
A Additional Results and Experiments

Self-supervised similarity maps from anatomically-relevant key points are visualized in Figure 5.
Using only self-supervision, our model learns semantically and positionally-aware representations.

Figure 5: Self-supervised spatiotemporal multi-scale similarity learning visualized by sampling a
spatial query point at given time point and computing its featurewise similarity to all locations in
the key image acquired at a different age. The similarity-maps obtained from both datasets reveal
semantically-relevant anatomical representation within the U-Net and projector/predictor networks.
This figure follows the same nomenclature (A–C) as Fig. 1 with analysis in Sec. 4 (main text).
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Label-wise longitudinal consistency. To observe structure-specific performance, we report label-
wise longitudinal consistency scores (as measured by STCS [36]) for OASIS3 and IBIS-subcort on
the test set for the best performing models (as measured by Figure 4 of the main text) in Figure 6.
IBIS-wmgm was not included as it only has two anatomical structures.

Figure 6: Per-label longitudinal consistency comparison between the best performing models
as measured by STCS (spatiotemporal consistency of segmentations [36], higher is better) in the
one-shot segmentation setting. For space considerations, only the best-performing two and three
models are visualized on test set for the OASIS3 and IBIS-subcort tasks, respectively.

Few-shot and fully-supervised segmentation. While the main body of the paper presents results
on one-shot segmentation (corresponding to the common real-world setting of single atlas-based
segmentation), the proposed framework has benefits beyond one-shot segmentation. We present
results obtained by using 10% and 100% of all the labeled training sets in Tables 3 and 4, respectively.
As having more supervised data may necessitate changing our hyperparameters, we explore reducing
the weight of the consistency-regularization from 1.0 to 0.1 for both experiments. In the 10% setting,
we find that Ours w/ Lcs with a weight of 0.1 obtains optimal performance and consistency. In the
100% setting, we find that including Lcs actually degrades performance and that optimal results are
achieved with just the proposed pretraining (Ours w/o Lcs). We hypothesize that these trends arise
from imperfect deformable registration of the intra-subject images as they were warped considering
only their intensity and not semantic structure (see App Section C.1). Therefore, having the imperfect
self-supervision of Lcs in the low-annotation regime increases performance. However, hundreds
of annotated samples remove the need for Lcs, while maintaining the segmentation performance
benefits of our pretraining framework over existing work.
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Table 3: Few-shot segmentation using 10% of the annotated training set for finetuning. This
table quantifies test set performance (Dice, IoU, HD95) and longitudinal consistency (ASPC [47],
STCS[36]). Mdn: Median.

IBIS-subcort

Model Mean(std) Dice Mdn Dice Mean(std) IoU Mdn HD95 Mdn IoU ASPC STCS

RandInitUnet.2D 0.895(0.03) 0.891 0.812(0.06) 2.390 0.804 4.618 0.909
RandInitUnet.3D 0.909(0.03) 0.905 0.834(0.05) 1.819 0.827 5.531 0.911

Context Restore [10] 0.901(0.03) 0.898 0.821(0.05) 2.240 0.815 4.895 0.918
LNE [43] 0.914(0.03) 0.909 0.842(0.05) 1.845 0.834 5.807 0.911
GLCL [9] 0.905(0.03) 0.900 0.827(0.05) 2.486 0.819 4.369 0.913
PCL [63] 0.904(0.03) 0.900 0.826(0.05) 2.881 0.819 4.479 0.911

PatchNCE [44] 0.919(0.03) 0.915 0.851(0.05) 1.004 0.844 5.871 0.908
Ours w/o Lcs 0.920(0.03) 0.916 0.853(0.05) 1.001 0.846 5.521 0.908

Ours w/ 0.1Lcs 0.923(0.03) 0.920 0.858(0.04) 1.002 0.853 5.077 0.910
Ours w/ 1Lcs 0.917(0.03) 0.913 0.848(0.05) 1.002 0.840 4.655 0.925

OASIS3

Model Mean(std) Dice Mdn Dice Mean(std) IoU Mdn HD95 Mdn IoU ASPC STCS

RandInitUnet.2D 0.852(0.09) 0.878 0.752(0.13) 1.569 0.785 4.297 0.908
RandInitUnet.3D 0.867(0.09) 0.888 0.774(0.12) 1.409 0.800 2.575 0.926

Context Restore [10] 0.847(0.10) 0.873 0.745(0.13) 1.660 0.777 4.528 0.916
LNE [43] 0.872(0.09) 0.894 0.782(0.12) 1.426 0.811 2.747 0.923
GLCL [9] 0.861(0.09) 0.884 0.765(0.12) 1.387 0.794 4.005 0.911
PCL [63] 0.862(0.09) 0.885 0.766(0.12) 1.328 0.796 3.896 0.910

PatchNCE [44] 0.868(0.09) 0.888 0.776(0.12) 1.347 0.800 2.666 0.927
Ours w/o Lcs 0.872(0.08) 0.894 0.782(0.12) 1.372 0.810 2.647 0.923

Ours w/ 0.1Lcs 0.873(0.08) 0.894 0.783(0.12) 1.335 0.809 2.602 0.926
Ours w/ 1Lcs 0.868(0.09) 0.890 0.776(0.12) 1.341 0.804 2.446 0.932

Table 4: Fully-supervised segmentation using 100% of the annotated training set for finetuning.
This table quantifies test set performance (Dice, IoU, HD95) and longitudinal consistency (ASPC [47],
STCS[36]). Mdn: Median.

IBIS-subcort

Model Mean(std) Dice Mdn Dice Mean(std) IoU Mdn HD95 Mdn IoU ASPC STCS

RandInitUnet.2D 0.902(0.03) 0.898 0.824(0.05) 2.634 0.815 4.308 0.917
RandInitUnet.3D 0.922(0.03) 0.917 0.856(0.04) 1.730 0.847 5.517 0.916

Context Restore [10] 0.909(0.03) 0.906 0.835(0.05) 1.011 0.828 4.125 0.922
LNE [43] 0.928(0.02) 0.924 0.867(0.04) 1.000 0.859 5.253 0.911
GLCL [9] 0.914(0.03) 0.909 0.843(0.05) 1.011 0.834 4.191 0.917
PCL [63] 0.913(0.03) 0.909 0.842(0.05) 1.006 0.833 4.122 0.918

PatchNCE [44] 0.928(0.02) 0.924 0.867(0.04) 1.001 0.860 5.470 0.910
Ours w/o Lcs 0.933(0.02) 0.930 0.876(0.04) 1.000 0.870 6.666 0.901

Ours w/ 0.1Lcs 0.930(0.02) 0.926 0.870(0.04) 1.000 0.863 5.298 0.910
Ours w/ 1Lcs 0.922(0.02) 0.917 0.856(0.04) 1.000 0.846 4.605 0.926

OASIS3

Model Mean(std) Dice Mdn Dice Mean(std) IoU Mdn HD95 Mdn IoU ASPC STCS

RandInitUnet.2D 0.844(0.10) 0.874 0.741(0.13) 1.632 0.777 4.438 0.914
RandInitUnet.3D 0.878(0.08) 0.898 0.791(0.11) 1.371 0.817 5.570 0.920

Context Restore [10] 0.864(0.09) 0.886 0.769(0.12) 1.415 0.797 4.202 0.927
LNE [43] 0.882(0.08) 0.904 0.796(0.11) 1.280 0.825 4.140 0.926
GLCL [9] 0.864(0.09) 0.887 0.769(0.12) 1.424 0.799 3.590 0.926
PCL [63] 0.865(0.09) 0.890 0.771(0.12) 1.315 0.802 3.328 0.926

PatchNCE [44] 0.869(0.08) 0.889 0.777(0.11) 1.328 0.801 2.599 0.937
Ours w/o Lcs 0.885(0.08) 0.907 0.801(0.11) 1.246 0.831 2.919 0.933

Ours w/ 0.1Lcs 0.882(0.08) 0.904 0.796(0.11) 1.233 0.825 2.647 0.934
Ours w/ 1Lcs 0.877(0.08) 0.898 0.789(0.11) 1.245 0.817 2.368 0.939
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U-Net configuration. For consistency, we use the same base U-Net architecture for all baselines.
Its configuration is modeled based on the one-shot segmentation mean Dice validation results on
OASIS3 presented in Table 5 and evaluated over several training crop sizes, normalization layers,
and channel width multipliers. Importantly, all configurations were trained without any pretraining to
obtain a baseline. We observe that a random crop window of 1283 is optimal (rows A, B, C) and find
that Instance Normalization (row D) instead of Batch Normalization degrades performance. Finally,
we observe almost no performance degradation when reducing the model size via the channel width
multiplier from 24 to 16 (row C vs E) and therefore use 16 for computational efficiency.

Table 5: Base network tuning. Randomly initialized UNet performance over various crop sizes,
normalization types, and the # channels of the first convolution layer. E is the final configuration for
the base network used in all baselines as it best trades-off memory usage and performance.

Exp Crop size Normalization Channel width mean(std) dice

A 64× 64× 64 batch norm 24 0.768 (± 0.14)
B 128× 128× 128 batch norm 24 0.795 (± 0.14)
C 160× 160× 192 batch norm 24 0.786 (± 0.14)
D 128× 128× 128 instance norm 24 0.777 (± 0.14)
E 128× 128× 128 batch norm 16 0.792 (± 0.15)
F 128× 128× 128 batch norm 8 0.786 (± 0.14)

Training a randomly-initialized U-Net with Lcs. To investigate the standalone benefit of Lcs

without any regularized pretraining, we apply Lcs to a randomly initialized 3D U-Net in the one-shot
segmentation setting for IBIS-subcort and report its results in Fig. 7.

Figure 7: Stand-alone combination of the proposed Lcs consistency-regularization and one-shot
segmentation training of a randomly-initialized U-Net. In the one-shot setting, Lcs improves mean
dice by 0.027, which is comparable to the proposed model without Lcs. Optimal results are obtained
when combined with our regularized pretraining framework.

Using last decoder layer in loss. We investigate the impact of including the full-resolution feature
(layer 21 in Table 9) in the EncDec loss configuration described in Section B.1. As shown in Figure 8,
this notably degrades performance, indicating sensitivity to the exact layers used for Lsim calculation.

Figure 8: A comparison between using different number of layers during pretraining. We used ‘8
layers from EncDec’ as our final layer selection as a trade-off between memory and performance.

20



Additional modeling decisions. In addition to the quantitative ablations over our modeling choices
included in the main paper and appendix, we make a few modeling decisions detailed in Table 6
based on qualitative assessments of the representation quality using feature similarity maps.

Table 6: Additional modeling decisions. The final selections are bolded.
Parameter Search space

# of layers in projector 2,3
non-linearity ELU, ReLU, LeakyReLU

within subject registration affine only, affine and deformable
feature selection for similarity loss conv output, activation output

Additional one-shot quantification. As Table 1 and Figure 4 (main text) report median scores,
Table 7 reports means and standard deviations for further interpretation. Similar to the medians, our
method improves both mean performance and longitudinal consistency on IBIS-{wmgm, subcort}.
On OASIS3, our Dice and IoU performance improves on all baselines except for LNE (with whom it
is strongly competitive) and exceeds all baselines in terms of longitudinal consistency (ASPC, STCS).

Table 7: One-shot segmentation performance to complement results presented in Tab. 1 and Fig. 4
of the main text, using means instead of medians. *In OASIS3, we exclude the Right Accumbens
Area and 4th Ventricle labels when calculating mean HD95 due to numerical issues for some of
the baselines (RandInitUnet.2D, Context Restore, and PCL).

IBIS-subcort

Model Dice IoU HD95 ASPC STCS

RandInitUnet.2D 0.828(0.07) 0.712(0.10) 4.784(6.32) 7.08(7.85) 0.893(0.03)
RandInitUnet.3D 0.836(0.06) 0.724(0.09) 3.603(5.27) 5.29(5.12) 0.908(0.02)

Context Restore [10] 0.838(0.07) 0.727(0.09) 5.196(9.27) 8.22(9.16) 0.893(0.02)
LNE [43] 0.847(0.06) 0.739(0.09) 3.478(5.33) 5.83(5.41) 0.905(0.02)
GLCL [9] 0.835(0.07) 0.722(0.10) 3.640(4.16) 5.47(6.23) 0.905(0.03)
PCL [63] 0.833(0.07) 0.720(0.09) 3.528(3.56) 5.78(6.10) 0.902(0.03)

PatchNCE [44] 0.856(0.06) 0.753(0.09) 1.482(1.75) 5.93(5.79) 0.909(0.02)
Ours w/o Lcs 0.863(0.06) 0.763(0.08) 1.510(2.62) 5.68(6.00) 0.909(0.02)
Ours w/ Lcs 0.870(0.05) 0.773(0.08) 1.408(1.24) 4.26(4.32) 0.929(0.02)

IBIS-wmgm

Model Dice IoU HD95 ASPC STCS

RandInitUnet.2D 0.672(0.07) 0.510(0.08) 3.274(1.00) 11.51(11.79) 0.832(0.03)
RandInitUnet.3D 0.713(0.08) 0.560(0.09) 3.788(0.70) 5.52(5.48) 0.863(0.05)

Context Restore [10] 0.590(0.19) 0.444(0.19) 8.273(3.56) 29.24(26.76) 0.813(0.10)
LNE [43] 0.716(0.07) 0.563(0.09) 3.201(0.98) 5.35(6.34) 0.858(0.04)
GLCL [9] 0.707(0.05) 0.550(0.06) 4.112(1.14) 8.47(8.85) 0.858(0.02)
PCL [63] 0.715(0.08) 0.562(0.09) 4.974(1.75) 10.65(13.29) 0.868(0.05)

PatchNCE [44] 0.753(0.05) 0.607(0.06) 4.344(0.66) 3.78(4.18) 0.889(0.03)
Ours w/o Lcs 0.758(0.06) 0.614(0.08) 3.291(0.66) 2.46(2.74) 0.882(0.03)
Ours w/ Lcs 0.806(0.03) 0.676(0.04) 3.237(0.47) 4.15(3.32) 0.910(0.02)

OASIS3

Model Dice IoU HD95* ASPC STCS

RandInitUnet.2D 0.781(0.15) 0.661(0.17) 3.425(5.00) 10.27(28.84) 0.873(0.05)
RandInitUnet.3D 0.804(0.13) 0.689(0.16) 3.424(5.85) 3.53(6.35) 0.923(0.05)

Context Restore [10] 0.801(0.14) 0.687(0.16) 4.841(10.00) 6.88(15.21) 0.899(0.04)
LNE [43] 0.813(0.13) 0.700(0.15) 3.171(5.50) 8.81(31.94) 0.898(0.04)
GLCL [9] 0.792(0.14) 0.674(0.16) 3.330(5.25) 5.30(11.12) 0.903(0.05)
PCL [63] 0.796(0.14) 0.680(0.17) 3.339(5.41) 5.69(13.40) 0.899(0.05)

PatchNCE [44] 0.809(0.13) 0.697(0.16) 3.298(5.93) 3.49(6.70) 0.920(0.04)
Ours w/o Lcs 0.813(0.13) 0.702(0.15) 3.289(5.68) 3.40(6.11) 0.923(0.04)
Ours w/ Lcs 0.810(0.13) 0.697(0.16) 3.733(6.41) 2.76(4.96) 0.934(0.03)
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Additional IBIS-wmgm segmentation results. For one-shot IBIS-wmgm segmentation, we train on
a single 36 month old T1w/T2w MR image and quantitatively evaluate on 6 month old MR images
(for additional motivation see Appendix Section D.2). In Figure 9, we visualize predictions using
additional baselines and our framework on a held-out test subject. As the infant brain matures over
time (Appendix Section D.2), the rows are arranged in order of the most to the least amount of
biological domain-shift w.r.t. the 36 month-old training image. Further, as the 12, 24, and 36 month
old held-out images do not have ground truth segmentations available, we are restricted to qualitative
evaluations of segmentation quality.

Figure 9: Infant brain segmentation on a held-out subject under the strong domain shift induced by
training on a single 36 month-old image and testing on the remaining timepoints. Under the most
extreme domain shift of row 1, we see that all baselines yield highly-inaccurate predictions, while
our method yields higher segmentation quality.
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B Additional Implementation Details

B.1 Additional Training Details

Figure 10: Pre-training Overview. A visual illustration of the proposed losses (a, b, c, d, e) for
spatiotemporal representation learning with a U-Net. An overview of (a)–(d) is in main text Fig.1.

Figure 10 illustrates an in-depth overview of the proposed pretraining and representation learn-
ing framework. In the proposed loss configuration (EncDec), Pre-activation features from layers
{1, 3, 5, 7, 9, 12, 15, 18} in Table 5 are sampled spatially to extract channel-wise vectors which are
fed into the projector and predictor MLPs for Lsim calculation. Patch features from layer {8, 12} in
the bottleneck (processed by the projector) are used for the orthogonality regularizer LO and layers
{12, 15, 18} in the decoder are used for the LS and LC regularizers. In the ablations in Table 2 (main
text), the Enc loss setting refers to using features from layers {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} for Lsim.

Each iteration of pretraining loads three corresponding crops from two intra-subject images each for
Lsim calculation. Higher batch sizes could have been used for the proposed loss functions but were
not for consistency with one of our baselines (PatchNCE [44]) which is highly memory-intensive due
to the need for a large number of negative samples alongside 3D computation.

During finetuning, the segmentation loss (Lsup) is applied to the original unwarped images and the
consistency loss (Lcs) is applied to the nonlinearly aligned images. When calculating Lsup and Lcs,
we perform individual forward/backward passes for each loss due to memory limitations as gradient
accumulation over two forward passes was found to decrease performance on a validation set.

B.2 Architectures

The MLP architectures for the projector and predictor networks used for pretraining and representa-
tion learning are given in Table 8. The U-Net architecture used for both pretraining and finetuning is
given in Table 9. During pretraining, an additional convolutional layer is used following layer 23 to
reconstruct/denoise the input. During finetuning, a channel-wise softmax layer is attached following
layer 23 for segmentation.
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Table 8: Projector and predictor MLP architectures.
Projector (f)

id Layer Output size

0 FC(2048), BN, ReLU (num patches × batch size) × 2048
1 FC(2048), BN, ReLU (num patches × batch size) × 2048
2 FC(2048), BN (num patches × batch size) × 2048

Predictor (p)
id Layer Output size

0 FC(256), BN, ReLU (num patches × batch size) × 256
1 FC(2048), BN, ReLU (num patches × batch size) × 2048

Table 9: U-Net architecture. All convolutional layers use 3× 3 kernels. BN: Batch Normalization
(using default PyTorch momentum). The batch size dimension is denoted bs and nc is the starting
channel width multiplier of the model. We choose nc = 16 consistently throughout all models based
on Table5. n indicates the number of output channels and is set to the number of labels.

id Layer Output size

0 Conv3D(nc), BN, ReLU bs, w, h, d, nc
1 Conv3D(nc), BN, ReLU bs, w, h, d, nc
2 Conv3D(nc), BN, ReLU bs, w, h, d, nc
3 MaxPool(2), Conv3D(2nc), BN, ReLU bs, w/2, h/2, d/2, 2nc
4 Conv3D(2nc), BN, ReLU bs, w/2, h/2, d/2, 2nc
5 MaxPool(2), Conv3D(4nc), BN, ReLU bs, w/4, h/4, d/4, 4nc
6 Conv3D(4nc), BN, ReLU bs, w/4, h/4, d/4, 4nc
7 MaxPool(2), Conv3D(8nc), BN, ReLU bs, w/8, h/8, d/8, 8nc
8 Conv3D(8nc), BN, ReLU bs, w/8, h/8, d/8, 8nc
9 MaxPool(2), Conv3D(16nc), BN, ReLU bs, w/16, h/16, d/16, 16nc
10 Conv3D(16nc), BN, ReLU bs, w/16, h/16, d/16, 16nc
11 Upsample(2), Concatenate with 8 bs, w/8, h/8, d/8, 24nc
12 Conv3D(16nc), BN, ReLU bs, w/8, h/8, d/8, 8nc
13 Conv3D(16nc), BN, ReLU bs, w/8, h/8, d/8, 8nc
14 Upsample(2), Concatenate with 6 bs, w/4, h/4, d/4, 12nc
15 Conv3D(4nc), BN, ReLU bs, w/4, h/4, d/4, 4nc
16 Conv3D(4nc), BN, ReLU bs, w/4, h/4, d/4, 4nc
17 Upsample(2), Concatenate with 4 bs, w/2, h/2, d/2, 6nc
18 Conv3D(2nc), BN, ReLU bs, w/2, h/2, d/2, 2nc
19 Conv3D(2nc), BN, ReLU bs, w/2, h/2, d/2, 2nc
20 Upsample(2), Concatenate with 2 bs, w, h, d, 3nc
21 Conv3D(nc), BN, ReLU bs, w, h, d, nc
22 Conv3D(nc), BN, ReLU bs, w, h, d, nc
23 Conv3D(n) bs, w, h, d, n

B.3 Baseline Reimplementation Details

LNE. LNE [43] is a self-supervised global representation learning method that models longitudinal
effects in an autoencoder latent space and is repurposed here for longitudinal segmentation. During
pretraining, we require the same base U-Net architecture for consistency with other baselines.
Therefore, to extract a 1024D global representation as in the original paper, we add a global pooling
layer on the output of layer 13 in Table 9, followed by a single 1024D fully-connected layer. With
respect to their hyperparameters, due to the larger base network size, we reduce the batch size from
64 to 16 images due to memory considerations. We maintain the other hyperparameters of LNE
including downsampling the images to 643, using N = 5 neighborhoods, and weighing auxiliary
losses as λdir = 1 and λrec = 2 (see original work for definitions [43]).
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PatchNCE. PatchNCE [44] proposes a framework for unsupervised multi-scale patchwise contrastive
learning applied to the problem of unpaired image translation and is extended to serve as a baseline
in this work as it shares a partially similar motivation. To adapt it to our generic longitudinal rep-
resentation learning setting, we impose the same modeling assumption as our method (spatial indices
in correspondence across an image time-series are positive samples and all other spatial indices
are negatives) and modify both its data sampling and loss calculation. First, we perform forward
passes on t corresponding intra-subject crops. At each selected layer, N feature vectors are randomly
sampled for the longitudinal InfoNCE [32] loss: L =

∑
i

1
|P (i)|

∑
p∈P (i) − log ezi·zp/τ∑

s∈S(i) e
zi·zs/τ ,

where for any query feature index i, P (i) is the set of indices of all positives (from the same subject
at the same spatial index) and S(i) is the set of all query indices (with size (t×N)− 1, where t is
the number of timepoints in the batch and N is the number of patches). We choose t = 3 timepoints
and N = 768 patches in our experiments due to memory limits. An ablation study of PatchNCE
over the layers used for the loss function and the temperature is given in Table 10. For prototyping
efficiency, we perform baseline tuning using a three-layer MLP of size 256 and use validation Dice
as the model selection criterion to choose F as our final configuration. For fair comparison with our
model, we increase the MLP width in the PathNCE model to 2048 in all other experiments reported,
although this does not significantly alter results.

Context Restoration. [10] proposes context restoration as a pretext task for self-supervised
representation learning which consists of randomly and repeatedly swapping image patches and
training the network to restore the original image. We extend Algorithm 1 in [10] to use 3D inputs
and targets and tune it with a varying number of swapping iterations (#swaps) and swapped patch
sizes. Downstream validation dice scores are provided in Table 11 and configuration D is chosen as
the final model.

PCL, GLCL, and 2D U-Net. PCL and GLCL [9, 63] are 2D slice-based contrastive learning methods
designed for 3D volume segmentation. We follow the optimal configurations (e.g. temperature,
number of partitions, etc.) reported in the original papers. As these methods use a 2D U-Net
trained on 2D slices, we additionally benchmark against a randomly initialized 2D U-Net to obtain
a baseline for 2D methods. We use a batch size of 128 for all 2D baselines. Within each batch,
we compare two different data sampling strategies: (1) randomly sampling 2D slices across all 3D
volumes; (2) sampling intra-volume slices within each batch (i.e. treat one of the dimensions from a
128× 128× 128 crop as the batch dimension for 2D networks). We train a randomly initialized 2D
U-Net for the one-shot segmentation task, and found that (2) significantly increases the validation
mean Dice over (1) on OASIS3 from 0.708(0.193) to 0.780(0.137) under the same architecture and
optimization set up. We therefore use batch sampling strategy (2) for all 2D model benchmarks (PCL,
GLCL, RandInitUnet.2D).

Table 10: Parameter search (on IBIS-subcort)
of patchNCE pretraining over layers included
for multiscale patchNCE loss, and tempera-
ture. F is used for the final comparison.
Exp layers temperature Mean(std) dice

A Enc 0.07 0.834 (± 0.060)
B Enc 0.1 0.834 (± 0.062)
C Enc 0.2 0.823 (± 0.067)
D Enc 0.5 0.830 (± 0.064)
E EncDec 0.07 0.854 (± 0.056)
F EncDec 0.1 0.856 (± 0.054)
G EncDec 0.2 0.846 (± 0.058)
H EncDec 0.5 0.850 (± 0.054)

Table 11: Context restoration parameter
search over the size of local patches and the
number of patch swap iterations on OASIS3.
Validation mean(std) dice is used for selecting
the configuration D.
Exp patch size # swaps Mean(std) Dice

A 163 10 0.778 (± 0.141)
B 243 10 0.779 (± 0.142)
C 163 30 0.775 (± 0.138)
D 163 50 0.782 (± 0.135)
E 163 100 0.778 (± 0.160)
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C Additional data preparation details

C.1 Registration

C.1.1 Affine registration

To warp all images to a common space, we warp all images affinely to a constructed template [4]
(with an affine transformation model) using ANTs 1 with the following command:

antsMultivariateTemplateConstruction2.sh \
-d 3 \
-o OUTPUT_FOLDER/T \
-i 1 -g 0.2 -j 128 -c 2 -r 1 -n 0 -m MI -l 1 \
-t Affine INPUT_FOLDER/*t1.nii.gz’

Once affinely aligned on a dataset-wide level, we proceed with longitudinal intra-subject deformable
alignment for the calculation of Lsim and Lcs, as described below.

C.1.2 Nonlinear Deformable Registration

Proper spatial correspondence of positive samples for Lsim and label maps for Lcs (the similarity
and consistency losses, respectively) requires nonlinear/deformable registration of all intra-subject
images to a common reference. To this end, we employ the ANTs SyN algorithm from [3] to register
within-subject images to a single timepoint in a series of acquisitions with the following command:

fix = INPUT_FOLDER/{subj}_{trg_tp}_t1.nii.gz
for src_tp in tps:

moving = INPUT_FOLDER/{subj}_{src_tp}_t1.nii.gz
antsRegistration \
--verbose 1 \
--dimensionality 3 \
--float 1 \
--output [OUTPUT_FOLDER/{subj}_{src_tp}_to_{trg_tp}_t1_, \

OUTPUT_FOLDER/{subj}_{src_tp}_to_{trg_tp}_t1_Warped.nii.gz, \
OUTPUT_FOLDER/{subj}_{src_tp}_to_{trg_tp}_t1_InvWarped.nii.gz] \

--transform SyN[0.15, 9, 0.2] \
--metric CC[{fix}, {moving}, 1, 2, Random, 0.4] \
--convergence [250x125x50, 1e-5, 10] \
--shrink-factors 4x2x1 \
--smoothing-sigmas 2x1x0vox \
--interpolation Linear

where fix is the intra-subject image from a selected timepoint trg_tp to which all other timepoints
src_tp are registered.

C.2 Additional preprocessing and label generation

With respect to OASIS3, the publicly-available dataset arrives preprocessed with cross-sectional
FreeSurfer processing (intensity and geometric normalization and segmentation). As cross-sectional
FreeSurfer does not account for longitudinal effects [47], FreeSurfer V6.0 is used for additional
longitudinal processing on top of the publicly-released cross-sectional FreeSurfer segmentations. A
comparison between longitudinal and cross-sectional FreeSurfer analysis based on training set is
given in Fig. 11, where we observe notable improvements to longitudinal segmentation consistency
(as quantified by STCS [36]) over all structures.

For IBIS-{subcort, wmgm}, all T1w/T2w MR images are preprocessed following standard proce-
dures described in [50] of gradient distortion correction, bias-field correction, within-subject and
within time-point multi-modality registration, and brain extraction. For IBIS-subcort, ground truth
label generation follows the segmentation procedures outlined in [50]. For IBIS-wmgm, we use

1https://github.com/ANTsX/ANTs
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Figure 11: Longitudinal FreeSurfer processing (for anatomical segmentation used as ground-truth
targets) leads to substantial improvements over the publicly-released cross-sectional FreeSurfer
processing of OASIS3 in longitudinal-consistency metrics such as STCS [36] (higher is better). See
section C.2 for further motivation.

segmentations generated by a fully-supervised network trained on an external dataset, see Appendix
Section D.2 for more details.

Once preprocessed and aligned with methods described in Section C.1, the images are cropped to a
common field-of-view (128× 192× 160 for IBIS, 160× 192× 160 for OASIS3, corresponding to
smaller brain volumes for infants vs. adults) for compatibility with common multi-resolution neural
network architectures.

C.3 Data splitting with repeat acquisitions

We perform a 70-10-20 train, validation, and test split on subject-wise basis from a total of N subjects
and M images (M > N due to image time-series acquisitions), with the entire procedure illustrated
in Figure 12. This level of the data split hierarchy (N_cross subjects and M_cross images) is used
for segmentation training and evaluation. For longitudinal pretraining and longitudinal consistency
evaluation (ASPC, STCS in Table 1 and Figure 4 of the main text), we further filter N_long subjects
with at least 2 acquisitions per subject to obtain M_long images.

Finally, IBIS-subcort and IBIS-wmgm are segmentation tasks which share the same unlabeled
pretraining data. Importantly, we note that as IBIS-wmgm is evaluated and tested only on 6-month-old
MR images (representing the strongest domain shift, see Appendix Section D.2 for its motivation),
its segmentation validation and test sets contain fewer images than IBIS-subcort. Table 12 provides
the exact sample sizes for each task.
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Figure 12: Longitudinal data selection and splitting criteria. Row 1 → 2: Given M images from
N subjects, we apply a 70-10-20 train/val/test subject-wise split to avoid data leakage. This level of
data split hierarchy is compatible with the calculation of segmentation performance scores which are
agnostic to repeat acquisitions such as the Dice coefficient and mean Intersection-over-Union. Row 2
→ 3: For longitudinal pretraining and calculation of longitudinal consistency scores (such as ASPC
and STCS), we further filter the data splits to only contain subjects with two or more acquisitions.
Actual dataset-specific numbers reported in Table 12.

Table 12: Dataset-specific sample sizes of images (N) and subjects (M). Table best interpreted in
conjunction with Fig. 12. Abbreviations include _long: longitudinal and _cross: cross-sectional.

IBIS
IBIS-subcort IBIS-wmgm

Split (N_cross, M_cross) (N_long, M_long) (N_cross, M_cross) (N_long, M_long)

Total (552, 1272) (455, 1175) (552, 1272) (552, 1272)
Train (386, 887) (313, 814) (386, 887) (313, 814)
Validation (55, 133) (50, 128) (55, 42) (50, 128)
Test (111, 252) (92, 233) (111, 80) (92, 233)

OASIS3
Split (N_cross, M_cross) (N_long, M_long)

Total (992, 1639) (422, 1069)
Train (694, 1147) (293, 746)
Validation (98, 166) (48, 116)
Test (200, 326) (81, 207)
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D Miscellaneous Details

D.1 Data availability and IRB information

IBIS. The IBIS/Autism MRI data is available through NIH NDA2. The Infant Brain Imaging Study
(IBIS) Network is a National Institutes of Health–funded Autism Center of Excellence project and
consists of a consortium of eight universities in the United States and Canada. Parents provided
informed consent and the institutional review board at each site approved the research protocol.

OASIS-3. OASIS-3 [34] is publicly available through the OASIS webpage3. Ethical approval was
obtained by the relevant ethics committees and informed consent was obtained from all participants
following procedures set by the IRB at the Washington University School of Medicine.

D.2 IBIS-wmgm segmentation task details

Figure 13: A showcase of brain appearance maturation through the early lifespan. Left: T1w;
right: T2w images of developing infant brains from axial/coronal view.

Infant white matter maturation. Neurodevelopment in infants and toddlers is a highly-complex
process of macro and micro-structural changes (for example, growth and myelination, respectively).
Relevant to the scope of this paper, real-world tissue segmentation (into grey and white matter) of
infant brains at approximately 6 months of age (post-birth) is highly difficult due to ongoing white
matter myelination giving the brain an “isointense" (flat in intensity) appearance which ambiguates
anatomical edges. Fig. 13 visualizes this phenomenon.

Currently, existing datasets for supervised segmentation of isointense infant brains [53] construct their
ground truth labels by first nonlinearly registering algorithmic segmentations of an older timepoint
from a given subject image time-series (which is straightforward to segment with existing tools) and
then manually correcting the warped labels with the expertise of neuroradiologists.

In our one-shot segmentation setting, we take a partially analogous approach to segmentation of
isointense infant brains. We first algorithmically segment [46] a single arbitrarily-selected 36 month
old T1w/T2w MR image and use this reliable segmentation to train all segmentation baselines and
the proposed method. These methods which have only been trained on a 36 month old brain are then
quantitatively evaluated on isointense 6 month old brain tissue segmentation in this paper. The target
labels for the 6 month old evaluation set are generated algorithmically with supervised segmentation
networks following [64] which have been trained on a separate dataset [53].

2https://nda.nih.gov/edit_collection.html?id=19
3https://www.oasis-brains.org/
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E Need for regularization

In this section, we qualitatively and quantitatively illustrate that proper regularization of patch-wise
negative-free multiscale representation learning avoids low-diversity or degenerate decoder represen-
tations which hamper downstream segmentation performance. We primarily compare the complete
proposed model (‘Ours w/ regularization’) against an ablation (‘Our ablation w/o regularization’)
that only uses the patch-wise similarity loss and does not use the denoising, variance, covariance, and
orthogonality regularization (which corresponds to ablation E from Table 2).

Figure 14 visualizes activations from layers {6,8,10,13,16} of Table 9 (left) and the sorted singular
values of the spatial covariance matrices of multi-layer feature projections from the corresponding
layer-wise projector output (right) trained with/without regularization. Given a flattened mid-axial fea-
ture projection F ∈ Rwh×c (where c = 2048 and wh is the vectorized spatial dimensionality), we cal-
culate the spatial covariance as C = 1

c

∑c
i=1(zi− z̄)(zi− z̄)T , where zi ∈ Rwh×1 is a spatial feature

vector and z̄ = 1
c

∑c
i=1 zi. The lower the rank of C, the lower the spatial variability of representations.

Figure 14: An illustration of U-Net activations (left) and the log-scale singular values of the spatial
covariance matrix C (right), both trained with (red) and without (blue) regularization. While encoder
activations are comparable both with and without regularization, the decoder U-Net activations
converge to degenerate spatial patterns without regularization (left) and their projections have much
lower spatial variability as shown by the singular values of their covariance matrices (right). With
regularization, decoder layers avoid degenerate solutions and their spectra indicate higher rank.
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Figure 15: Varying queries against a constant key. To complement Figures 1 and 5, this figure
qualitatively visualizes the intra-subject similarity maps obtained by querying the projections of
decoder layer 16 (from Table 9) from several distinct regions (red stars, columns) and comparing
them against the projection of the corresponding decoder activation from a key intra-subject temporal
image (blue box, left). Without regularization (rows 2 and 5), the ablation yields intra-subject
similarity values with very low spatial diversity across all queries, as indicated by similar appearance
across all entries in the green boxes and the spatial artifacts in the yellow boxes. However, given
proper regularization (rows 3 and 6), these values converge to semantically-similar regions, which
indicate better representations for semantically-driven tasks as indicated by improved downstream
segmentation performance.
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Figure 16: Varying keys against a constant query. To complement Figure 15, we now hold constant
the query (red star, sampled from white matter) decoder feature projection from layer 19 (of Table 9)
and visualize the intra-subject similarity values computed against several distinct key slice projections
(blue boxes) from the corresponding decoder representations of an intra-subject temporal image. As
in Figure 15, the ablation without regularization (rows 2 and 5) yields degenerate and semantically-
unmeaningful similarity patterns (yellow boxes) with low spatial diversity and artifacts across 3D
space. With regularization, self-similarity patterns are semantically-coherent in 3D.
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Figure 17: Variability of local U-Net feature embeddings. This figure visualizes the standard
deviations of channel-wise projection vectors from multiple layers of a U-Net pretrained with (red)
or without (blue) regularization. As previously suggested by Figures 14, 15, and 16, decoder
projections have significantly lower spatial variability without regularization, indicating low-diversity
representations. With regularization, spatial variability is increased which ultimately enables better
transfer to downstream tasks such as segmentation.
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Figure 18: Multi-layer patch-wise cosine similarity loss (Lsim). Here, we visualize the positive-
only patch similarity loss against training steps for a selection of encoder and decoder layers (columns)
across both datasets with (red) and without (blue) regularization. During initial training stages, we
see that encoder layer losses (rows 1 and 3) gradually decrease in both regularized and unregularized
settings. However, decoder layer losses (rows 2 and 4) show near-immediate convergence to a degen-
erate ideal solution (green arrows) without regularization and these unregularized representations
do not transfer well to downstream segmentation as shown by the quantitative results in this paper.
This phenomenon is consistent with previous literature on negative-free representation learning (see
Figure 2a of [13]).
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