπ)⊗ Idi for i = {1, · · · , k}, and
Pπ = diag(Pπ,1, · · · , Pπ,k), in which Pπ,i = Pπ ⊗ Idi .

2.1 Forward General Value Function

Consider a set of the state-action general value functions (GVFs) Gπ = [G⊤
π,1, · · · , G⊤

π,k]
⊤, where

each GVF Gπ,i is defined as the accumulation of a corresponding signal Ci(s, a) ∈ Rdi given
by Gπ,i(s, a) = E

[∑∞
t=0 γ

t
iCi(st, at)

∣∣(s0, a0) = (s, a), π
]
, where γi ∈ (0, 1) is a discount factor

associated with Ci. Since Ci(s, a) ∈ Rdi can be high-dimensional, Gπ,i(s, a) can also be high-
dimensional for each (s, a). Clearly, the Q-function is a special GVF associated with a scalar signal.
Since Gπ is defined as the accumulation of the signal Ci in a forward direction from the current time
step t to the future ∞, we call Gπ as "forward GVF".
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In many RL applications, we are often interested in the case that Gπ of GVFs have progressive
dependence [48], i.e., each Ci(s, a) (associated with Gπ,i) depends on the lower-indexed value
functions Gπ,1, · · · , Gπ,i−1 in the set. As a concrete example, suppose the policy is parametrized
by a smooth function πw, where the parameter w ∈ Rdw . In addition to the Q-function Qπ, the
gradient ∇wQπ(s, a) of the Q-function w.r.t w arises as a GVF of interest in several applications.
In such a case, Gπ,1 = Qπ and Gπ,2 = ∇wQπ. It has been shown in [5] that the reward C2(s, a)
associated with ∇wQπ is given byC2(s, a) = γE[Qπ(s′, a′)∇w log(πw(s

′, a′))|s, a], which depends
on the lower-indexed Gπ,1 = Qπ. Hence, such defined GVFs vector has progressive dependence.
Appendix C provides further details and more examples in RL. More formally, we refer to this
structure of forward GVF with progressive dependence as casual filtering as defined below. Note that
a similar structure was called acyclic graph in [33].
Definition 1 (Forward GVF with causal filtering). For a given policy π, a forward GVF Gπ =
[G⊤

π,1, · · · , G⊤
π,k]

⊤ with causal filtering are associated with signals satisfying

Ci = Bi +
∑i−1
j=1Ai,jGπ,j for 2 ≤ i ≤ k,

where Ci and Gπ,j are obtained by respectively stacking Ci(s, a) ∈ Rdi and Gπ,j(s, a) ∈ Rdi over
S ×A, Bi ∈ Rdi|S||A| is an observable signal, and the coefficient matrix Ai,j ∈ Rdi|S||A|×dj |S||A|

captures how the j-th GVF Gπ,j affects the i-th accumulation signal Ci. Further, Bi and Ai,j are
bounded to ensure Gπ,i to be well defined.

Definition 1 indicates that all GVFs are interrelated with a causal filtering structure, i.e., each signal
Ci is a linear function of all lower-indexed Gπ,l for 1 ≤ l < i. Definition 1 also implies that the
forward GVF Gπ = [G⊤

π,1, · · · , G⊤
π,k]

⊤ with causal filtering satisfies the following lower-triangular
Bellman equation given by

Gπ = TG,πGπ = B +MπGπ, (2)

where TG,π denotes the forward general Bellman operator (GBO), B =
[
B⊤

1 , · · · , B⊤
k

]⊤
and

Mπ =


γ1P̄π,1 0 · · · 0
A2,1 γ2P̄π,2 · · · 0

...
...

...
Ak,1 Ak,2 · · · γkP̄π,k

 .
where P̄π,i = [Pπ ⊗ Idi ]. Clearly, the canonical value function Qπ and Bellman operator Tπ defined
in eq. (1) is a special case of Gπ and TG,π defined in eq. (2).

2.2 Backward General Value Function

In contrast to the forward GVF defined in the last section, which represents the predictive knowledge,
in some RL scenarios, we also want to capture the retrospective knowledge, which represents the
accumulation of signals that have been collected from the past. Consider a set of GVFs Ĝπ =

[Ĝ⊤
π,1, · · · , Ĝ⊤

π,k]
⊤, where each GVF Ĝπ,i is defined as the backward accumulation of a vector

signal Ĉi(s, a) ∈ Rdi given by Ĝπ,i(s, a) = E
[∑0

t=−∞ γ−ti Ĉi(st, at)
∣∣(s0, a0) = (s, a), π

]
. To

distinguish from the forward GVF Gπ,i defined in Section 2.1, we denote Ĝπ,i as the backward GVF.
For general purpose, we also consider the causal filtering setting for Ĝπ, in which each Ĉi(s, a)
depends on the lower-indexed value functions Ĝπ,1, · · · , Ĝπ,i−1 in the set. We define the backward
GVF with causal filtering as follows.

Definition 2 (Backward GVF with causal filtering). For a given policy π, a backward GVF Ĝπ =

[Ĝπ,1, · · · , Ĝπ,k] with causal filtering are associated with signals satisfying

Ĉi = Bi +
∑i−1
j=1Ai,jĜπ,j for 2 ≤ i ≤ k,

where Ĉi and Ĝπ,j are obtained by respectively stacking Ĉi(s, a) ∈ Rdi and Ĝπ,j(s, a) ∈ Rdi over
S ×A, Bi ∈ Rdi|S||A| is an observable signal, and the coefficient matrix Ai,j ∈ Rdi|S||A|×dj |S||A|

captures how the j-th GVF Ĝπ,j affects the i-th accumulation signal Ĉi. Further, Bi and Ai,j are
bounded to ensure Ĝπ,i to be well defined.
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For an ergodic MDP that starts from −∞, we have (st−1, at−1) ∼ µπ(·), (st, at) ∼ Pπ(·|st−1, at−1),
and (st, at) ∼ µπ(·) for all −∞ < t <∞. The Bayes’ theorem implies that

P ((st−1, at−1)|(st, at)) =
µπ(st−1, at−1)Pπ((st, at)|(st−1, at−1))

µπ(st, at)
. (3)

The reverse conditional probability in eq. (3) together with the definition of backward GVF in
Definition 2 implies that the backward GVFs Ĝπ = [Ĝ⊤

π,1, · · · , Ĝ⊤
π,k]

⊤ with causal filtering satisfies

Ĝπ = T̂G,πĜπ = B + M̂πĜπ, (4)

where T̂G,π denotes the backward GBO, B =
[
B⊤

1 , · · · , B⊤
k

]⊤
, and

M̂π =


γ1P̂π,1 0 · · · 0

A2,1 γ2P̂π,2 · · · 0
...

...
...

Ak,1 Ak,2 · · · γkP̂π,k

 ,
where P̂π,i = U−1

π,i [Pπ ⊗ Idi ]Uπ,i.

3 Off-Policy Evaluation of GVFs

3.1 Problem Formulation

In this paper, we study the GVFs evaluation problem for a target policy π. We focus on the behavior-
agnostic off-policy setting, in which we have access only to samples generated from an off-policy
(i.e., a behavior policy) with the distribution D, i.e., (sj , aj , Bj , s′j) ∼ D (j > 0). Specifically, the
state-action pair (sj , aj) is sampled from a possibly unknown distribution D(·) : S × A → [0, 1],
Bj = [B1(sj , aj), · · · , Bk(sj , aj)] is an observable signal vector, and the successor state s′i is
sampled from P(·|si, ai). Our goal is to design an efficient algorithm to estimate Gπ (or Ĝπ) given
the sample set {(sj , aj , Bj , s′j)}j>0. We make the following dataset coverage assumption.

Assumption 1. We assume that D(s, a) > 0 for all (s, a) ∈ S ×A.

3.2 Linear Function Approximation

When |S| is large, a linear function can be used to approximate the GVF: Gπ,i(s, a) ≈
Gπ,i(θi; s, a) = θ⊤i ϕi(s, a) = [ϕi(s, a)

⊤ ⊗ Idi ]vec(θ⊤i ), where ϕi(s, a) ∈ RKi is the feature vector,
and θi ∈ RKi×di is a learnable weight matrix. In the sequel, we omit π in Gπ,i and use the notation
Gi. We make the following assumption for linear feature ϕ, which is standard in linear function
approximation setting [45, 23, 55].

Assumption 2. We assume that ∥ϕi(s, a)∥2 ≤ 1 for all i = 1, · · · , k and (s, a) ∈ S ×A.

The linear approximation can then be written as Gi(θi) = [Φi ⊗ Idi ]vec(θ⊤i ), where Φi is
the base matrix obtained by stacking ϕi(s, a)

⊤ over S × A. To ensure the uniqueness of
the solution θi, we assume that Φi has linearly independent columns. The joint vector of
GVFs can be denoted as [G⊤

1 (θ1), · · · , G⊤
k (θk)]

⊤, which is captured by the joint parameters
θ = [vec(θ⊤1 )

⊤, · · · , vec(θ⊤k )
⊤]⊤ ∈ R

∑k
i=1Kidi . Then the function approximation of GVFs can be

written more compactly as G(θ) = Φθ, where Φ = diag([Φ1⊗ Id1 ], · · · , [Φk⊗ Idk ]). For each (s, a),
the linear function approximation associated with each (s, a) can be written as G(θ; s, a) = ϕ(s, a)θ,
where ϕ(s, a) = diag([ϕ1(s, a)

⊤ ⊗ Id1 ], · · · , [ϕk(s, a)⊤ ⊗ Idk ]). We define the linear function space
spanned by the columns of the feature matrix Φ as FΦ = {Φθ|θ ∈ Rθ}, in which Rθ is a convex set.
Given the function class FΦ, the evaluation problem of GVFs amounts to searching for a parameter
θ∗ ∈ Rθ such that G(θ∗) approximates Gπ (or Ĝπ) well. In the sequel, we use T̄G,π to represent
TG,π or T̂G,π , interchangeably, based on the context.
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3.3 A New Off-policy GVF Evaluation Approach

Drawbacks of GTD. In previous works, the gradient TD (GTD) method [45, 23] has been used
for policy evaluation (including GVF evaluation) in the off-policy setting [37, 69, 70, 61]. GTD
adopts the Mean Squared Projected Bellman Error (MSPBE) for GVF evaluation with linear function
approximation, which is given by

θ̂∗ = argminθ∈Rθ
MSPBE(θ) ≜ ED

[∥∥G(θ; s, a)− ΓFΦ,DT̄G,πG(θ; s, a)
∥∥2
2

]
. (5)

where ΓFΦ,D denotes the projection operator onto the space FΦ w.r.t. the ∥·∥D–norm, i.e., for any vec-
tor function f(s, a) of (s, a), we have ΓFΦ,df = G(θf ), in which θf = argminθ∈Rθ

∥f −G(θ)∥D.
One drawback of GTD is that the expectation in the objective function is taken over the off-policy
sampling distribution D(·), which does not exactly reflect the desirable evaluation under the target
policy. As the result, the optimal point of GTD (θ̂∗) can still have a large approximation error with
respect to the ground truth value of GVF, even if the approximation function class is arbitrarily
expressive. More detailed discussion about GTD is provided in Appendix D.

Generalized Temporal Difference (GenTD) Learning. In this work, we propose a novel unified
approach to evaluate both the forward and backward GVFs in the off-policy setting, which we refer
to as generalized temporal difference (GenTD) learning. Specifically, we aim to learn θ∗ for GVF
evaluation by minimizing the mean-squared projected general Bellman error (MSPGBE) defined as

θ∗ = argminθ∈Rθ
MSPGBE(θ) ≜ Eµπ

[∥∥G(θ; s, a)− ΓFΦ,µπ
T̄G,πG(θ; s, a)

∥∥2
2

]
, (6)

where recall that T̄G,π represents the GBO of either forward or backward GVFs. In contrast to GTD,
the objective function in eq. (6) takes the expectation over the stationary distribution µπ of the target
distribution, which precisely captures the desired goal of GVF evaluation under the target policy. On
the other hand, such an objective does cause implementation challenge, because the data samples are
generated by the behavior policy, so that estimators based on such data directly can incur a large bias
error. To solve such an issue, we will apply the density ratio ρ(s, a) = µπ(s, a)/D(s, a) to adjust the
distribution and further adopt the GenDICE/GradientDICE method proposed in [65, 67] to estimate
ρ(s, a) during the execution of the algorithm.

To describe our algorithm GenTD (see Algorithm 1), we first note that eq. (6) implies the following
optimality condition for θ∗ and all f ∈ FΦ,

⟨G(θ∗; ·)− T̄G;πG(θ
∗; ·), f(·)−G(θ∗; )⟩µπ ≥ 0,

or equivalently

⟨g(θ∗), θ − θ∗⟩ ≥ 0, ∀θ ∈ Rθ, (7)

where g(θ) = Φ⊤Uπ(G(θ) − T̄G,πG(θ)). The variational inequality theory in (Chapter 3 [20])
suggests that under an appropriately chosen stepsize αt, the update θt+1 = ΓRθ

(θt − αtg(θt))
converges to the optimal point θ∗, where ΓRθ

denotes the projection operator onto the set Rθ
in terms of the Euclidean norm. However, since it is intractable to explicitly compute g(θ) in
practice, we usually estimate g(θ) using random samples. In the off-policy setting, consider a sample
x = (s, a, s′, a′), in which (s, a) ∼ D(·), s′ ∼ P(·|s, a), and a′ ∼ π(·|s′), we can formulate the
following update rule:

θt+1 = θt − αtρ̂(s, a)g(x, θt), (8)

where ρ̂(s, a) is an approximation of the density ratio ρ(s, a) = µπ(s, a)/D(s, a), g(x, θ) =
−ϕ(s, a)⊤δ(x, θ) for forward GVFs and g(x, θ) = −ϕ(s′, a′)⊤δ(x, θ) for backward GVFs, where
δ(x, θ) is the temporal difference error defined as δ(x, θ) = B(s, a) +m(x)ϕ(s′, a′)θ−ϕ(s, a)θ for
forward GVFs, and δ(x, θ) = B(s′, a′)+m̂(x)ϕ(s, a)θ−ϕ(s′, a′)θ for backward GVFs. Herem and
m̂ are matrices that capture the correlations between difference estimations in forward and backward
GVFs evaluation settings, respectively. Here we adopt the GenDICE/GradientDICE method that
proposed in [65, 67] to learn ρ(s, a). In previous works, GenDIC/GradientDICE has only been used
for estimating the scalar value Jπ = Eµπ

[r(s, a)] in the off-policy setting [65, 70, 53]. Our work is
the first to adapt this method to solve the more challenging off-policy GVFs evaluation problem.
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Algorithm 1 Generalized TD Learning (GenTD)
Initialize: Approximator parameters wf,0, wρ,0 and θ0
for t = 0, · · · , T − 1 do

Obtain sample (st, at, Ct, s
′
t) ∼ Dd and a′t ∼ π(·|s′t)

δ̄t = ψ⊤
t θρ,t(ψ

′
t − ψt)

ηt+1 = wρ,t + βt(ψ
⊤
t wρ,t − 1− ηt)

wf,t+1 = wf,t + βt(δ̄t − ψ⊤
t wf,tψt)

wρ,t+1 = ΓRρ

(
wρ,t − βt(ψ

′⊤
t wf,tψt − ψ⊤

t wf,tψt + ηtψt)
)

θt+1 = ΓRθ

(
θt − αt[w

⊤
ρ,tψ(st, at)]g(xt, θt)

)
Forward GVF: g(x, θ) = −ϕ(s, a)⊤(B(s, a) +m(x)ϕ(s′, a′)θ − ϕ(s, a)θ)
Backward GVF: g(x, θ) = −ϕ(s′, a′)⊤(B(s′, a′) + m̂(x)ϕ(s, a)θ − ϕ(s′, a′)θ)

end for

Learning Density Ratio. GenDICE/GradientDICE estimates the density ratio ρ(s, a) via solving
the following min-max problem [65, 67]:

min
ρ

max
f,η

L(ρ̂, f, η) := ED[ρ̂(f
′ − f)]− 1

2
ED[f

2] + ED[ηρ̂− η]− 1

2
η2. (9)

We parameterize both ρ and f by linear function with linearly independent features ψ ∈ Rdρ , i.e.,
ρ̂(s, a;wρ) = ψ(s, a)⊤wρ and f̂(s, a;wf ) = ψ(s, a)⊤wf for all (s, a) ∈ S × A. To guarantees
the stability of the density ratio learning, we assume that the matrix A = ED·π[ψ(ψ − ψ′)⊤] is
non-singular. Note that this assumption can be removed by adding an l2–regularizer in eq. (9). In
GenTD (see Algorithm 1), we estimate the density ratio via updating the parameter wρ,t iteratively.
The density estimator ρ̂(st, at;wρt) = ψ(st, at)

⊤wρt is then used to reweight the update g(xt, θt).

Comparison between GenTD and GTD. Compared with GTD, our GenTD has the following two
advantages. First, since GTD does not adjust the distribution mismatch of sampling, the optimal point
of GTD can suffer from large approximation error with respect to the ground truth GVFs even with
highly expressive function classes. In contrast, the optimum of GenTD is guaranteed to approximate
the ground truth GVFs well with sufficiently expressive function classes. Second, GTD needs to
update a high-dimensional auxiliary parameter w simultaneously with θ to stabilize the convergence,
where w ∈ R

∑k
i=1Kidi has the same dimension as θ ∈ R

∑k
i=1Kidi (note that

∑k
i=1Kidi can be very

large in the high dimensional regime or when the number of GVFs k is very large). Such an update
of w can be very costly. In contrast, GenTD introduces only low-dimensional auxiliary parameters
[wρ, wf , η] ∈ R2dρ+1 for density ratio estimation, which is more efficient than GTD since dρ could
be much smaller than

∑k
i=1Kidi.

4 Main Theorems
In this section, we develop the finite-time convergence rate for our Off-GenTD algorithm. To this
end, we first want to establish a certain contraction property for the general Bellman operator of
interest here. Although the contraction property has been proven in the canonical value function
settings [55, 70], it is unclear whether such a property still holds for multiple multi-dimensional
and interrelated GVFs. We will next establish that such a property still holds for both forward and
backward GVFs with causal filtering, but needs to be under a properly chosen norm.

Consider the GVFs vector Gπ = [G⊤
π,1, · · · , G⊤

π,k]
⊤. We define a norm ∥·∥µπ,α

associated with a
weighting vector α = [α1, · · · , αk] ∈ ∆k, where ∆k denotes the simplex in k-dimensional space,
as ∥Gπ∥µπ,α

=
∑k
i=1 αi ∥Gπ,i∥µπ

, where 0 < αi ≤ 1 for all i and
∑k
i=1 αi = 1. We also define

γmax := maxi=1··· ,k γi, which is strictly less than 1.

Proposition 1 (Contraction of Forward/Backward GBO). 1 For any Gπ, G′
π ∈ R|S||A|

∑k
i=1Kidi ,

there exists a weighting vector α such that∥∥T G,πGπ − T G,πG
′
π

∥∥
µπ,α

≤ 1+γmax

2 ∥Gπ −G′
π∥µπ,α

, (10)

1The contraction property of GBO for forward GVFs has been proved in [33] but under different assumptions
and with respect to a different norm. The result for backward GVFs is first established in our work.
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where T G,π can be either TG,π (forward GBO, eq. (2)) or T̂G,π (backward GBO, eq. (4)).

Despite the correlations between GVFs, Proposition 1 shows that the contraction property is still
preserved under a properly chosen norm for TG,π and T̂G,π in forward and backward GVF settings,
respectively. The norm can vary for different GVFs. Proposition 1 also implies that both forward and
backward GVFs (Gπ and Ĝπ) can be identified as unique fixed point of their corresponding GBOs.

Based on Proposition 1, we next establish the monotonicity property for our GenTD algorithm, if it
takes the population update g(θ) = Φ⊤Uπ(G(θ)− T̄G,πG(θ)).
Proposition 2 (Monotonicity). Suppose Assumption 1 &2 hold. Consider the globally optimal point
θ∗ defined in eq. (7). There exists a constant λG such that for all θ ∈ Rθ, we have

⟨g(θ∗)− g(θ), θ∗ − θ⟩ ≥ λG ∥θ − θ∗∥2F , (11)

where λG := (1− γmax)min1≤i≤k ζi and ζi := λmin(Φ
⊤
i UπΦi).

Proposition 2 implies the contraction property of g(θ). It guarantees that θ moves towards a globally
optimal point θ∗ if it is updated along the direction −g(θ). Proposition 2 generalizes the monotonicity
property to a much broader class of interrelated and multi-dimensional GVF evaluation, which is
far more beyond TD learning for the value function evaluation studied in [55, 70]. The following
theorem characterizes the convergence rate of GenTD.
Theorem 1. Suppose Assumption 1 &2 hold. Consider the GenTD update in Algorithm 1. Let the
stepsize αt = Θ(t−1) and βt = Θ(t−1). We have

E[∥θT − θ∗∥2F ] ≤ O
(

∥θ0−θ∗∥2
F

T 2

)
+O

(
1

λ3
GT

)
+O

(
ερ
λ2
G

)
, (12)

where ερ =
√

ED·π[ρ̂(s, a;w∗
ρ)− ρ(s, a)]2 is the approximation error introduced by the density

ratio learning, with w∗
ρ defined in eq. (9).

Theorem 1 shows that GenTD converges to the globally optimal point θ∗ at a rate O(1/T ). The
convergence speed of θ also depends on the conditional number λG, where the converge becomes
faster as λG increases. Specifically, the R.H.S. of eq. (12) consists of three terms. The first term
corresponds to the initialization error, which delays as fast as O(1/T 2). The second term corresponds
to the variance error, which dominates the convergence rate of GenTD to be O(1/T ). The last term
corresponds to a non-vanishing optimality gap, which is introduced by the function approximation
error in the density ratio estimation, and decreases as the expressive power of the approximation
function class {ρ̂(wρ) : wρ ∈ Rρ} increases. For more discussion about this approximation error,
please refer to [65, 67]. The convergence analysis of GenTD is more challenging than that of
TD learning [2, 7, 40] and GTD [62, 17], as we need to handle an additional approximation error
introduced by the dynamically changing density ratio estimator ρ̂(wρt).

Theorem 1 establishes the convergence of GenTD to the globally optimal point θ∗ of the objective
function in eq. (6), which provides the value estimation G(θ∗) for the GVFs. We are then interested
in characterizing how close such an estimation is to the ground truth GVF Gπ , which is our ultimate
goal of evaluation. We characterize this in the following theorem.
Theorem 2 (Convergence of GenTD to Ground Truth). Consider θ∗ defined in eq. (6). Suppose the
same conditions in Proposition 1 & 2 hold. We have

∥G(θ∗)−Gπ∥µπ,α
≤ 1

1−γG ∥ΓFΦ,µπ
Gπ −Gπ∥µπ,α

.

Theorem 2 indicates that the distance between the optimal estimation G(θ∗) and the true GVF Gπ
is upper bounded by the approximation error of the function class FΦ for the ground truth GVF
Gπ (note that ΓFΦ,µπ

Gπ denotes the projection of Gπ to the function approximation class FΦ).
Hence, Theorem 2 guarantees that G(θ∗) can be as close as possible to the true GVF Gπ, as long
as the function class FΦ is sufficiently expressive. In particular, if FΦ is complete, i.e., there exists
Gθ ∈ FΦ such that Gθ = Gπ , then GenTD is guaranteed to converge exactly to the ground truth Gπ .
Note that Theorem 2 is the first result of such a type developed for both forward and backward GVFs.

Comparison between GenTD and GTD. If FΦ is complete, GTD performs similarly to GenTD
and is guaranteed to converge to the ground truth Gπ (see Appendix D.2 for the proof). The major
difference between GenTD and GTD occurs when FΦ is not complete. In such a case, our GenTD

8



still maintains the desirable performance as guaranteed by Theorem 2, but the optimal point of
GTD (i.e., θ̂∗ in eq. (5)) does not have guaranteed convergence to the ground truth. As shown in
[19, 10, 27], even in the value function evaluation setting (a special case of forward GVF evaluation)
the approximation error ||G(θ̂∗)−Gπ||D of GTD can be arbitrarily poor even if FΦ can represent
the true value function arbitrarily well (but not exactly). Such a disadvantage of GTD is mainly due
to the distribution mismatch in its objective function as we discuss in Section 3.3.

In the backward GVFs evaluation setting, GTD can perform even worse. As we show in the following
example, GTD may fail to learn the ground truth Gπ even if the function class FΦ is complete. Note
that for such a case, GenTD converges to the ground truth as guaranteed by Theorem 2.

Example 1 (GTD Fails for Complete FΦ). Consider a three-state Markov chain, with transition ker-
nel P = [[0.1, 0.9, 0], [0.1, 0, 0.9], [0, 0.1, 0.9]]⊤, discount factor γ = 0.99, and the reward function
R = [1, 0, 1]⊤. The back value function in this MDP is given by V̄ = [8.1555, 9.0389, 9.0184]⊤. Sup-
pose GTD is applied to solving the evaluation problem with the parameter space Rθ = R. Then, there
exists an off-policy distribution D such that using the perfect bases Φ = [8.1555, 9.0389, 9.0184]⊤,
the optimal point θ̄∗ learned by GTD still has non-zero approximation error, i.e., ||Φθ̄∗ − V̄ ||D ≥ 3.

5 Experiments

We conduct empirical experiments to answer the following two questions: (a) can GenTD evaluate
both the forward and backward GVFs efficiently? (2) how does GenTD compare with GTD in
terms of the convergence speed and the quality of the estimation results? In our experiments, we

Figure 1: Comparison between GenTD and GTD for the tasks of evaluating ∇wQπ and ∇w logµπ .

consider a variant of Baird’s counterexample [1, 44] with 7 states and 2 actions (see Figure 2 in
Appendix A). We study the problem of evaluating two high-dimensional GVFs, the gradient of
Q-function: ∇wQπ ∈ R14 (forward GVF), and the gradient of logarithmic stationary distribution:
∇w log(µπ) ∈ R14 (backward GVF), associated with a soft-max policy parameterized by w ∈ R14.
We consider two types of feature matrices Φ for estimating the GVFs: complete feature (CFT) and
incomplete feature (INCFT), where CFT has large enough expressive power so that the ground
true GVF can be fully expressed by the function class FΦ, whereas INCFT does not have enough
expressive power and cannot capture the ground true GVF exactly. The discount factor γ is set to
be 0.99 in all tasks, and all curves in the plots are averaged over 20 independent runs. The detailed
experimental setting is provided in Appendix A.

The learning curves for GenTD and GTD are provided in Figure 1. We evaluate their performances
based on the estimation error with respect to the ground truth GVF: ∥Φθt −Gπ∥µπ

. Note that both
∇wQπ and ∇w logµπ can be exactly computed in tabular setting, so that the estimator error of the
ground truth can be computed. For the task of ∇wQ evaluation, GenTD converges considerably
faster and closer to the ground truth (i.e., smaller estimation error) than GTD. which can be attributed
to the larger conditional number λG of GenTD. For the task of ∇w logµπ evaluation, GenTD moves
fast towards the ground truth GVF, whereas GTD, although still converges, stays far away from the
ground truth GVF even with CFT, which matches with our Example 1. As we discuss in Section 4,
this is because GTD in the backward GVF evaluation setting has distribution mismatch in its objective
function, which can significantly shift the optimal point from the ground truth GVF.
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6 Conclusion

We studied the off-policy evaluation problem of both forward and backward GVFs. We focused
on the class of GVFs with casual filtering, which covers a wide range of multiple interrelated and
possibly high-dimensional GVFs. We first showed that GVFs in such a class is the fixed point of a
general Bellman operator. Based on such a property, we proposed a new off-policy algorithm called
GenTD. GenTD evaluates GVFs efficiently by jointly updating the GVF approximation parameter
and a density ratio estimator, which adjusts the mismatch of the behavior policy and assists the
convergence to the ground truth GVFs. We show that GenTD provably converges to the globally
optimal point, and such an optimal point is guaranteed to converge to the ground truth GVFs as
long as the function expressive power is sufficiently large. For future work, it is interesting to study
nonlinear function approximation for GVFs evaluation.
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applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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Supplementary Materials

A Specification of Experiments

The Baird’s counterexample [1, 44] is shown in Figure 2. There are two actions represented by solid
line and dash line, respectively. The the dash action leads to states 1-6 with equal probability and a
reward +1, and solid action always leads to state 7 and a reward 0. The behavior distribution over the
state-action space (s, a) is given as

D(·) =



D(s1, a1) = 0.2, D(s1, a2) = 0.1,

D(s2, a1) = 0.2, D(s2, a2) = 0.1,

D(s3, a1) = 0.04, D(s3, a2) = 0.04,

D(s4, a1) = 0.04, D(s4, a2) = 0.04,

D(s5, a1) = 0.04, D(s5, a2) = 0.04,

D(s6, a1) = 0.04, D(s6, a2) = 0.04,

D(s7, a1) = 0.04, D(s7, a2) = 0.04,

where si denotes state "i" (i = 1, · · · , 7), a1 denotes the dash action and a2 denotes the solid action.

Figure 2: A variant of Baird’s counterexample.

We consider the soft-max policy given as

πw(si, aj) =
exp(w2(i−1)+j)

exp(w2(i−1)+1) + exp(w2(i−1)+2)
, i = {1, · · · , 7}, j = {1, 2},

where w ∈ R14 is the parameter of the policy given as
w⊤ = [0.0, 1.8, 0.0, 1.8, 0.0, 1.8, 0.0, 1.8, 0.0, 1.8, 0.0, 1.8, 0.0, 1.8].

The complete feature (CFT), incomplete feature (INCFT) and the learning rate for each task are given
as follows:

• Evaluation of ∇wQπ (forward GVF). In this task, we need to evaluate bothQπ and ∇wQπ
(see Appendix C.1 for detailed discussion about correlation between Qπ and ∇wQπ). Let
the complete feature matrix Φ be the identity matrix, i.e., Φ = I ∈ R14×14. We let CFT
for each (s, a) be one of the rows of Φ. We further remove one column of Φ to obtain the
incomplete feature matrix Φ′ ∈ R14×13. We let INCFT for each (s, a) be one of the rows of
Φ′. For GenTD, the learning rate for updating wρ and θ are 0.01 and 0.005, respectively.
We use the same CFT and INCFT for the density ratio estimation as those for the ∇wQπ
estimation. For GTD, the learning rate for both the main parameter θ and the auxiliary
parameter w are 0.005.

• Evaluation of ∇w logµπ (backward GVF). Appendix C.2 has detailed discussion about
such a GVF. Note that this task corresponds to the setting where γ = 1. As discussed in
Appendix H, the ground true GVF in this setting is in the space perpendicular to the vector
e = [1, · · · , 1]⊤ ∈ R14. Here we use singular value decomposition (SVD) to obtain the
complete feature matrix Φ ∈ R14×13 such that Φθ ̸= Ce for all θ ̸= 0 and C ̸= 0. We let
CFT for each (s, a) be one of the rows of Φ. We further remove one column of Φ to obtain
the incomplete feature matrix Φ′ ∈ R14×12. We let INCFT for each (s, a) be one of the rows
of Φ′. For GenTD, the learning rate for updating wρ and θ are 0.05 and 0.005, respectively.
We use the same CFT and INCFT for the density ratio estimation as those used in the above
∇wQπ estimation task. For GTD, the learning rate for both the main parameter θ and the
auxiliary parameter w are 0.005.
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A.1 Additional Experiments

In this subsection, we provide additional experiments in the task of evaluating ∇wQπ to explore the
following two issues: (a) we demonstrate how GenTD performs with diminishing stepsize; and (b) we
demonstrate how the bias error changes as the expressive power of the approximation function class
changes. To this end, we remove one column of Φ with small weight and one column of Φ with large
weight to obtain two incomplete feature matrices Φ1

′ and Φ2
′, respectively. We then let INCFT1 and

INCFT2 for each (s, a) be one of the rows of Φ1
′ and Φ2

′, respectively. Here, the linear function
class with base INCFT1 has larger expressive power than that with INCFT2. In the evaluation of
∇wQπ, we let the learning rate for updating wρ and θ be αt = 1

50+t and βt = 1
100+t , respectively.

The experiment result is given in Figure 3.

In Figure 3, we first observe that GenTD is able to achieve near zero bias error with CFT under
diminishing stepsize. Second, the bias error of GenTD increases only slightly from CFT to INCFT1,
where the expressive power of INCFT1 is still large. The bias error increases further under INCFT2,
which has lower expressive power. Overall, the bias error increases as the expressive power of the
function approximation class decreases. Both observations are consistent with Theorem 3.

Figure 3: Performance of GenTD in the task of evaluating ∇wQπ under diminishing stepsize.

B Additional Related Works

The goal of OPE is to estimate the expected return of start states drawn randomly from a distribution.
Importance sampling (IS) has been used for OPE in which sample rewards are reweighed to get
unbiased value estimate of a new policy [29]. Later, doubly robust technique was proposed to reduce
the variance of IS [16, 54, 22]. In the behavior policy agnostic setting, [28] proposed the GenDICE
algorithm to estimate the IS with function approximation when performing the OPE, which also
suffers less from the variance. Our approach GenTD is along the line of GenDICE in [28], which
also adopts function approximation to estimate the density ratio. However, in our work we consider a
more challenging setting in which we need to evaluate all the GVFs for each state-action pair instead
of the mean of scalar value functions considered in [28].

C Examples of Forward and Backward GVFs

In this section, we present a number of example forward and backward GVF in RL applications.

C.1 Examples of Forward GVFs

The forward GVF in Definition 1 arises naturally in the following RL applications.

Case I: Variance of Reward-To-Go. In risk-sensitive domains such as finance, process con-
trol and clinical decision making [34, 25, 52, 50, 30, 31, 39, 15], in addition to the mean Jπ
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of the "reward-to-go", we are also interested in the variance of Jπ [34, 36], which is given by
Var[Jπ|(s0, a0) = (s, a)] = Hπ(s, a) − Q2

π(s, a), where Hπ is the second moment of Jπ, i.e.,
Hπ(s, a) = E[J2

π|(s0, a0) = (s, a), π]. [51] shows that Hπ satisfies

Hπ = R2 + 2γMRPπQπ + γ2PπHπ, (13)

where R is defined in Section 2, MR = diag(R) ∈ R|S||A|×|S||A|. Equation (13) implies that Hπ is
the mean of the accumulation of signal C(s, a) = r(s, a)2 + 2γE[Qπ(s′, a′)|s, a] with discounted
factor γ2. Since C(s, a) is a function of the reward r(s, a) and value function Qπ(s, a), we consider
the joint vector of Qπ and Hπ as Gπ , i.e., Gπ = [Q⊤

π , H
⊤
π ]

⊤. We have that Gπ satisfies the general
Bellman equation in eq. (2) with B and Mπ specified as

B =

[
R
R2

]
, Mπ =

[
γPπ 0

2γMRPπ γ2Pπ

]
. (14)

We consider the setting in which reward is bounded, i.e., r(s, a) ≤ CR for all (s, a) ∈ S ×A.

Case II: Gradient of Q-function. Suppose that the policy is parametrized by a smooth function πw,
in which w ∈ Rdw is the parameter. Then the gradient ∇wQπ(s, a) of the Q-function w.r.t w plays
an important role in several RL applications such as variance reduced policy gradient [14] and on-
and off-policy policy optimization [61, 38, 18, 5]. Specifically, [61, 18, 5] show that ∇wQπ satisfies:

∇wQπ = γ[Pπ ⊗ Idw ][∇wΠπw
·Qπ] + γ[Pπ ⊗ Idw ]∇wQπ, (15)

where ∇wΠπw
∈ Rdw|S||A| is obtained by stacking ∇w log(π(s, a)) over S × A, i.e.,

[∇wΠπw ](s, a) = ∇w log(πw(s, a)), and [∇wΠπw · Qπ] ∈ Rdw|S||A| is element-wise
product between ∇wΠπw and Qπ, i.e., [∇wΠπw · Qπ](s, a) = ∇w log(πw(s, a))Qπ(s, a).
Equation (15) implies that ∇wQπ is the mean of the accumulation of signal C(s, a) =
γE[Qπ(s′, a′)∇w log(πw(s

′, a′))|s, a] with the discounted factor γ. Let Gπ = [Q⊤
π ,∇wQ

⊤]⊤.
We have that Gπ satisfies the general Bellman equation in eq. (2) with B and Mπ specified as

B =

[
R
0

]
, Mπ =

[
γPπ 0

γ[Pπ ⊗ Idw ]diag(∇wΠπw
) γPπ ⊗ Idw

]
, (16)

where diag(∇wΠπw
) ∈ Rdw|S||A|×|S||A| is obtained by arranging ∇w log(π(s, a)) ∈ Rdw diago-

nally. Without loss of generality, we assume that the score function is bounded [44, 47, 59], i.e.,
∥∇w log(πw(s, a))∥2 ≤ CΠ for all (s, a) ∈ S ×A.

Case III: Stochastic Value Gradient. The stochastic value gradient (SVG) method combines
advantages of model-based and model-free methods, in which both the estimated model and value
function are updated to evaluate the policy gradient [12]. In the framework of SVG, the reward
r(s, a) is differentiable with respect to both s ∈ Rds an a ∈ Rda , the stochastic policy takes the form
a = π(s, w) + η, and the transition probability is modelled as s′ = f(s, a) + ξ, where π : S → A
and f : S × A → S are deterministic mappings, w ∈ Rdw is the policy parameter, and η ∼ P (η)
and ξ ∼ P (ξ) are noise variables. We abbreviate the partial differentiation using subscripts as
gx ≜ ∂g/∂x. The gradient of the Q-function w.r.t the policy parameter w is given by [12]

Qs = (Rs +ΠsRa) + γ(ΠsFa + Fs)([Pπ ⊗ Ids ]Qs),

Qa = Ra + γFa[Pπ ⊗ Ids ]Qs + γ[Pπ ⊗ Ida ]Qa,

∇wQπ = ΠwQa + γ[Pπ ⊗ Idw ]∇wQπ, (17)

where Rs ∈ Rds|S||A| and Ra ∈ Rda|S||A| are vectors obtained via stacking partial derivatives
rs(s, a) ∈ Rds and ra(s, a) ∈ Rda over (s, a) ∈ S × A, and Πs = diag(πs) ∈ Rds|S||A|×da|S||A|,
Πw = diag(πw) ∈ Rdw|S||A|×da|S||A|, Fs = diag(fs) ∈ Rds|S||A|×ds|S||A|, and Fa = diag(fa) ∈
Rda|S||A|×ds|S||A| are Jacobian matrices. Consider GVF defined as Gπ = [Q⊤

s , Q
⊤
a ,∇wQ

⊤
π ]

⊤.
Consider the normalized setting in which ΠsFa + Fs = I. Then Gπ satisfies the general Bellman
equation in eq. (2) with B and Mπ specified by

B =

[
Rs +ΠsRa

Ra
ΠwQa

]
, Mπ =

[
γ[Pπ ⊗ Is] 0 0
γFa[Pπ ⊗ Is] γ[Pπ ⊗ Ia] 0

0 Πw γ[Pπ ⊗ Idw ]

]
. (18)

We consider the setting in which ∥fa(s, a)∥F ≤ Ca and ∥πw(s, a)∥F ≤ Cw for all (s, a) ∈ S ×A.
We make the following "non-expansive" assumption for the transition matrix γ1(s, a) = γ(ΠsFa +
Fs).
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Assumption 3 (Normalization). For any v ∈ Rds×1, we have ∥(ΠsFa + Fs)v∥Uπ
≤ ∥v∥Uπ

.

Assumption 3 is the minimum requirement to guarantee the value of Qs to be bounded. It can be
satisfied by selecting appropriate policy class πw and model approximation f together with the feature
design of both state s and action a.

Case IV: Option Learning. In the option framework [49], an option is defined as (πo, λo,O),
where πo : S × A → [0, 1] is an intra-option policy, λo : S → [0, 1] is a termination function,
and O is the option set. In this framework, the policy π is defined over the option-state space, i.e.,
π : O × S → [0, 1]. At time step t, an agent at state st either terminates the previous option ot−1

with probability λot−1(st) and initiates a new option ot according to policy π(·|st), or proceeds
with the previous option ot−1 with probability 1 − λot−1(st) and sets ot = ot−1. Then an action
at is selected according to πot(·|st). The agent receive a reward r(st, at). Similar to regular
MDP, here we define state-option value function as Qπ(s, o) =

∫
a
π(a|s)Qπ(s, o, a)da, where

Qπ(s, o, a) = E[
∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a, o0 = o]. We consider evaluate the state-option
value function Qπ(s, o). [71] shows that

QO
π = R+ γPλ,Oπ QO

π , (19)

where [Pλ,Oπ ]((s, o), (s′, o′)) = [(1− λo(s
′))1o′=o + λo(s

′)π(o′|s′)]P(s′|s, o), where P(s′|s, o) =∫
a
πo(a|s)P(s′|s, a). Let Yπ(x) = Qπ(s, o), C(xt) = r(st, at) and m(x, xt+1) = γ, it can be

checked that Yπ satisfies the general Bellman equation defined in Section 2.1.

C.2 Examples of Backward GVFs

The backward GVF in Definition 2 also arises in the following important RL applications.

Case IV: Anomaly Detection. [70] has systemically discussed the application of retrospective
knowledge in anomaly detection. Let i(s, a) be the cost that an agent consumes when taking action a
at state s, and eπ(s, a) be the cost that an agent is expected to consume given the current status when
following a predefined policy π. If the actual cost of the agent deviates too much from eπ , the agent
may likely encounter anomalous events. For simplicity, we consider the setting when γ(s, a) = γ. It
can be shown that eπ satisfies the following equation

eπ = i+ γU−1
π P⊤

π Uπeπ. (20)

Clearly, eq. (20) satisfies the general backward Bellman equation in eq. (4) by letting B = i,
Mπ = γPπ , and Ĝπ = eπ .

Case V: Gradient of Logarithmic Stationary Distributions. In the policy parameterization setting,
the gradient of logarithmic stationary distribution ∇w logµπ(s, a) has been used in policy gradient
estimation [18, 61, 26] and maximum entropy exploration [11]. It has been shown in [26, 61] that
∇w logµπ(s, a) satisfies the following equation

Ψπ = ∇wΠπw + U−1
π [P⊤

π ⊗ Idw ]UπΨπ, (21)

where Ψπ is obtained via stacking ∇w log(µπ(s, a)) over S × A, i.e., [Ψπ](s, a) =
∇w log(µπw

(s, a)). Here, ∇w logµπ can be viewed as a backward accumulation of the signal
C(s, a) = ∇w log(π(s, a)) with the discounted factor γ = 1. Define the backward GVF as Ĝπ = Ψπ .
It is clear that Ĝπ satisfies the general backward Bellman equation in eq. (4) with B and Mπ specified
by

B = ∇wΠπw
, Mπ = P⊤

π ⊗ Idw . (22)

Note that since γmax = 1 in the general Bellman equation in eq. (21), the result in Proposition 1 may
not hold in such a setting, i.e., GBO may not be a contraction here. However, as we will show in
appendix H, when the base matrix Φ satisfies the "non-constant parameterization" assumption, we
can establish results similar to Proposition 2 and Theorem 3 for the evaluation of ∇w logµπ .

D Gradient Temporal Difference Learning (GTD)

The GTD algorithm has been used for GVF evaluation in [48, 37]. So far, only the asymptomatic
convergence (not the convergence rate) has been studied in [37]. In this section, we present the
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Algorithm 2 GTD
Initialize: Approximator parameters w0, and θ0
for t = 0, · · · , T − 1 do

Obtain sample (st, at, Bt, s
′
t) ∼ D and a′t ∼ π(·|s′t)

wt+1 = wt − βt(g(xt, θt)− l(xt, wt))
forward GVF: l(xt, wt) = ϕ(st, at)

⊤ϕ(st, at)wt
backward GVF: l(xt, wt) = ϕ(s′t, a

′
t)

⊤ϕ(s′t, a
′
t)wt

θt+1 = ΓRθ
(θt + αt(g(xt, θt)− h(xt, θt)))

forward GVF: h(xt, wt) = ϕ(s′t, a
′
t)

⊤m(xt)ϕ(st, at)wt
backward GVF: h(xt, wt) = ϕ(st, at)

⊤m̂(xt)ϕ(s
′
t, a

′
t)wt

end for

GTD algorithm for GVF evaluation and characterize the finite-time convergence rate for GTD. We
define the dimension of parameter θ as dg =

∑k
i=1Kidi. In the sequel, we denote the MSPBE with

parameter θ as J(θ). Note that the MSPBE in eq. (5) can be rewritten as

J(θ) =
1

2
∥ED[g(x, θ)]∥2C−1 , C ≜

{
ED[(ϕ(s, a)⊤ϕ(s, a))] (forward GVF)
ED[(ϕ(s′, a′)⊤ϕ(s′, a′))] (backward GVF)

, (23)

where

g(x, θ) ≜

{
−ϕ(s, a)⊤(B(s, a) +m(x)ϕ(s′, a′)θ − ϕ(s, a)θ) (forward GVF)
−ϕ(s′, a′)⊤(B(s′, a′) + m̂(x)ϕ(s, a)θ − ϕ(s′, a′)θ) (backward GVF)

,

where the matrices m(·) and m̂(·) are defined in eq. (8). The gradient of J(θ) is given as

−∇J(θ) = ED[g(x, θ)− h(x, θ)], h(x, θ) ≜

{
ϕ(s′, a′)⊤m(x)ϕ(s, a)w(θ) (forward GVF)
ϕ(s, a)⊤m̂(x)ϕ(s′, a′)w(θ) (backward GVF)

in which w(θ) = C−1ED[g(x, θ)] ∈ Rdg . Note that we can not estimate ∇J(θ) directly due to the
"double sampling" issue, i.e., w(θ) cannot be estimated via sampling. In GTD, an auxiliary parameter
wt is introduced, which is updated simultaneously with θt to approximate w(θt) [45, 23]. We present
the update of GTD in Algorithm 2.

D.1 Convergence Rate of GTD

We make the following assumptions, which have also been adopted in the convergence analysis of
GTD in the canonical value function evaluation setting [62, 60, 45, 23].
Assumption 4. In both forward and backward GVF evaluation settings, the matrix C in eq. (23) is
non-singular.

Assumption 5. We define the matrix Â in the following way: (1) in the forward GVF evaluation
setting: Â = ED·π[ϕ(s, a)

⊤(m(x)ϕ(s′, a′)− ϕ(s, a))]; (2) in the backward GVF evaluation setting,
Â = ED·π[ϕ(s

′, a′)(m̂(x)ϕ(s, a)− ϕ(s′, a′))]. We require Â to be non-singular in both the forward
and backward GVF settings.

We define the optimal point θ̄∗ for GTD as

⟨∇J(θ̄∗), θ − θ̄∗⟩ ≥ 0, ∀θ ∈ Rθ,

which is the optimality condition for minimizing J(θ). The following theorem characterizes the
convergence rate of GTD to θ̄∗.
Theorem 3. Consider the GTD update in Algorithm 2. In both the forward and backward GVF
evaluation settings, suppose Assumption 4-5 hold. Let the stepsize αt = Θ(t−1) and βt = Θ(t−1).
We have

E
[∥∥θT − θ̄∗

∥∥2
2

]
≤ O

(∥∥θ0 − θ̄∗
∥∥2
2

T 2

)
+O

(
1

λ′2GT

)
,

where λ′G > 0 is the conditional number of GTD defined in eq. (71) of Appendix I.
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Theorem 1 shows that GTD converges to the globally optimal point θ̄∗ at a rate of O(1/T ). The
convergence speed of θt depends on the conditional number λ′G, which decreases as λ′G decreases.
Differently from the conditional number λG of GenTD, which has a guaranteed lower bound from
zero as given in Proposition 2, there exists no guaranteed lower bound for λ′G even in the canonical
value function evaluation setting. Thus, the converge speed of GTD could be very slow as λ′G could
be arbitrarily small.

D.2 Global Optimum of GTD and Proof of Example 1

For simplicity, we consider scenarios when the function approximation class FΦ is complete. We
show that the global optimum of GTD exhibits very different properties in the forward and backward
GVF evaluation settings.

We first show that in the forward GVF evaluation setting, the global optimum Φθ̄∗ of GTD equals
the ground truth GVF. Since the function space FΦ is complete, there exists a parameter θtrue ∈ Rθ
such that Φθtrue = Gπ, which implies J(θtrue) = 0. Since J(θ) ≥ 0 for all θ ∈ Rθ and J(θ) is
strongly-convex, J(θ) = 0 if and only if θ = θ̄∗, which implies θtrue = θ̄∗.

In the backward GVFs evaluation setting, we provide an example (see Example 1 in Section 4) to
show that GTD can fail to learn the ground truth Gπ even if the function class FΦ is complete. We
next present the proof for such an example.

Proof of Example 1. The backward value function can be obtained as follows

V̄ = U−1(I − γP⊤)−1P⊤UR = [8.1555, 9.0389, 9.0184]⊤.

The fixed point of GTD is given by

θ̄∗ = Ā−1b̄,

where

Ā = γΦ⊤P⊤D̄′Φ− Φ⊤D̄′Φ, b̄ = Φ⊤P⊤D̄R, (24)

where D̄ = diag(D), D̄′ = diag(D′) and D′⊤ = D⊤P . Also note that the base matrix Φ =
[8.1555, 9.0389, 9.0184]⊤ and the off-policy sampling distribution D = [1/3, 1/3, 1/3]⊤. We can
obtain

Ā = −9.9422, b̄ = 5.9904,

which implies

θ̄∗ =
−b
A

= 0.6025. (25)

Note that the perfect base matrix [8.1555, 9.0389, 9.0184]⊤ can fully represent V̄π, with parameter
θtrue = 1. However, eq. (25) shows that the global optimum of GTD θ̄∗ ̸= θtrue, which introduces a
non-zero approximation error: ∥∥Φθ̄∗ − V̄

∥∥
D

= 3.7848.

The above example demonstrates a drawback of GTD, which can fail to learn the ground truth Gπ
even if the function class FΦ is complete. Such an issue does not occur for the GenTD algorithm
proposed in this paper, which converges to the ground truth as guaranteed by Theorem 2 in Section 4.

E Proofs of Propositions 1 and 2

E.1 Supporting Lemmas

We provide the following lemmas, which are useful for the proofs of Propositions 1 and 2.

Lemma 1. For any v ∈ Rd|S||A|,we have ∥[Pπ ⊗ Id]v∥Uπ
≤ ∥v∥Uπ

.
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Proof. Consider the square of ∥[Pπ ⊗ Id]v∥Uπ
. We have

∥[Pπ ⊗ Id]v∥2Uπ
= v⊤[P⊤

π ⊗ Id]Uπ[Pπ ⊗ Id]v

=

|S||A|∑
i=1

µπ(i)

∥∥∥∥∥∥
|S||A|∑
j=1

Pπ(j|i)vj

∥∥∥∥∥∥
2

2

≤
|S||A|∑
i=1

µπ(i)

|S||A|∑
j=1

Pπ(j|i) ∥vj∥22

=

|S||A|∑
i=1

|S||A|∑
j=1

µπ(i)Pπ(j|i) ∥vj∥22

=

|S||A|∑
j=1

µπ(i) ∥vj∥22

= ∥v∥2Uπ
,

where the first inequality follows from Jensen’s inequality and the fourth equality follows from the
property of the stationary distribution µ⊤

π Pπ = µ⊤
π .

We provide the follow lemma to characterize a similar property in backward GVF evaluation setting.

Lemma 2. For any v ∈ Rd|S||A|,we have
∥∥U−1

π [P⊤
π ⊗ Id]Uπv

∥∥
Uπ

≤ ∥v∥Uπ
.

Proof. Consider the square of
∥∥U−1

π [P⊤
π ⊗ Id]Uπv

∥∥
Uπ

. We have∥∥U−1
π [Pπ ⊗ Id]Uπv

∥∥2
Uπ

= v⊤[U−1
π [P⊤

π ⊗ Id]Uπ]
⊤Uπ[U

−1
π [P⊤

π ⊗ Id]Uπ]v

=

|S||A|∑
j=1

µπ(j)

∥∥∥∥∥∥
|S||A|∑
i=1

µπ(i)Pπ(j|i)
µπ(j)

v(i)

∥∥∥∥∥∥
2

2

≤
|S||A|∑
j=1

µπ(j)

|S||A|∑
i=1

µπ(i)Pπ(j|i)
µπ(j)

∥v(i)∥22

=

|S||A|∑
j=1

µπ(i) ∥v(i)∥22
|S||A|∑
i=1

Pπ(j|i)

=

|S||A|∑
j=1

µπ(i) ∥v(i)∥22

= ∥v∥2Uπ
,

where the first inequality follows from the Jensen’s inequality.

E.2 Proof of Proposition 1

We first consider the forward GBO setting. Recall the following definition of GBO TG,π in eq. (2)

Gπ = TG,πGπ = B +MπGπ,

where

B =


B1

B2

...
Bk

 , Mπ =


γ1[Pπ ⊗ Id1 ] 0 · · · 0

A2,1 γ2[Pπ ⊗ Id2 ] · · · 0
...

...
...

Ak,1 Ak,2 · · · γk[Pπ ⊗ Idk ]

 .
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Let G′
π, G

′′
π ∈ R|S||A|

∑k
i=1Kidi be two vectors, and let ∆G = [∆1, · · · , ∆k], where ∆i = G′

π,i −
G′′
π,i. We have

TπG′
π − TπG′′

π =Mπ∆G =


γ1[Pπ ⊗ Id1 ]∆1

A2,1∆1 + γ2[Pπ ⊗ Id2 ]∆2

...∑k−1
j=1 Ak,j∆j + γk[Pπ ⊗ Idk ]∆k

 . (26)

Recall that Ai,j is bounded for all i, j. Thus, there exists a constant 0 < CA < ∞ such that
∥Ai,j∥Uπ

≤ CA for all i, j. Without loss of generality, we assume CA > 1. Let α be the solution of
the following matrix function

Fx = f, (27)

where F ∈ Rk×k and f ∈ Rk are specified as

F =


− 1−γ

2 CA CA · · · CA CA
0 − 1−γ

2 CA · · · CA CA
...

...
...

0 0 0 · · · − 1−γ
2 CA

1 1 1 · · · 1 1

 , f =


0
0
...
0
1

 .
It can be checked that the solution of eq. (27) is strictly positive, i.e., if Fα = f , then we have αl > 0
for 1 ≤ l ≤ k. Recalling the definition of ∥·∥µπ,α

– norm, we have

∥Mπ∆G∥µπ,α

= γ1α1 ∥[Pπ ⊗ Id1 ]∆1∥µπ
+ α2 ∥A2,1∆1 + γ2[Pπ ⊗ Id2 ]∆2∥µπ

+ · · ·+ αk

∥∥∥∥∥∥
k−1∑
j=1

Ak,j∆j + γk[Pπ ⊗ Idk ]∆k

∥∥∥∥∥∥
µπ

≤ γ1α1 ∥[Pπ ⊗ Id1 ]∆1∥µπ
+ α2 ∥A2,1∆1∥µπ

+ · · ·+ αk ∥Ak,1∆1∥µπ

+ γ2α2 ∥[Pπ ⊗ Id2 ]∆2∥µπ
+ α3 ∥A3,2∆2∥µπ

+ · · ·+ αk ∥Ak,2∆2∥µπ

+ · · ·
+ γkαk ∥[Pπ ⊗ Idk ]∆k∥µπ

≤

(
γα1 + CA

k∑
i=2

αi

)
∥∆1∥µπ

+

(
γα2 + CA

k∑
i=3

αi

)
∥∆2∥µπ

+ · · ·+ γαk ∥∆k∥µπ

≤ 1 + γ

2
α1 ∥∆1∥µπ

+
1 + γ

2
α2 ∥∆2∥µπ

+ · · ·+ γαk ∥∆k∥µπ

≤ 1 + γ

2

(
k∑
i=1

αi ∥∆i∥µπ

)

=
1 + γ

2
∥∆G∥µπ,α

, (28)

where the first inequality follows from the triangle inequality, the second inequality follows from the
fact that Ai,j is bounded and Lemma 1, and the third inequality follows from the definition of γ and
the fact that α is the solution of eq. (27). Obviously, eq. (28) implies the following property,

∥TπG′
π − TπG′′

π∥µπ,α
≤ 1 + γ

2
∥G′

π −G′′
π∥µπ,α

,

which completes the proof in the forward GBO evaluation setting.

We next consider the backward GBO setting, where T̂G,π is defined in eq. (3). Following steps
similar to those from eq. (26) – eq. (28), we can obtain∥∥∥T̂πGπ − T̂πG′

π

∥∥∥
µπ,α

= ∥Mπ∆G∥µπ,α
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= γ1α1

∥∥U−1
π,1[Pπ ⊗ Id1 ]Uπ,1∆1

∥∥
µπ

+ α2

∥∥A2,1∆1 + γ2U
−1
π,2[Pπ ⊗ Id2 ]Uπ,2∆2

∥∥
µπ

+ · · ·

+ αk

∥∥∥∥∥∥
k−1∑
j=1

Ak,j∆j + γkU
−1
π,k[Pπ ⊗ Idk ]Uπ,k∆k

∥∥∥∥∥∥
µπ

≤ γ1α1

∥∥U−1
π,1[Pπ ⊗ Id1 ]Uπ,1∆1

∥∥
µπ

+ α2 ∥A2,1∆1∥µπ
+ · · ·+ αk ∥Ak,1∆1∥µπ

+ γ2α2

∥∥U−1
π,2[Pπ ⊗ Id2 ]Uπ,2∆2

∥∥
µπ

+ α3 ∥A3,2∆2∥µπ
+ · · ·+ αk ∥Ak,2∆2∥µπ

+ · · ·

+ γkαk

∥∥∥U−1
π,k[Pπ ⊗ Idk ]Uπ,k∆k

∥∥∥
µπ

≤

(
γα1 + C

k∑
i=2

αi

)
∥∆1∥µπ

+

(
γα2 + C

k∑
i=3

αi

)
∥∆2∥µπ

+ · · ·+ γαk ∥∆k∥µπ

≤ 1 + γ

2
α1 ∥∆1∥µπ

+
1 + γ

2
α2 ∥∆2∥µπ

+ · · ·+ γαk ∥∆k∥µπ

≤ 1 + γ

2

(
k∑
i=1

αi ∥∆i∥µπ

)

=
1 + γ

2
∥∆G∥µπ,α

, (29)

where the first inequality follows from the triangle inequality, the second inequality follows from the
fact that Ai,j is bounded and Lemma 2, and the third inequality follows from the definition of γ and
the fact that α is the solution of eq. (27). Equation (29) implies the following∥∥∥T̂πG′

π − T̂πG′′
π

∥∥∥
µπ,α

≤ 1 + γ

2
∥G′

π −G′′
π∥µπ,α

,

which completes the proof in the backward GBO evaluation setting.

E.3 Proof of Proposition 2

We first consider the forward GFV setting. Recall the linear function approximation of Gπ is given
by

G(θ) = Φθ,

where

Φ =


Φ1 ⊗ Id1 0 · · · 0

0 Φ2 ⊗ Id2 · · · 0
...

...
...

0 0 · · · Φk ⊗ Idk

 , θ =


vec(θ⊤1 )
vec(θ⊤2 )

...
vec(θ⊤k )

 .
Folloing the definition of g(θ) in eq. (7), we have

−g(θ) = Φ⊤Uπ(TG,πG(θ)−G(θ))

= Φ⊤Uπ((Mπ − I)Φθ +B)

= Gθ + g,

where G = Φ⊤Uπ(Mπ − I)Φ and g = Φ⊤UπB. Since the monotonicity depends only on the matrix
G, we next proceed to show that G is Hurwitz. For the matrix G, we have

G = Φ⊤Uπ(Mπ − I)Φ =


A1 0 · · · 0
N2,1 A2 · · · 0

...
...

Nk,1 Nk,2 · · · Ak

 , (30)
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where Ai = [Φ⊤
i Uπ,i(γiPπ − I)Φi]⊗ Idi and Ni,j is a matrix that depends on Φi, Φj , Pπ and µπ.

We have the following equations hold:

eig(G) = {eig(A1), · · · , eig(Ak)}, (31)

eig(Ai) = eig(Φ⊤
i Uπ,i(γiPπ − I)Φi), (32)

max{eig(Φ⊤
i Uπ,i(γiPπ − I)Φi)} = −(1− γ)ζi, (33)

where ζi is defined in Proposition 2, the first equation follows because the eigenvalue of a matrix is
determined by the eigenvalues of its diagonal block matrices [13], the second equation follows from
the fact that eig(M ⊗ Id) = eig(M) for any matrix M and positive integer d, and the last follows
from Lemma 1 and Lemma 3 in [2]. Combining eq. (31)–(33), we can obtain equation

max{eig(G)} ≤ −(1− γ)min
i
ζi = −λG < 0, (34)

which completes the proof in the forward GVF setting.

We next consider the backward GVF setting. Following the steps similar to those for deriving
eq. (30), we can obtain −g(θ) = Ĝθ + ĝ, where ĝ = Φ⊤P⊤

π UπB. For the matrix Ĝ, we have

Ĝ = Φ⊤P⊤
π (M̂π − I)UπΦ =


Â1 0 · · · 0

N̂2,1 Â2 · · · 0
...

...
N̂k,1 N̂k,2 · · · Âk

 , (35)

where Âi = [Φ⊤
i (γiP

⊤
π − I)Uπ,iΦi]⊗ Idi and N̂i,j is a matrix that depends on Φi, Φj , Pπ and µπ.

Following the steps similar to those in eq. (31)–(34) and using the result in the verification of item (c)
in Assumption 2 in [70], we have

max{eig(G)} ≤ −(1− γ)min
i
ζi = −λG < 0,

which completes the proof in the backward GVF setting.

F Proof of Theorem 1

F.1 Supporting Lemmas

We first develop the property for the update ofwρ in Algorithm 1. Given a sample (st, at, Bt, s′t) ∼ D
and a′t ∼ π(·|s′t), we introduce the following definitions.

Pt =

 ψ⊤
t ψt (ψt − ψ′

t)ψ
⊤
t 0

−ψt(ψ⊤
t − ψ′⊤

t ) 0 ψt
0 −ψ⊤

t 1

 , pt =

[
0
0
1

]
.

Consider the matrix Pt and vector pt, we have the following holds

∥Pt∥2F =
∥∥ψ⊤

t ψt
∥∥2
F
+ 2

∥∥(ψt − ψ′
t)ψ

⊤
t

∥∥2
F
+ 2 ∥ψt∥2F + 1

≤ 9C4
ψ + 2C2

ψ + 1, (36)

where Cψ is the upper bound on the feature fector ψ(·), i.e., ∥ψ(s, a)∥2 ≤ Cψ for all (s, a) ∈ S ×A,
which implies ∥Pt∥F ≤ CP , where

CP =
√
9C4

ψ + 2C2
ψ + 1. (37)

For the vector pt, it can be checked easily that ∥pt∥2 ≤ 1.

We also define P = ED·π[Pt] and p = ED·π[pt], i.e.,

P =

 ED·π[ψ
⊤ψ] ED·π[(ψ − ψ′)ψ⊤] 0

−ED·π[ψ(ψ
⊤ − ψ′⊤)] 0 ED·π[ψ]

0 −ED·π[ψ
⊤] 1

 , p =

[
0
0
1

]
.
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Note that  ∇wf
L(ρ̂, f̂ , η)

∇wρL(ρ̂, f̂ , η)

∇ηL(ρ̂, f̂ , η)

 = −(Pκ+ p).

It has been shown in Theorem 2 in [67] that the real parts of all eigenvalues of P are strictly positive,
which guarantees that there exists a positive constant λP such that

⟨Px, x⟩ ≥ λP ∥x∥22 for all x ∈ R2dρ . (38)

We also define κt = [w⊤
f,t, w

⊤
ρ,t, ηt]

⊤. The update of density ratio learning can be rewritten as

κt+1 = κt − βtζ(xt, κt),

where ζ(xt, κt) = Ptκt + pt. We also define the population update as ζ(κt) = ED·π[ζ(x, κt)] =
Pκt + p. Without loss of generality, we assume that there exists a positive constant Cκ such that
∥κ∗∥2 ≤ Cκ, where κ∗ is the global optimum of the density ratio learning defined as

⟨ζ(κ∗), κ− κ∗⟩ ≤ 0, ∀κ ∈ Rdρ ×Rρ × R. (39)

The following lemma, often referred to as the "three-points" lemma, characterizes the incremental
updating progress of κt with projection, a proof of which can be found in Lemma 3.1 in [20].
Lemma 3. Consider the update of wf,t, wρ,t and ηt in Algorithm 1. For all κ ∈ RM ×Rρ × R, we
have the following holds

βt⟨ζ(xt, κt), κt+1 − κ⟩+ 1

2
∥κt+1 − κt∥22 ≤ 1

2
∥κt − κ∥22 −

1

2
∥κt+1 − κ∥22 . (40)

Similarly to Lemma 3, we also have the following "three-points lemma" for the iteration of θt.
Lemma 4. Consider the update of θt in Algorithm 1. For all θ ∈ Rθ, we have the following holds

−αt⟨ρ̂(xt, wρ,t)g(xt, θt), θt+1 − θ⟩+ 1

2
∥θt+1 − θt∥22 ≤ 1

2
∥θt − θ∥22 −

1

2
∥θt+1 − θ∥22 , (41)

where ρ̂(xt, wρ,t) is defined in eq. (8).

The following lemma characterizes the smoothness of ζ(·).
Lemma 5. For any κ, κ′ ∈ Rdρ ×Rρ × R, we have

∥ζ(κ)− ζ(κ′)∥2 ≤ CP ∥κ− κ′∥2 ,
where CP is defined in eq. (37).

Proof. Recalling the definition of ζ(κ) = Pκ+ p, we can obtain the following
∥ζ(κ)− ζ(κ′)∥2 = ∥P (κ− κ′)∥2 ≤ ∥P∥2 ∥κ− κ′∥2 ≤ CP ∥κ− κ′∥2 ,

which completes the proof.

Similarly, the following lemma characterizes the smoothness of g(θ) = Eµπ
[g(x, θ)].

Lemma 6. In both the forward and backward GVF evaluation settings, for any θ, θ′ ∈ Rdρ , we have
∥g(θ)− g(θ′)∥2 ≤ Cg ∥θ − θ′∥F ,

where Cg = (dgCϕCm + 1)Cϕ.

Proof. First consider the forward GVF evaluation setting. Recall the definition of g(θ) and x =
(s, a, s′, a′), we have

g(θ) = Eµπ
[ϕ(s, a)⊤(B(x) +m(x)ϕ(s′, a′)θ − ϕ(s, a)θ)],

which implies
∥g(θ)− g(θ′)∥2 = ∥Eµπ

[ϕ(s, a)(m(x)ϕ(s′, a′)(θ − θ′) + ϕ(s, a)(θ′ − θ))]∥2
≤ Eµπ

[(∥ϕ(s, a)∥F ∥m(x)∥F + 1) ∥θ′ − θ∥2 ∥ϕ(s, a)∥F ]
≤ Cg ∥θ − θ′∥2 . (42)

Following the steps similar to those in eq. (42), we can also prove that ∥g(θ)− g(θ′)∥2 ≤
Cg ∥θ − θ′∥F holds in the backward GVF evaluation setting.
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The following lemma characterizes the monotonicity of ζ(·).
Lemma 7. We have the following holds

⟨ζ(κ), κ− κ∗⟩ ≥ λP ∥κ− κ∗∥22 , ∀κ ∈ Rdρ ×Rρ × R.

Proof. Recall that P is strictly positive defined (eq. (38)). We have

⟨ζ(κ), κ− κ∗⟩ = ⟨ζ(κ∗), κ− κ∗⟩+ ⟨ζ(κ)− ζ(κ∗), κ− κ∗⟩
≥ ⟨ζ(κ)− ζ(κ∗), κ− κ∗⟩
= ⟨P (κ− κ∗), κ− κ∗⟩
≥ λP ∥κ− κ∗∥22 , (43)

which completes the proof.

The next lemma bounds the per-iteration variance of the update of κt.

Lemma 8. Given a sample (st, at, Bt, s
′
t) ∼ Dd and a′t ∼ π(·|s′t) and any κ ∈ Rdρ ×Rρ × R, we

have the following holds

∥ζ(xt, κ)− ζ(κ)∥22 ≤ 8C2
P ∥κ− κ∗∥22 + 8C2

PC
2
κ.

Proof. Recalling the definitions of ζ(xt, κ) = Ptκ + pt and ζ(κ) = Pκ + p, we can obtain the
following

∥ζ(xt, κ)− ζ(κ)∥22 = ∥(Pt − P )κ∥22 = 2 ∥(Pt − P )(κ− κ∗)∥22 + 2 ∥(Pt − P )κ∗∥22
≤ 8C2

P ∥κ− κ∗∥22 + 8C2
PC

2
κ.

The following lemma bounds the norm of the stochastic update g(x, θ) and the per-iteration variance
of GenTD update with density ratio ρ(s, a).

Lemma 9. Given a sample (st, at, Bt, s
′
t) ∼ D and a′t ∼ π(·|s′t) and any θ ∈ Rθ, we have the

following holds

∥g(xt, θ)∥2 ≤ Dg, and E[∥ρ(st, at)g(xt, θ)− g(θ)∥22] ≤ Vg,

where Dg = dgCϕ[Cmax + (Cm + 1)DθCϕ] and Vg = 2ρmaxDg .

Proof. We prove the first result as follows,

∥g(xt, θ)∥2 =
∥∥ϕ(s, a)⊤(B(x) +m(s′, a′)ϕ(s′, a′)θ − ϕ(s, a)θ)

∥∥
2

≤
∥∥ϕ(s, a)⊤B(x)

∥∥
F
+ ∥ϕ(s, a)∥F ∥m(s′, a′)ϕ(s′, a′)θ − ϕ(s, a)θ∥F

≤ dgCϕ[Cmax + (Cm + 1)DθCϕ],

where the last inequality follows from the boundness of the set Rθ. Here we consider ∥θ∥2 ≤ Dθ for
all θ ∈ Rθ. The second result can be obtained as follows

∥ρ(st, at)g(xt, θ)− g(θ)∥22 ≤ |ρ(st, at)| (∥g(xt, θ)∥2 + ∥g(θ)∥2) ≤ 2ρmaxDg. (44)

We next bound the convergence rate of wρ,t.

Lemma 10. Consider wf,t, wρ,t and ηt in Algorithm 1. Let stepsize βt = 2
λP (t+t0+1) where

t0 =
36C2

P

λ2
P

. For any κ ∈ Rdρ ×Rρ × R, we have

E[∥κT − κ∗∥22] ≤
(1 + 16β2

0C
2
P )(t0 + 1)2 ∥κ0 − κ∗∥22

(T + t0 − 1)(T + t0)
+

64C2
PC

2
κ

(T + t0)λ2P
.
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Proof. The inner product in eq. (40) can be equivalently written as

⟨ζ(xt, κt), κt+1 − κ⟩
= ⟨ζ(κt+1), κt+1 − κ⟩+ ⟨ζ(κt)− ζ(κt+1), κt+1 − κ⟩+ ⟨ζ(xt, κt)− ζ(κt), κt − κ⟩
+ ⟨ζ(xt, κt)− ζ(κt), κt+1 − κt⟩

≥ ⟨ζ(κt+1), κt+1 − κ⟩ − ∥ζ(κt)− ζ(κt+1)∥2 ∥κt+1 − κ∥2 + ⟨ζ(xt, κt)− ζ(κt), κt − κ⟩
− ∥ζ(xt, κt)− ζ(κt)∥2 ∥κt+1 − κt∥2

≥ ⟨ζ(κt+1), κt+1 − κ⟩ − CP ∥κt − κt+1∥2 ∥κt+1 − κ∥2 + ⟨ζ(xt, κt)− ζ(κt), κt − κ⟩
− ∥ζ(xt, κt)− ζ(κt)∥2 ∥κt+1 − κt∥2 , (45)

where the last inequality follows from Lemma 5. Substituting eq. (45) into eq. (40), we obtain

1

2
∥κt − κ∥22 −

1

2
∥κt+1 − κ∥22

≥ βt⟨ζ(κt+1), κt+1 − κ⟩ − βtCP ∥κt − κt+1∥2 ∥κt+1 − κ∥2 + βt⟨ζ(xt, κt)− ζ(κt), κt − κ⟩

− βt ∥ζ(xt, κt)− ζ(κt)∥2 ∥κt+1 − κt∥2 +
1

2
∥κt+1 − κt∥22 . (46)

Note that we have the following holds

1

2
∥κt+1 − κt∥22 − βtCP ∥κt − κt+1∥2 ∥κt+1 − κ∥2 − βt ∥ζ(xt, κt)− ζ(κt)∥2 ∥κt+1 − κt∥2

=
1

4
∥κt+1 − κt∥22 − βtCP ∥κt − κt+1∥2 ∥κt+1 − κ∥2 +

1

4
∥κt+1 − κt∥22

− βt ∥ζ(xt, κt)− ζ(κt)∥2 ∥κt+1 − κt∥2
≥ −β2

tC
2
P ∥κt+1 − κ∥22 − β2

t ∥ζ(xt, κt)− ζ(κt)∥22 . (47)

Substituting eq. (47) in eq. (46) yields

1

2
∥κt − κ∥22 −

1

2
∥κt+1 − κ∥22

≥ βt⟨ζ(κt+1), κt+1 − κ⟩+ βt⟨ζ(xt, κt)− ζ(κt), κt − κ⟩ − β2
tC

2
P ∥κt+1 − κ∥22

− β2
t ∥ζ(xt, κt)− ζ(κt)∥22 . (48)

Rearranging eq. (48) and letting κ = κ∗ yield

∥κt − κ∗∥22 + 2β2
t ∥ζ(xt, κt)− ζ(κt)∥22

≥ (1− 2β2
tC

2
P ) ∥κt+1 − κ∗∥22 + 2βt⟨ζ(κt+1), κt+1 − κ∗⟩+ 2βt⟨ζ(xt, κt)− ζ(κt), κt − κ∗⟩

≥ (1 + 2βtλP − 2β2
tC

2
P ) ∥κt+1 − κ∗∥22 + 2βt⟨ζ(xt, κt)− ζ(κt), κt − κ∗⟩, (49)

where the last inequality follows from ⟨ζ(κt+1), κt+1−κ∗⟩ ≤ λP ∥κt+1 − κ∗∥22. Taking expectation
on both sides of eq. (49), and noting that E[⟨ζ(xt, κt)− ζ(κt), κt − κ∗⟩|Ft] = 0, we obtain

(1 + 2βtλP − 2β2
tC

2
P )E[∥κt+1 − κ∗∥22]

≤ E[∥κt − κ∗∥22] + 2β2
t E[∥ζ(xt, κt)− ζ(κt)∥22]

≤ (1 + 16β2
tC

2
P )E[∥κt − κ∗∥22] + 16β2

tC
2
PC

2
κ. (50)

Multiplying both sides of eq. (50) with It and summing over t = 0, · · · , T − 1 yield
T−1∑
t=0

atE[∥κt+1 − κ∗∥22] ≤
T−1∑
t=0

btE[∥κt − κ∗∥22] + c, (51)

where

at = (1 + 2βtλP − 2β2
tC

2
P )It,

bt = (1 + 16β2
tC

2
P )It,

c = 16C2
PC

2
κ

T−1∑
t=0

β2
t It.
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We further let

It = (t+ t0)(t+ t0 + 1),

βt =
2

λP (t+ t0 − 1)
,

t0 =
36C2

P

λ2P
+ 1.

We can obtain the following

at − bt+1 = (1 + 2βtλP − 2β2
tC

2
P )It − (1 + 16β2

t+1C
2
P )st+1

≥ (1 + 2βtλP )It − (1 + 2β2
t + 16β2

t+1C
2
P )st+1

≥ (1 + 2βtλP )It − (1 + 18β2
tC

2
P )st+1

≥ (1 + 2βtλP )It − (1 + βtλP )st+1

≥ (t+ t0 + 1)
(t+ t0 + 3)(t+ t0)− (t+ t0 + 2)2

t+ t0 − 1

≥ 0.

Substituting the above results into eq. (51) yields

aT−1tE[∥κT − κ∗∥22] ≤ b0 ∥κ0 − κ∗∥22 + c,

which implies

E[∥κT − κ∗∥22] ≤
b0 ∥κ0 − κ∗∥22

AT−1
+

c

aT−1

=
(1 + 16β2

0C
2
P )s0 ∥κ0 − κ∗∥22

(1 + 2βT−1λP − 2β2
T−1C

2
P )sT−1

+
16C2

PC
2
κ

∑T−1
t=0 β2

t It
(1 + 2βT−1λP − 2β2

T−1C
2
P )sT−1

≤
(1 + 16β2

0C
2
P )(t0 + 1)2 ∥κ0 − κ∗∥22

(T + t0 − 1)(T + t0)
+

64C2
PC

2
κ

(T + t0)λ2P
,

which completes the proof.

Note that Lemma 10 implies that there exists a positive number Dρ such that

E[
∥∥wρ,t − w∗

ρ

∥∥2
2
] ≤ Dρ

t+ t0
. (52)

F.2 Proof of Theorem 1

Consider the inner product term in eq. (41). We have

−⟨ρ̂(xt, wρ,t)g(xt, θt), θt+1 − θ)⟩
= −⟨g(θt+1), θt+1 − θ)⟩ − ⟨g(θt − g(θt+1), θt+1 − θ)⟩
− ⟨ρ(xt)g(xt, θt)− g(θt), θt+1 − θt⟩ − ⟨ρ(xt)g(xt, θt)− g(θt), θt − θ⟩
− ⟨(ρ̂(xt, w∗

ρ)− ρ(xt))g(xt, θt), θt+1 − θ⟩
− ⟨(ρ̂(xt, wρ,t)− ρ̂(xt, w

∗
ρ))g(xt, θt), θ

⊤
t+1 − θ⟩

≥ −⟨g(θt+1), θ
⊤
t+1 − θ⟩ − Cg ∥θt − θt+1∥2 ∥θt+1 − θ∥2

− ∥ρ(xt)g(xt, θt)− g(θt)∥2 ∥θt+1 − θt∥2 − ⟨ρ(xt)g(xt, θt)− g(θt), θ
⊤
t − θ⟩

−
∣∣ρ̂(xt, w∗

ρ)− ρ(xt)
∣∣ ∥g(xt, θt)∥2 ∥θt+1 − θ∥2

−
∣∣ρ̂(xt, wρ,t)− ρ̂(xt, w

∗
ρ)
∣∣ ∥g(xt, θt)∥2 ∥θt+1 − θ∥2 , (53)

where the last inequality follows from Lemma 6. Substituting eq. (53) into eq. (41) yields

1

2
∥θt − θ∥22 −

1

2
∥θt+1 − θ∥22
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≥ −αt⟨g(θt+1), θ
⊤
t+1 − θ⟩ − αtCg ∥θt − θt+1∥2 ∥θt+1 − θ∥2

− αt ∥ρ(xt)g(xt, θt)− g(θt)∥2 ∥θt+1 − θt∥2 − αt⟨ρ(xt)g(xt, θt)− g(θt), θ
⊤
t − θ⊤⟩

− αt
∣∣ρ̂(xt, w∗

ρ)− ρ(xt)
∣∣ ∥g(xt, θt)∥2 ∥θt+1 − θ∥2

− αt
∣∣ρ̂(xt, wρ,t)− ρ̂(xt, w

∗
ρ)
∣∣ ∥g(xt, θt)∥2 ∥θt+1 − θ∥2 +

1

2
∥θt+1 − θt∥22 . (54)

We have the following holds

1

2
∥θt+1 − θt∥22 − αtCg ∥θt − θt+1∥2 ∥θt+1 − θ∥2 − αt ∥ρ(xt)g(xt, θt)− g(θt)∥2 ∥θt+1 − θt∥2

=
1

4
∥θt+1 − θt∥22 − αtCg ∥θt − θt+1∥2 ∥θt+1 − θ∥2 +

1

4
∥θt+1 − θt∥22

− αt ∥ρ(xt)g(xt, θt)− g(θt)∥2 ∥θt+1 − θt∥2
≥ −α2

tC
2
g ∥θt+1 − θ∥22 − α2

t ∥ρ(xt)g(xt, θt)− g(θt)∥22 , (55)

which implies

1

2
∥θt − θ∥22 −

1

2
∥θt+1 − θ∥22

≥ −αt⟨g(θt+1), θt+1 − θ⟩ − α2
tC

2
g ∥θt+1 − θ∥22 − α2

t ∥ρ(xt)g(xt, θt)− g(θt)∥22
− αt⟨ρ(xt)g(xt, θt)− g(θt), θt − θ⟩ − αtDg

∣∣ρ̂(xt, w∗
ρ)− ρ(xt)

∣∣ ∥θt+1 − θ∥2
− αtDg

∣∣ρ̂(xt, wρ,t)− ρ̂(xt, w
∗
ρ)
∣∣ ∥θt+1 − θ∥2 , (56)

where we use the fact that ∥g(xt, θt)∥2 ≤ Dg in Lemma 9. Rearranging eq. (56) and letting θ = θ∗

yield

∥θt − θ∗∥22 + 2α2
t ∥ρ(xt)g(xt, θt)− g(θt)∥22

≥ ∥θt+1 − θ∗∥22 − 2αt⟨g(θt+1), θt+1 − θ∗⟩ − 2α2
tC

2
g ∥θt+1 − θ∗∥22

− 2αt⟨ρ(xt)g(xt, θt)− g(θt), θt − θ∗⟩ − 2αtDg

∣∣ρ̂(xt, w∗
ρ)− ρ(xt)

∣∣ ∥θt+1 − θ∗∥2
− 2αtDg

∣∣ρ̂(xt, wρ,t)− ρ̂(xt, w
∗
ρ)
∣∣ ∥θt+1 − θ∥2

≥ (1 + 2αtλg − 2α2
tC

2
g ) ∥θt+1 − θ∗∥22 − 2αt⟨ρ(xt)g(xt, θt)− g(θt), θt − θ∗⟩

− 2αtDg

∣∣ρ̂(xt, w∗
ρ)− ρ(xt)

∣∣ ∥θt+1 − θ∗∥2
− 2αtDg

∣∣ρ̂(xt, wρ,t)− ρ̂(xt, w
∗
ρ)
∣∣ ∥θt+1 − θ∥2

≥ (1 + 2αtλg − 2α2
tC

2
g ) ∥θt+1 − θ∗∥22 − 2αt⟨ρ(xt)g(xt, θt)− g(θt), θt − θ∗⟩

− 1

2
αtλg ∥θt+1 − θ∗∥22 −

2αtD
2
g

λg

∣∣ρ̂(xt, w∗
ρ)− ρ(xt)

∣∣2
− 1

2
αtλg ∥θt+1 − θ∗∥22 −

2αtD
2
g

λg

∣∣ρ̂(xt, wρ,t)− ρ̂(xt, w
∗
ρ)
∣∣2

= (1 + αtλg − 2α2
tC

2
g ) ∥θt+1 − θ∗∥22 − 2αt⟨ρ(xt)g(xt, θt)− g(θt), θt − θ∗⟩

−
2αtD

2
g

λg

∣∣ρ̂(xt, w∗
ρ)− ρ(xt)

∣∣2 − 2αtD
2
g

λg

∣∣ρ̂(xt, wρ,t)− ρ̂(xt, w
∗
ρ)
∣∣2 , (57)

where the first inequality follows from Lemma 4, and the third inequality follows from Young’s
inequality. Taking expectation on both sides of eq. (57) yields

(1 + αtλg − 2α2
tC

2
g )E[∥θt+1 − θ∗∥22]

≤ E[∥θt − θ∗∥22] + 2α2
tE[∥ρ(xt)g(xt, θt)− g(θt)∥22] +

2αtD
2
g

λg
E
[∣∣ρ̂(xt, w∗

ρ)− ρ(xt)
∣∣2]

+
2αtD

2
gC

2
ψ

λg
E
[∣∣ρ̂(xt, wρ,t)− ρ̂(xt, w

∗
ρ)
∣∣2]
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≤ E[∥θt − θ∗∥22] + 2Vgα
2
t +

2αtD
2
gC

2
ψ

λg
E
[∥∥wρ,t − w∗

ρ

∥∥2
2

]
+

2D2
gαtερ

λg
, (58)

where the last inequality follows from Lemma 9.

Substituting eq. (52) into eq. (58) yields

(1 + αtλg−2α2
tC

2
g )E[∥θt+1 − θ∗∥22]

≤ E[∥θt − θ∗∥22] + 2Vgα
2
t +

2αtD
2
gDρC

2
ψ

λg(t+ t0)
+

2D2
gαtερ

λg
. (59)

Multiplying both sides of eq. (59) with rt and summing over t = 0, · · · , T − 1 yield
T−1∑
t=0

a′tE[∥θt+1 − θ∗∥22]

≤
T−1∑
t=0

rtE[∥θt − θ∗∥22] + 2Vg

T−1∑
t=0

rtα
2
t +

2D2
gDρC

2
ψ

λg(t+ t0)

T−1∑
t=0

rtαt +
2D2

gερ

λg

T−1∑
t=0

rtαt, (60)

where

a′t = (1 + αtλg − 2α2
tC

2
g )rt.

Now we let

rt = (t+ t1)(t+ t1 + 1),

αt =
4

λg(t+ t1 − 1)
,

t1 =
16C2

g

λ2g
+ 1.

We can obtain the following

a′t − rt+1 = (1 + αtλg − 2α2
tC

2
g )rt − rt+1

≥ (1 + αtλg)rt − (1 + 2α2
tC

2
g )rt+1

≥ (1 + αtλg)rt −
(
1 +

1

2
αtλg

)
rt+1

≥ (t+ t1 + 1)
(t+ t1)(t+ t1 + 3)− (t+ t1 + 2)2

t+ t1 + 1

≥ 0,

where the second inequality follows from the fact that αt ≤ λg

4C2
g

.

Substituting the above result to eq. (60) yields

a′T−1E[∥θT − θ∗∥22] ≤ r0 ∥θ0 − θ∗∥22 + 2Vg

T−1∑
t=0

rtα
2
t +

2D2
gDρC

2
ψ

λg(t+ t0)

T−1∑
t=0

rtαt +
2D2

gερ

λg

T−1∑
t=0

rtαt.

The above inequality implies the following convergence rate

E[∥θT − θ∗∥22] ≤
r0 ∥θ0 − θ∗∥22

(T + t1 − 1))(T + t1)
+

128Vg
λ2g(T + t1)

+
64D2

gC
2
gC

2
ψλ

2
P

9C2
Pλ

3
g(T + t1)

+
16D2

g

λ2g
ερ,

which completes the proof.

G Proof of Theorem 2

Following the similar argument similar to that in Lemma 4.2 in [3] and Theorem 1 in [55], we can
prove that Φθ∗ is the fixed point of the composite operator ΓΦ,µπ T̄π . We then proceed as follows

∥Φθ∗ −Gπ∥µπ,α
=
∥∥ΓΦ,µπ

T̄πΦθ∗ − ΓΦ,µπ
Gπ + ΓΦ,µπ

Gπ −Gπ
∥∥
µπ,α
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≤
∥∥ΓΦ,µπ T̄πΦθ∗ − ΓΦ,µπGπ

∥∥
µπ,α

+ ∥ΓΦ,µπGπ −Gπ∥µπ,α

=
∥∥ΓΦ,µπ

T̄πΦθ∗ − ΓΦ,µπ
T̄πGπ

∥∥
µπ,α

+ ∥ΓΦ,µπ
Gπ −Gπ∥µπ,α

≤
∥∥ΓΦ,µπ

[T̄πΦθ∗ − T̄πGπ]
∥∥
µπ,α

+ ∥ΓΦ,µπ
Gπ −Gπ∥µπ,α

≤
∥∥T̄πΦθ∗ − T̄πGπ

∥∥
µπ,α

+ ∥ΓΦ,µπ
Gπ −Gπ∥µπ,α

≤ γG ∥Φθ∗ −Gπ∥µπ,α
+ ∥ΓΦ,µπ

Gπ −Gπ∥µπ,α
, (61)

where the first equality follows from the fact that ΓΦ,µπ T̄πΦθ∗ = Φθ∗, the second equality follows
from the fact that T̄πGπ = Gπ, the third inequality follows from the non-expansive property of the
projection operator ΓΦ,µπ

, and the last inequality follows from Proposition 1. Equation (61) implies
the following result

∥Φθ∗ −Gπ∥µπ,α
≤ 1

1− γG
∥ΓΦ,µπ

Gπ −Gπ∥µπ,α
.

H Extension to Case γmax = 1

As shown in Proposition 1, the operator T̄G,π is not necessarily a contraction when γmax = 1. The
uniqueness of Gπ and Ĝπ is not guaranteed in this case. We next consider the following assumption
for the base matrix Φi, which can yield a desired property as we show below. Such an assumption
has also been considered in the average reward MDP setting [56].
Assumption 6 (Non-constant Parameterization). For all i = 1, · · · , k, we have Φiθi ̸= c1 for any
θi ∈ Rdi and c ∈ R/0.

Despite the non-contraction nature of T̄G,π, if the base function Φi satisfies Assumption 6, we can
show that the monotonicity condition of g(θ) in Proposition 2 still holds with a positive constant λG.
As a result, the convergence bound in eq. (12) of theorem 1 is directly applicable to this setting with
the corresponding value of λG. We can then further establish a result similar to Theorem 2 for the
case with γmax = 1 under Assumption 6.

We first extend Proposition 2 and Theorem 2 to the case in which γmax = 1. Without loss of
generality, we consider γi = 1 for all i = 1, · · · , k.

Forward GVF. We first verify Proposition 2. In this setting, we can still obtain the same result for G
as in eq. (30), but with Ai = [Φ⊤

i Ūπ(Pπ − I)Φi]⊗ Idi , where Ūπ = diag(µπ). As shown in Lemma
7 in [56], the matrix [Φ⊤

i Uπ,i(Pπ − I)Φi] is Hurwitz when the base matrix Φi satisfies Assumption 6.
Following the steps similar to those in eq. (31) - (34), we can conclude that the matrix G is also
Hurwitz, which completes the proof.

We then verify Theorem 2. We proceed as follows,

∥Φθ∗ −Gπ∥µπ,α

= ∥ΓΦ,µπTπΦθ∗ − TπGπ∥µπ,α

≤ ∥ΓΦ,µπ
TπΦθ∗ − ΓΦ,µπ

TπGπ∥µπ,α
+ ∥ΓΦ,µπ

TπGπ − TπGπ∥Uπ

≤ ∥ΓΦ,µπ
Mπ(Φθ

∗ −Gπ)∥Uπ
+ ∥ΓΦ,µπ

TπGπ − TπGπ∥µπ,α

≤ ∥Mπ(Φθ
∗ −Gπ)∥Uπ

+ ∥ΓΦ,µπ
TπGπ − TπGπ∥µπ,α

≤ Cζ ∥Φθ∗ −Gπ∥Uπ
+ ∥ΓΦ,µπ

TπGπ − TπGπ∥µπ,α
, (62)

where the last inequality in eq. (62) can be obtained as follows. Following the steps similar
to those in eq. (31)-(34), we can conclude that eig(Mπ) = eig(Pπ). For an ergodic MDP,
we have max[eig(Pπ)] = max[eig(P⊤

π )] = 1. Let i = argmaxj [eig(Pπ)j ]. We then have
maxj ̸=i eig(Pπ)j < 1. Let Gπ be the fixed point of Tπ that is perpendicular to [c11d1 , · · · , ck1dk ],
where c1, · · · , ck could be any constant. The vector Φθ∗ −Gπ is perpendicular to the space spanned
by the eigenvectors of Mπ associated with the eigenvalue 1. Thus, there exists a positive constant
Cζ < 1 such that ∥Mπ(Φθ

∗ −Gπ)∥Uπ
≤ Cζ ∥Φθ∗ −Gπ∥Uπ

, which yields the following results

∥Φθ∗ −Gπ∥µπ,α
≤ 1

1− Cζ
∥ΓΦ,µπ

TπGπ − TπGπ∥µπ,α
. (63)
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Bakcward GVF. To verify Proposition 2, we can obtain the same result for G as in eq. (30) with
Ai = [Φ⊤

i (P
⊤
π − I)ŪπΦi]⊗ Idi . Define Āi = Φ⊤

i (P
⊤
π − I)UπΦi. We next show that Āi is Hurwitz.

Note that Āi = Eµπ [ϕ
′(ϕ− ϕ′)]. Let z be a non-constant function on the state-action space. Then

we have

0 <
1

2
Eµπ

[(z(s, a)− z(s′, a′))2]

= Eµπ [z(s, a)
2]− E[z(s, a)z(s′, a′)]

= z⊤Ūπz − z⊤PπŪπz

= z⊤(I − Pπ)Ūπz. (64)

For a vector v ∈ RKi , we have
v⊤Āiv = vΦ⊤

i (P
⊤
π − I)UπΦiv. (65)

Since Φv is a non-constant function, eq. (64) and eq. (65) together imply that

v⊤Āiv < 0 for all v ∈ RKi .

Thus, the matrix Āi is Hurwitz, which further implies that Ai is also Hurwitz. Following the steps
similar to those in eq. (31) - (34), we can conclude that the matrix G is also Hurwitz, which completes
the proof.

We then verify Theorem 2. We proceed as follows,
∥Φθ∗ −Gπ∥µπ,α

= ∥ΓΦ,µπ
TπΦθ∗ − TπGπ∥µπ,α

≤ ∥ΓΦ,µπ
TπΦθ∗ − ΓΦ,µπ

TπGπ∥µπ,α
+ ∥ΓΦ,µπ

TπGπ − TπGπ∥Uπ

≤
∥∥∥ΓΦ,µπ

M̂π(Φθ
∗ −Gπ)

∥∥∥
Uπ

+ ∥ΓΦ,µπ
TπGπ − TπGπ∥µπ,α

≤
∥∥∥M̂π(Φθ

∗ −Gπ)
∥∥∥
Uπ

+ ∥ΓΦ,µπ
TπGπ − TπGπ∥µπ,α

≤ Cζ ∥Φθ∗ −Gπ∥Uπ
+ ∥ΓΦ,µπ

TπGπ − TπGπ∥µπ,α
, (66)

where the last inequality in eq. (66) can be obtained as follows. Using Theorem 1.3.22 in [13], we
have

eig(U−1
π,i [P

⊤
π,i ⊗ Idi ]Uπ,i) = eig([P⊤

π,i ⊗ Idi ]Uπ,iU
−1
π,i ) = eig([P⊤

π ⊗ Idi ]) = eig(P⊤
π ) = eig(Pπ).

Following the steps similar to those in eq. (31)-(34), we can conclude that eig(M̂π) = eig(Pπ).
Following the steps similar to those for obtaining eq. (63). We have

∥Φθ∗ −Gπ∥µπ,α
≤ 1

1− Cζ
∥ΓΦ,µπTπGπ − TπGπ∥µπ,α

,

where 0 < Cζ < 1, which completes the proof.

I Proof of Theorem 3

We first define the matrix B in the following way:

• Forward GVF: B = ED·π[[ϕ(s
′, a′)⊗ Id]m(x)[ϕ(s, a)⊗ Id]]

• Backward GVF: B = ED·π[[ϕ(s, a)⊗ Id]m(x)[ϕ(s′, a′)⊗ Id]].

We further define the following stochastic matrices in both the forward and backward GVF evaluation
settings. Recall that (st, at) ∼ D(·), s′t ∼ P(·|st, at) and a′t ∼ π(·|s′t.

• Forward GVF:
At = [ϕ(st, at)⊗ Id](m(xt)[ϕ(s

′
t, a

′
t)⊗ Id]

⊤ − [ϕ(st, at)⊗ Id]
⊤),

Bt = [ϕ(s′t, a
′
t)⊗ Id]m(xt)[ϕ(st, at)⊗ Id],

Ct = (ϕ(st, at)ϕ(st, at)
⊤)⊗ Id,

bt = [ϕ(st, at)⊗ Id]C(xt). (67)
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• Backward GVF:

At = [ϕ(s′t, a
′
t)⊗ Id](m(xt)[ϕ(st, at)⊗ Id]

⊤ − [ϕ(s′t, a
′
t)⊗ Id]

⊤),

Bt = [ϕ(st, at)⊗ Id]m(xt)[ϕ(s
′
t, a

′
t)⊗ Id],

Ct = (ϕ(s′t, a
′
t)ϕ(st, at)

⊤)⊗ Id,

bt = [ϕ(s′t, a
′
t)⊗ Id]C(xt). (68)

Recall the matrices A and C defined in Appendix D. For a constant ξ > 0, we define

Ht =

[
At Bt
ξAt ξCt

]
, ht =

[
bt
0

]
.

and

H =

[
A B
ξA ξC

]
, h =

[
b
0

]
,

where A = E[At], B = E[Bt], C = E[Ct] and b = E[bt].

For the matrix Ht, we have the following holds

∥Ht∥2F = (1 + ξ2) ∥At∥2F + ∥Bt∥2F + ξ2 ∥Ct∥2F
≤ (1 + ξ2)[d2C2

ϕ(Cm + 1)]2 + d2C2
ϕC

2
m + ξ2C4

ϕd
2. (69)

which implies that ∥Ht∥F ≤ CH , where

CH =
√
(1 + ξ2)[d2C2

ϕ(Cm + 1)]2 + d2C2
ϕC

2
m + ξ2C4

ϕd
2.

For the vector ht, we can obtain ∥ht∥2 ≤ Ch = dCϕRC by following the steps similar to those for
obtaining eq. (69).

The update in Algorithm 2 can be rewritten as

vt+1 = ΓRv (vt + αt(Htvt + ht)) , (70)

where vt = [θ⊤t , w
⊤
t ]

⊤, and Rv = Rθ × RKdg×1. Following the proof similar to those in Theorem
3 of Section 5.3.3 in [23], we can show that the matrix H is Hurwitz under Assumption 4 and
Assumption 5 with an appropriately chosen ξ > max{0,−eigmin(C

−1[(A+A⊤)/2])}.

We define the following optimal point v∗ = [θ̄∗⊤, w∗⊤]⊤ for the linear SA defined in eq. (70)

⟨φ(v∗), v − v∗⟩ ≤ 0, ∀v ∈ Rv,

where φ(v) = Hv + b. We also define Cv = ∥v∗∥2. It can be checked that there exist a positive
constant λ′G such that

⟨φ(v∗)− φ(v), v∗ − v⟩ ≤ −λ′G ∥v − v∗∥22 . (71)

We further define φ(xt, v) = Htv + ht.

Following the steps similar to those for proving Lemma 7 and Lemma 8, we can obtain the following
two lemmas.
Lemma 11. Given a sample (st, at, Bt, s

′
t) ∼ Dd and a′t ∼ π(·|s′t) and any v ∈ Rv, we have the

following holds

∥φ(xt, v)− φ(v)∥22 ≤ 16C2
H ∥κ− κ∗∥22 + 16C2hPC2

v + 8C2
h.

Proof. Based on the definition of φ(xt, v) and φ(v), we can obtain the following

∥φ(xt, v)− φ(v)∥22 ≤ 2 ∥(Ht −H)v∥22 + 2 ∥ht − h∥22
≤ 4 ∥(Ht −H)(v − v∗)∥22 + 4 ∥(Ht −H)v∗∥22 + 2 ∥ht − h∥22
≤ 16C2

H ∥κ− κ∗∥22 + 16C2
hC

2
v + 8C2

h.
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Lemma 12. Consider the population GTD update φ(v) = Hv + b. We have

⟨−φ(v), v − v∗⟩ ≥ λ′G ∥v − v∗∥22 , ∀v ∈ Rv.

We also have the following "three-point lemma" holds for the GTD update.
Lemma 13. Consider the update of wt and θt in Algorithm 2. For all v ∈ Rv , we have the following
holds

−αt⟨φ(xt, vt), vt+1 − v⟩+ 1

2
∥vt+1 − vt∥22 ≤ 1

2
∥vt − v∥22 −

1

2
∥vt+1 − v∥22 . (72)

Using Lemma 13 and following the steps similar to those from eq. (45) to eq. (48), we can obtain

1

2
∥vt − v∥22 −

1

2
∥vt+1 − v∥22

≥ −αt⟨φ(vt+1), vt+1 − v⟩ − αt⟨φ(xt, vt)− φ(vt), vt − v⟩ − α2
tC

2
H ∥vt+1 − v∥22

− α2
t ∥φ(xt, κt)− φ(κt)∥22 . (73)

Taking expectation on both sides of eq. (73), letting v = v∗, and using the fact that −⟨φ(vt+1), vt+1−
v∗⟩ ≤ λ′G ∥vt+1 − v∗∥2 yield

(1 + 2αtλ
′
G − 2α2

tC
2
H)E[∥vt+1 − v∗∥22] ≤ E[∥vt − v∗∥22] + 2α2

tE[∥φ(xt, κt)− φ(κt)∥22]
≤ (1 + 32α2

tC
2
H)E[∥vt − v∗∥22] + +32C2

hC
2
v + 16C2

h,
(74)

where the second inequality follows from Lemma 12. Multiplying both sides of eq. (74) by ot and
summing over iterations t = 0, · · · , T − 1 yield

T−1∑
t=0

a′′t E[∥vt+1 − v∗∥22] ≤
T−1∑
t=0

b′′t E[∥vt − v∗∥22] + c′′, (75)

where

a′′t = (1 + 2αtλ
′
G − 2α2

tC
2
H)ot,

b′′t = (1 + 32α2
tC

2
H)ot,

c′′ = (32C2hPC2
v + 16C2

h)

T−1∑
t=0

α2
t ot.

Now we let

ot = (t+ t2)(t+ t2 + 1),

αt =
4

λ′G(t+ t2 − 1)
,

t2 =
34C2

H

λ2J
+ 1.

Then, we can obtain the following

a′′t − b′′t+1 = (1 + 2αtλ
′
G − 2α2

tC
2
H)st − (1 + 32α2

t+1C
2
H)ot+1

≥ (1 + 2αtλ
′
G)ot − (1 + 2α2

tC
2
H + 32α2

t+1C
2
H)ot+1

≥ (1 + 2αtλ
′
G)ot − (1 + 34α2

tC
2
H)ot+1

≥ (1 + 2αtλ
′
G)ot − (1 + αtλ

′
G)ot+1

≥ (t+ t2 + 1)
(t+ t2 + 3)(t+ t2)− (t+ t2 + 2)2

t+ t2 − 1

≥ 0,

where the second inequality follows from the fact that αt ≤ λ′
G

34C2
H

.
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Applying the above property to eq. (75) yields

a′′T−1tE[∥vT − v∗∥22] ≤ b′′0 ∥v0 − v∗∥22 + c′′,

which implies

E[∥vT − v∗∥22] ≤
b′′0 ∥v0 − v∗∥22

a′′T−1

+
c′′

a′′T−1

≤
(1 + 16α2

0C
2
H)(t2 + 1)2 ∥v0 − v∗∥22

(T + t2 − 1)(T + t2)
+

128C2
hC

2
v + 64C2

h

(T + t2)λ2J
.

Using the fact
∥∥θT − θ̄∗

∥∥2
F
≤ ∥vT − v∗∥22, we have

E[
∥∥θT − θ̄∗

∥∥2
F
] ≤

(1 + 16α2
0C

2
H)(t2 + 1)2 ∥v0 − v∗∥22

(T + t2 − 1)(T + t2)
+

128C2
hC

2
v + 64C2

h

(T + t2)λ2J
,

which completes the proof.
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