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In this document, we provide more implementation details, analysis and psuedo-code of NeMF and
more results on SPair-71k [6], PF-PASCAL [3], and PF-WILLOW [2].

Appendix A. More Implementation Details

Cost Embedding Network Details. The cost embedding network is based on CATs [1]. More
specifically, instead of utilizing hyperpixels, we use the feature maps of last index at each pyramidal
layers of ResNet-101. Then we resize their spatial resolutions to 16× 16 using 4D convolutions and
compute correlation maps. Then we feed them into subsequent Transformer [1] by treating the level
dimension as channel, which in this case is 4, and obtain a cost feature volume that has a shape of
R16×16×16×16×16.

Training Details. We use AdamW [4] with learning rate 3e−5. For the MLP architecture, we
compose with 3 blocks, which the each block consists of 2 fully connected networks followed by
ReLU activation and a residual connection. For uniform sampling, we sample both directions of
cost volume and use them to compute the final loss. We use negative log likelihood function with
temperature τ = 0.07 for computing the loss between the predicted correspondence and the ground-
truth correspondence. We use EPE loss additionally using the predicted flow and the ground-truth
flow from cost embedding network. Balancing factors λf and λc are set to 1. For the frequency of
the positional encoding L for coordinates, we set as L = 10. We use PyTorch3D [8] to encode the
coordinates.

Appendix B. Controlling computational complexity

Additionally, we emphasize that with only a negligible amount of influence on the performance, we
can reduce computational burden and memory consumption at inference phase by only optimizing
the coordinates of interests used for evaluation at coordinate optimization phase and tuning the
batch-size of the input coordinates to the PatchMatch-based sampling, which can determine the
memory consumption and run-time. Assuming a set of keypoints are for querying is available, we
can optimize only the coordinates of the keypoint which we want to find its corresponding keypoint
at target image. This way, we can significantly reduce the run-time. The results are shown in
Table 1. For this experiment, we assumed NeMF is representing cost volume of size 128 to show
the memory comparison that will be presented below this paragraph. From the results, we observe
negligible memory change, but significant reduction in run time when only the keypoints of interest
are optimized.

Also, by reducing the batch-size of the input coordinates to the PatchMatch-based sampling we can
also control the memory consumption. To this end, we conduct a simple experiment and report the
run-time and memory consumption with varying batch size. The results are shown in Table 2. This
table shows that tuning the batch-size can reduce the memory consumption by sacrificing run-time,
meaning that users can choose to infer with high/low memory and fast/slow run-time.
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Inference strategy Run-time Memory
[s/img] [MiB]

PatchMatch Only 1.42 6307
PatchMatch + Optimize all coordinates 2.21 6309
PatchMatch + Optimize only keypoints 1.65 6308

Table 1: Computation complexity comparison.

Batch size Run-time Memory
[s/img] [MiB]

100000 1.65 6308
50000 2.27 4301
25000 4.43 2730
10000 9.18 1789

Table 2: Computation complexity comparison.

Appendix C. Additional Results

More Qualitative Results. We provide more comparison of CATs and other state-of-the-art meth-
ods on SPair-71k [6] in Fig. 1, PF-PASCAL [3] in Fig. 2, and PF-WILLOW [3] in Fig. 3. We also
present visualization of matching fields on SPair-71k [6] in Fig. 4.
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(a) CHM [5] (b) DHPF [7] (c) CATs [1] (d) NeMF

Figure 1: Qualitative results on SPair-71k [6]: keypoints transfer results by (a) CHM [5], (b)
HPF [7], and (c) CATs [1], and (d) NeMF. Note that green and red line denotes correct and wrong
prediction, respectively, with respect to the ground-truth.
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(a) CHM [5] (b) DHPF [7] (c) CATs [1] (d) NeMF

Figure 2: Qualitative results on PF-PASCAL [3]

(a) CHM [5] (b) DHPF [7] (c) CATs [1] (d) NeMF

Figure 3: Qualitative results on PF-WILLOW [2]
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(a) Source (b) CATs [1] (c) NeMF
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(d) CATs [1]
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(e) NeMF

Figure 4: Visualization of matching fields on SPair-71k [6]: (a) source image, where the keypoint
is marked as green triangle, (b), (c) 2D contour plots of cost by CATs [1] and the NeMF (ours),
respectively, and (d), (e) 3D visualization of cost by CATs [1] and NeMF, with respect to the keypoint
in (a). Note that all the visualizations are smoothed by a Gaussian kernel.
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